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 Hardware problems are the most detrimental issues to channel estimates in 

wireless communication systems. Because of the enormous number of 

antennas at the base station (BS) in cellular massive multiple-input multiple-

output (MIMO) systems and because one radio frequency (RF) chain per 

antenna is required, hardware impairments in such systems will be quite 

severe. Many research publications have used a quality-cost tradeoff to 

adjust for RF unit hardware issues. In this study, we have taken a different 

approach by reducing the error floor caused by impairments in the predicted 

channels. Here are two steps to remedy the problem. In phase 1, a single 

active user channel in a single cell was calculated statistically rather than 

parametrically. In phase 2, a convex optimization approach was used to 

regularize the estimated channel in phase 1 to reduce error and provide a 

robust channel estimate. The results of our proposed procedure are measured 

by the normalized minimum mean squared error (NMSE) versus a range 

from the effective signal-to-noise ratio, and it shows a significant reduction 

(nearly one order of magnitude) in the error floor as compared with the 

conventional one, especially at high signal-to-noise ratio (SNR) in the range 

of (20 dB-30 dB). Simulation results were extracted in MATLAB R2020a. 
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1. INTRODUCTION 

Massive multiple-input multiple-output (MIMO) systems are appreciated as an emerging key 

technology for future generations of wireless communication systems [1]–[8]. In most academic wireless 

communication research, an ideal hardware transceiver is assumed with a negligible hardware impact on the 

transmitted and received signals. In such a classical setup, both transmitter and receiver hardware 

components are characterized as a memoryless linear filter model. In other words, the transmitter correctly 

modulates its analog passband signal from the complex samples of its baseband signal, while the receiver 

demodulates and samples its received signal synchronously with the transmitter. 

However, the transceiver hardware in wireless communication systems is always non-ideal and the 

classical operations in ideal systems are not satisfied in practice [9]. In terms of power consumption and cost 

view, designing a massive MIMO system with a single radio frequency (RF) chain per antenna will lead to 

higher power consumption and expensive cost. Hence, a cost-quality trade-off policy should be followed, that 

is, the cost of realization of such systems will be 𝑀𝑗 times than that have been needed for the conventional 

systems with only one RF chain. Hence, lower-quality hardware components with a compensation procedure 

may be used for saving costs. 

https://creativecommons.org/licenses/by-sa/4.0/
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In effect, the aggregate non-linear impact of the various non-ideal hardware in the RF chain is called 

hardware impairments [10]–[15]. Because of the hardware impairments, there is a mismatch between the 

received signal and the baseband signal on the transceiver hardware ends. Different modeling systems with 

analog and/or digital algorithms such as in [16]–[18] and the references therein, have been issued to 

compensate for these nonlinearities problems and reduce their impact on the performance of the 

communication system. But none of these algorithms have completely fixed these problems in practice. In 

other words, residual impairments [19] still exist in many of these modeling systems raised either by 

inaccuracies in the design or by the destructive nature of some hardware impairments.  

In this paper, a single-user single-cell massive MIMO scenario has been considered under two 

impairment effects, the non-ideal hardware impairments, and the imperfection knowledge of the covariance 

matrices at the base station (BS) [20]–[22]. However, motivated by the fact that the channels estimated under 

such impairments have a large error floor, especially at high signal-to-noise ratio (SNR) [23], two phases of a 

procedure have been proposed here to estimate the channels under these conditions. In phase 1, the channels 

were statistically estimated based on many signal observations at the BS, exploiting the ergodicity of the 

channels and the low of the large number. In phase 2, to investigate a robust channel estimate with minimum 

error, a convex optimization method was applied to regularize the estimated channels in phase 1. Our results 

have been validated with conventional (parametric) channel estimation based on the local scattering model 

[24]. The results have shown a significant reduction in terms of floor error quantity at high SNR. 

The paper is organized as follows: in section 2, the concepts under the hood like residual 

impairments of the non-linear model, the uplink transmission model, and the channel estimation with 

hardware distortion have been studied in detail. Our proposed model has been explained in section 3, and the 

results and their analysis have been discussed in section 4. Finally, the paper is concluded in section 5. 

 

 

2. METHOD AND MODELS 

2.1.  Residual impairments model (Bussgangs’ model) 

Bussgang theorem [25] suppose that if the complex Gaussian random variable like 𝑠 ∼ ℂ𝒩(0, 𝑝) is 

fed into a distorting device with a non-linear memoryless function g(.), then the output of this device will no 

longer be Gaussian, that is if 𝑦 = 𝑔(𝑠), then y will be a non-Gaussian random variable, and both s and y can 

be cross-correlated as in (1). 

 

𝑦 =
E{𝑦𝑠∗}

𝑝
𝑠 + 𝜂 (1) 

 

where the term E{𝑦𝑠∗} 𝑝⁄  is a constant ratio that defines the correlation ratio between the output 𝑦 and input 

variable 𝑠. The additive factor, 𝜂, is a nonlinear term that defines the impact of the hardware device on the 

input 𝑠. Based on the Bussgang analysis, if we assumed E{|𝑦𝑠∗|2} E{𝑠2}⁄ = 𝜌 as a constant factor, and using 

this notation in (1), we can now generalize a consistent and analytical model to describe the aggregate effect 

of residual impairments on the RF signals. Hence, the input-output model that fully characterizes the 

detrimental impact of the residual hardware impairments in the communication system as in (2). 

 

𝑦 = √𝜌 𝑠 + 𝜂 (2) 

 

where 𝑠 and 𝑦 are assumed with equal power 𝑝. However, the power of the distortion term can be calculated 

from (2) as follows: {| 𝜂|2} = 𝐸{|𝑦|2} − 𝜌 𝐸{| 𝑠|2} → {| 𝜂|2} = (1 − 𝜌)𝑝, that is 𝜂 ∼ ℂ𝒩(0, (1 − 𝜌)𝑝). 
Thus, the power of the distortion term is related to the input power 𝑝 with a scaling factor (1 − 𝜌). That 

means, the additive distortion term is a power-dependent factor, in contrast to the classical additive receiver 

noise 𝜎2 which is independent of the input power 𝑝. However, the constant factor, 𝜌 ∈ (0, 1], represents the 

hardware quality factor that can be used to measure the level of impairment of hardware devices at the 

transmitter and receiver as follows: when 𝜌 = 1, the output will be the same as the input, that is, 𝑦 = 𝑠, i.e., 

the distortion term ({| 𝜂|2} = 0}), this is the case of ideal hardware. Otherwise, when 𝜌 = 0, the distortion 

term will be 𝜂 ∼ ℂ𝒩(0, 𝑝) which is the same Gaussian distribution as the input. The latter case represents the 

worst-case condition, i.e., the input 𝑠 is completely distorted at the output of the non-linear device. 

 

2.2.  Uplink transmission model 

In this section, we will study the aggregate impact of the hardware impairments on the RF signal 

from both the BS and terminal user (TU) transceivers, in addition to the propagation channel impact. In a 

multi-user scenario, assume the transmitted signal by an arbitrary TU 𝑘 located in cell 𝒿 is 𝑠𝒿𝑘 ∼ ℂ𝒩(0, 𝑝𝒿𝑘). 
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Following the model in (2), the complex Gaussian signal will be distorted by the non-ideal hardware of the 

TU device and then transmitted over the channel as √𝜌𝑡
𝑇𝑈 𝑠𝒿𝑘 + 𝜂𝒿𝑘

𝑇𝑈 instead of 𝑠𝒿𝑘. The scaling factor 

𝜌𝑡
𝑇𝑈denotes the quality of the TU device, and for tractable notation, it is assumed to be the same for all TUs 

in the network. The additive factor 𝜂𝒿𝑘
𝑇𝑈 determines the transmitter hardware distortion, which can be 

distributed as 𝜂𝒿𝑘
𝑇𝑈 ∼ ℂ𝒩(0, (1 − 𝜌𝑡

𝑇𝑈)𝑝𝒿𝑘). In general, the received planner array signals that reach the 𝑀𝒿 

antennas at the BS 𝒿 from all TUs in the network are as in (3). 

 

�̆�𝒿 = ∑  ∑  
𝐾ℓ
𝑖=1 hℓ𝑖

𝒿𝐿
ℓ=1 (√𝜌𝑡

𝑇𝑈 𝑠ℓ𝑖 + 𝜂ℓ𝑖
𝑇𝑈) (3) 

 

where 𝐿 denotes the number of cells in the network, and 𝐾ℓ refers to the total number of TUs in each cell in 

the network. However, for a given set of channel realizations {hℓ𝑖
𝒿

} within an arbitrary coherence block, the 

analog signal �̆�𝒿  represents a complex Gaussian signal that has zero mean and a conditional correlation 

matrix which can be given as in (4). 

 

𝔼 {�̆�𝒿 �̆� 𝒿
𝐻|{hℓ𝑖

𝒿
}} = ∑  ∑  𝑝ℓ𝑖

𝐾ℓ
𝑖=1 hℓ𝑖

𝒿𝐿
ℓ=1 (hℓ𝑖

𝒿
)
𝐻

 (4) 

 

However, since 𝔼 {|√𝜌𝑡
𝑇𝑈 𝑠ℓ𝑖 + 𝜂ℓ𝑖

𝑇𝑈|
2

} = 𝑝ℓ𝑖 . Therefore, it can once again apply the model in (2) to 

determine the impact of hardware impairments at the receiver end (the BS). Thus, the signal �̆�𝒿  is replaced 

by √𝜌𝑟
𝐵𝑆 �̆�𝒿 + 𝜂𝒿 

𝐵𝑆, where 𝜌𝑟
𝐵𝑆 ∈ (0,1] denotes the quality of the hardware of the BS 𝒿 which is also assumed 

to be the same for all BSs, and 𝜂𝒿 
𝐵𝑆 ∈ ℂ𝑀𝒿  is the hardware distortion term of the BS 𝒿. For analytical 

convenience, it has been assumed that the distortion terms between the different RF chains that attached to 

the 𝑀𝒿  receive antennas are independent. In general, the marginal signal 𝑦𝒿 ∈ ℂ
𝑀𝒿  that is received from the 

UL transmission at BS 𝒿 can be modeled as in (5). 

 

𝑦𝒿 = √𝜌𝑟
𝐵𝑆 (∑  ∑  

𝐾ℓ
𝑖=1 hℓ𝑖

𝒿𝐿
ℓ=1 (√𝜌𝑡

𝑇𝑈 𝑠ℓ𝑖 + 𝜂ℓ𝑖
𝑇𝑈)) + 𝜂𝒿 

𝐵𝑆 + n𝒿 (5) 

 

where n𝒿 is the White Gaussian (WG) noise that has been added at the BS 𝒿 . Finally, the signal 𝑦𝒿  represents 

a complex baseband signal that will be used in the following channel estimation model. 

 

2.3.  Channel estimation model under hardware distortion 

In this section, an uplink channel estimation model for the signal in (5) will be derived under non-

ideal transceiver hardware based on the received signal Y𝒿 
𝑝
∈ ℂ𝑀𝒿 ×𝜏𝑝 . To this end, let 𝑠ℓ𝑖 = √𝑝ℓ𝑖𝜑ℓ𝑖 ∈ ℂ

𝜏𝑝  , 

represents the transmitted pilot sequence used by a TU 𝑖 in cell ℓ. Hence, the uplink transmission model in 

(5) over 𝜏𝑝 transmission instances will be given as in (6). 

 

Y𝒿 
𝑝
= √𝜌𝑟

𝐵𝑆 (∑  ∑  
𝐾ℓ
𝑖=1 hℓ𝑖

𝒿𝐿
ℓ=1 (√𝑝ℓ𝑖  𝜌𝑡

𝑇𝑈 𝜑ℓ𝑖
𝑇 + (𝜂ℓ𝑖

𝑇𝑈)𝑇)) + 𝐺𝒿 
𝐵𝑆 + N𝒿 

𝑝
 (6) 

 

where N𝒿 
𝑝
∈ ℂ𝑀𝒿 ×𝜏𝑝  is the additive noise on the 𝑀𝒿  receive antennas with 𝑖. 𝑖. 𝑑 elements and are distributed 

as ∼ ℂ𝒩(0, 𝜎𝑈𝐿
2 ), the term 𝐺𝒿 

𝐵𝑆 ∈ ℂ𝑀𝒿 ×𝜏𝑝  is the receiver hardware distortion matrix, each column of which 

takes the same distribution as 𝜂𝒿 
𝐵𝑆 in (5), while 𝜂ℓ𝑖

𝑇𝑈 ∈ ℂ𝜏𝑝 represents the transmitter distortion that contains 

𝜏𝑝 transmission realizations from 𝜂ℓ𝑖
𝑇𝑈 in (5). However, to estimate the channel of a TU 𝑖 in cell ℓ at the BS 𝒿, 

the BS first correlates signal Y𝒿 
𝑝

 with the pilot sequence 𝜑ℓ𝑖  of the desired TU and yields the processed signal 

𝑦 𝒿ℓ𝑖
𝑝
= Y𝒿 

𝑝
𝜑ℓ𝑖
∗ . For an instant, to estimate the channel of the 𝑘th TU in cell 𝒿 at the BS 𝒿, the received signal 

will be written as in (7).  

 

𝑦 𝒿𝒿𝑘
𝑝
= Y𝒿 

𝑝
𝜑𝒿𝑘
∗ = √𝑝𝒿𝑘  𝜌𝑡

𝑇𝑈𝜌𝑟
𝐵𝑆𝜏𝑝 h𝒿𝑘

𝒿

⏟            
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑖𝑙𝑜𝑡

+∑ √𝑝ℓ𝑖  𝜌𝑡
𝑇𝑈𝜌𝑟

𝐵𝑆𝜏𝑝 hℓ𝑖
𝒿

(ℓ,𝑖)∈𝒫𝒿𝑘\(𝒿,𝑘)⏟                    
𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑖𝑛𝑔 𝑝𝑖𝑙𝑜𝑡𝑠

+

∑  ∑  √𝜌𝑟
𝐵𝑆𝐾ℓ

𝑖=1 hℓ𝑖
𝒿𝐿

ℓ=1 (𝜂ℓ𝑖
𝑇𝑈)𝑇𝜑𝒿𝑘

∗
⏟                    

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛

+ 𝐺𝒿 
𝐵𝑆𝜑𝒿𝑘

∗
⏟    

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛

+ N𝒿 
𝑝
𝜑𝒿𝑘
∗

⏟  
𝑁𝑜𝑖𝑠𝑒

 (7) 
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where 𝜏𝑝 results from multiplying 𝜑ℓ𝑖
𝑇 𝜑𝒿𝑘

∗  when 𝜑ℓ𝑖
𝑇 = 𝜑𝒿𝑘

𝑇 . The set 𝒫𝒿𝑘 denotes for all users using pilot 

sequences as the pilot sequence 𝜑𝒿𝑘 of the desired TU 𝑘 in cell 𝒿. Since ‖𝜑𝒿𝑘‖
2
= 𝜏𝑝 . The last three terms in 

(7) will be distributed as follows: N𝒿 
𝑝
𝜑𝒿𝑘
∗ ∼ ℂ𝒩 (0, 𝜎𝑈𝐿

2 𝜏𝑝I𝑀𝒿 ), (𝜂ℓ𝑖
𝑇𝑈)𝑇𝜑𝒿𝑘

∗ ∼ ℂ𝒩(0, 𝜏𝑝(1 − 𝜌𝑡
𝑇𝑈)𝑝𝒿𝑘), and 

𝐺𝒿 
𝐵𝑆𝜑𝒿𝑘

∗ ∼ ℂ𝒩(0𝑀𝒿 , 𝜏𝑝D𝒿,{h}) for given channel realizations. It is seen from (7) that the processed signal 𝑦 𝒿𝒿𝑘
𝑝

 

is affected by an aggregate distortion from the transmitter and receiver hardware of all signaling 

transmissions in the entire network. Since these distortions are almost surely non-orthogonal to their pilot 

sequence, this implies that there are pilot contaminations between every TUs in the network. However, 

according to the Bussgang theorem, the processed signal 𝑦 𝒿𝒿𝑘
𝑝

 in (7) represents a non-Gaussian signal. 

Therefore, a suboptimal estimator will be used here instead of the exact one. In other words, a linear 

minimum mean squared error (LMMSE) estimator with a little performance loss will be used instead of the 

optimal MMSE estimator. In general, based on the processed signal 𝑦 𝒿ℓ𝑖
𝑝
= Y𝒿 

𝑝
𝜑ℓ𝑖
∗  the linear LMMSE 

estimator [24] ĥℓ𝑖
𝒿

 can be given as in (8). 

 

ĥℓ𝑖
𝒿
= √𝑝ℓ𝑖  𝜌𝑡

𝑇𝑈𝜌𝑟
𝐵𝑆Rℓ𝑖

𝒿
Ψℓ𝑖
𝒿
𝑦 𝒿ℓ𝑖
𝑝

 (8) 

 

where Rℓ𝑖
𝒿
∈ ℂ𝑀𝒿 ×𝑀𝒿  denotes the covariance matrix of hℓ𝑖

𝒿
, and Ψℓ𝑖

𝒿
 refers to the overall effects from all 

interfering TU, the additive receiver noise, and hardware distortions caused by pilot signaling of all TUs in 

the entire network, it is written as in (9). 

 

Ψℓ𝑖
𝒿
= (∑ 𝑝ℓ𝑖  𝜌𝑡

𝑇𝑈𝜌𝑟
𝐵𝑆𝜏𝑝 Rℓ𝑖

𝒿
(ℓ,𝑖)∈𝒫𝒿𝑘\(𝒿,𝑘)

+ 𝜎𝑈𝐿
2 I𝑀𝒿 + ∑  ∑  𝑝ℓ𝑖(1 −

𝐾ℓ
𝑖=1

𝐿
ℓ=1

𝜌𝑡
𝑇𝑈)𝜌𝑟

𝐵𝑆 Rℓ𝑖
𝒿
+∑  ∑  𝑝ℓ𝑖(1 − 𝜌𝑟

𝐵𝑆)
𝐾ℓ
𝑖=1 D

Rℓ𝑖
𝒿

𝐿
ℓ=1 )

−1

 (9) 

 

where 

 

D
Rℓ𝑖
𝒿 = diag ([Rℓ𝑖

𝒿
]
11
, … , [Rℓ𝑖

𝒿
]
𝑀𝒿 𝑀𝒿 

) (10) 

 

represents a diagonal matrix that contains diagonal elements from Rℓ𝑖
𝒿

. However, the estimator that gives a 

minimum mean squared error minimum mean squared error (MSE) 𝔼{‖hℓ𝑖
𝒿
− ĥℓ𝑖

𝒿
‖
2
} is the best estimator that 

can be used, the difference hℓ𝑖
𝒿
− ĥℓ𝑖

𝒿
 represents the estimation error h̃ℓ𝑖

𝒿
 that has a correlation matrix  

Cℓ𝑖
𝒿
= 𝔼 {h̃ℓ𝑖

𝒿
(h̃ℓ𝑖
𝒿
)
𝐻
} given as in (11). 

 

Cℓ𝑖
𝒿
= Rℓ𝑖

𝒿
− 𝑝ℓ𝑖  𝜌𝑡

𝑇𝑈𝜌𝑟
𝐵𝑆𝜏𝑝 Rℓ𝑖

𝒿
Ψℓ𝑖
𝒿
Rℓ𝑖
𝒿

 (11) 

 

while the correlation matrix of the linear estimator ĥℓ𝑖
𝒿

 calculated as in (12). 

 

𝔼 {ĥℓ𝑖
𝒿
 (ĥℓ𝑖

𝒿
 )
𝐻
} = Rℓ𝑖

𝒿
− Cℓ𝑖

𝒿
= 𝑝ℓ𝑖  𝜌𝑡

𝑇𝑈𝜌𝑟
𝐵𝑆𝜏𝑝 Rℓ𝑖

𝒿
Ψℓ𝑖
𝒿
Rℓ𝑖
𝒿

 (12) 

 

It is noticed from (8) that the correlation matrix of the linear estimator ĥℓ𝑖
𝒿

 is fully dependent on the 

second-order statistics of all TUs in the network, which means that the BS can determine the LMMSE 

estimator ĥℓ𝑖
𝒿

 only when it knows the correlation matrices Rℓ𝑖
𝒿

 and Ψℓ𝑖
𝒿

 including the scaling quantity 

𝑝ℓ𝑖  𝜌𝑡
𝑇𝑈𝜌𝑟

𝐵𝑆𝜏𝑝 . However, the BS in practice has imperfect or no prior knowledge of this statistical 

information and therefore should be statistically estimated based on the random matrix theory. 

 

2.4.  Hardware distortions impact 

In this section, a single cell single active TU scenario has been tested to show how hardware 

impairments impact the estimated channel in section 2.3, the channel between the TU and the BS is denoted 

by h ∼ ℂ𝒩(0𝑀, R), where R ∈ ℂ𝑀×𝑀, is the semi-definite covariance matrix. Following (11), the correlation 

matrix of the error for a single user scenario is given as in (13). 

 

C = R − 𝑝 𝜌𝑡
𝑇𝑈𝜌𝑟

𝐵𝑆𝜏𝑝 RΨR (13) 
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Where 

 

Ψ = (𝑝 (1 + 𝜌𝑡
𝑇𝑈(𝜏𝑝 − 1)) 𝜌𝑟

𝐵𝑆R + 𝑝(1 − 𝜌𝑟
𝐵𝑆)DR + 𝜎𝑈𝐿

2 I𝑀)
−1

 (14) 

 

The Ψ expression in (14) shows the distortion effect of the transceiver’s hardware in the desired TU 

and the BS, which is different from the case when having ideal hardware i.e. 𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 1. Sub. (14) in 

(13) and take the limits when 𝑝 goes to infinity the correlation matrix of the error becomes as in (15). 

 

C = R − R (
1+𝜌𝑡

𝑇𝑈(𝜏𝑝 −1)

𝜌𝑡
𝑇𝑈𝜏𝑝 

R +
(1−𝜌𝑟

𝐵𝑆)

𝜌𝑡
𝑇𝑈𝜌𝑟

𝐵𝑆𝜏𝑝 
DR)

−1

R (15) 

 

For a special case of R = βI𝑀, the correlation matrix of the error in (15) simplifies to: 

 

C = βI𝑀 −
β2

1+𝜌𝑡
𝑇𝑈(𝜏𝑝 −1)

𝜌𝑡
𝑇𝑈𝜏𝑝 

β+
(1−𝜌𝑟

𝐵𝑆)

𝜌𝑡
𝑇𝑈𝜌𝑟

𝐵𝑆𝜏𝑝 
β

I𝑀 =
β(1−𝜌𝑡

𝑇𝑈𝜌𝑟
𝐵𝑆)

1+𝜌𝑡
𝑇𝑈𝜌𝑟

𝐵𝑆(𝜏𝑝 −1)
 (16) 

 

The last expression in front of I𝑀 represents the aggregate error floor term of the transceiver’s 

hardware at the BS and the TU device. As seen in (16), the error floor is constrained by the hardware quality 

𝜌𝑡
𝑇𝑈 and 𝜌𝑟

𝐵𝑆, the pilot length 𝜏𝑝 , and the average gain of the channel β. Hence, one can use these parameters 

to optimize the error floor at the BS. 

The normalized mean squared error normalized minimum mean squared error  
(NMSE) = tr(C)/tr(R) in Figure 1 has been used in [24] to show how the hardware distortion affects the 

estimated channel when using “the local scattering model” with angular standard deviation (ASD) = 10° and 

a uniform distributed nominal angle. NMSE curves are averaged over a range from the effective SNR for 

𝜏𝑝 = 10 lengths and with different hardware constants, as illustrated in Figure 1. 

 

 

 
 

Figure 1. The normalized MSE of the conventional channel estimation using the local scattering model in 

[24] with equal hardware quality at the transceiver ends 

 

 

3. PROPOSED APPROACH 

In motivation with the fact that the BS can estimate the channel hℓ𝑖
𝒿

 only when it knows the 

correlation matrices Rℓ𝑖
𝒿

 and Ψℓ𝑖
𝒿

 which in practice are unknown at the BS. Therefore, in this section, the 

methods of two phases have been suggested to estimate the channels under such consideration. In phase 1, 

the channel hℓ𝑖
𝒿

 statistically estimated based on many observations of the signals in (6) exploiting the channel 

ergodicity characteristics and the low of the large number. A sample covariance matrix from the random 

matrix theory of the desired TU channel would be estimated first, then a convex optimization method will be 

applied to regularize the covariance matrices in phase 1. In the present work, two imperfection conditions, 

the hardware distortions, and the unknown statistics of the channel at the BS have been jointly considered. 
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3.1.  Phase 1: sample covariance matrix estimation 

3.1.1. 𝚿𝓵𝐢
𝓳
 (𝐬𝐚𝐦𝐩𝐥𝐞) estimation 

In this part, the BS needs to see many observations from 𝑦 𝒿ℓ𝑖
𝑝

 as 𝑦 𝒿ℓ𝑖
𝑝 [1], … , 𝑦 𝒿ℓ𝑖

𝑝
[𝑁𝛹], where 𝑁𝛹 

refers to the total number of signal observations, assumed the coherence time is large enough to include many 

channel realizations, then the sample matrix can then be given as in (17): 

 

Ψ̂ℓ𝑖
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

=
1

𝑁𝛹
∑ 𝑦 𝒿ℓ𝑖

𝑝 [𝑛](𝑦 𝒿ℓ𝑖
𝑝 [𝑛])

𝐻
𝑁𝛹
𝑛=1  (17) 

 

and according to the large number low, i.e., when 𝑁𝛹 → ∞, then as in (18). 

 

[
1

𝑁𝛹
∑ 𝑦 𝒿ℓ𝑖

𝑝 [𝑛](𝑦 𝒿ℓ𝑖
𝑝 [𝑛])

𝐻
𝑁𝛹
𝑛=1 ]

𝑚,𝑚

 𝑎.𝑠 
→ [Ψℓ𝑖

𝒿
]
𝑚,𝑚

 (18) 

 

which is a diagonal element from the sample covariance matrix in (17). 

 

3.1.2. 𝐑𝓵𝐢
𝓳
 (𝐬𝐚𝐦𝐩𝐥𝐞) estimation 

In this part, the same approach above can be followed with two stages of a procedure as in [21]. In 

the first stage, the BS first estimate the Ψℓ𝑖
𝒿
 (𝑠𝑎𝑚𝑝𝑙𝑒) that determined for all TUs in the network, including the 

desired TU. In the second stage, the BS gives extra pilots to the interfering users and used their observations 

to estimate Rℓ𝑖
𝒿
 (𝑠𝑎𝑚𝑝𝑙𝑒) as in (19). 

 

R̂ℓ𝑖
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

= Ψ̂ℓ𝑖
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

− Ψ̂ℓ𝑖,−𝑘
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

 (19) 

 

where Ψ̂ℓ𝑖
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

is the already computed matrix and Ψ̂ℓ𝑖,−𝑘
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

is the sample covariance matrix of the 

interfering TUs with additional pilots.  

 

3.2.  Phase 2: convex optimization of sample covariance matrices 

Due to the estimation error in all elements of the sample covariance matrices estimated in phase 1; a 

convex optimization method will be used here to obtain a better estimate, where the statistical sample 

covariance matrices are regularized with its diagonal matrices to reduce the error as follows: 

 

Ψ̂ℓ𝑖
𝒿 (𝑐) = 𝑐 Ψ̂ℓ𝑖

𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)
+ (1 − 𝑐)Ψ̂ℓ𝑖

𝒿 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)
 (20) 

 

R̂ℓ𝑖
𝒿
(𝛼) = 𝛼R̂ℓ𝑖

𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)
+ (1 − 𝛼)R̂ℓ𝑖

𝒿 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)
 (21) 

 

where 𝑐 and 𝛼 denote the regularization factors. The diagonal elements of the R̂ℓ𝑖
𝒿
(𝛼) and Ψ̂ℓ𝑖

𝒿 (𝑐) are the 

same as in R̂ℓ𝑖
𝒿 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)

 and Ψ̂ℓ𝑖
𝒿 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)

respectively, while the elements in the off-diagonal locations are 

regularized corresponding to 𝑐 and 𝛼 ∈ [0,1]. This might be important for the estimating model in (8) since it 

uses the covariance matrices to estimate the channel hℓ𝑖
𝒿

. Thus, (8) can be rewritten in terms of the 

regularized covariance matrices as in (22). 

 

ĥℓ𝑖
𝒿 (𝛼, 𝑐) = √𝑝ℓ𝑖  𝜌𝑡

𝑇𝑈𝜌𝑟
𝐵𝑆R̂ℓ𝑖

𝒿 (𝛼)Ψ̂ℓ𝑖
𝒿 (𝑐) 𝑦 𝒿ℓ𝑖

𝑝
 (22) 

 

Then, the NMSE = tr(C)/tr(R) for a single-TU single-cell scenario can be applied to compare the 

obtained results with the standard results in Figure 1. 

 

 

4. RESULT AND ANALYSIS 

For performance evaluation, the average NMSE curves in Figure 1 of the local scattering model have been 

considered as the standard results [24] that can be used to validate our results in Figures 2 and 3. It has been assumed 

that the NMSE curves in Figure 1 are averaged over different nominal angles of the TU in the cell (0° − 360°) with 

Gaussian distribution and angular standard deviation (𝐴𝑆𝐷 = 10°) using 𝑀 = 100 antennas at the BS. Figure 1 

illustrates the NMSE curves as a function of the effective SNR (𝑝/𝜎𝑈𝐿
2 ) with a pilot sequence 𝜏𝑝 = 10 and different 
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hardware constants as follows, 𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.99 and 𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.95 in case of hardware distortions, and 

𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 1 in case of ideal hardware. Figure 1 emphasizes that there is an error floor in the estimated channels, 

particularly in the range of (20 dB and 30 dB) SNR, while it is small at low SNR values. On the other hand, 

hardware impairments show a substantial impact on the estimated channels when the quality of hardware 

components decreases, particularly at 𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.95. In the present work, an optimized channel estimation 

method was proposed to reduce the error floor in the NMSE curves at high SNR. We first take advantage of the 

random matrix theory to estimate the channels statistically based on the sample covariance matrix method under 

imperfect statistical information, then a convex optimization procedure has been applied to regularize the estimated 

sample covariance matrices of the estimated channels. Our results illustrated in Figure 2 show the average NMSE 

curves for the estimated channels under the joint impact of hardware impairments and imperfection knowledge of 

the channels at the BS. It shows how the practical channels are closely aligned to the standard NMSE curves of the 

local scattering model in Figure 1. On the other hand, Figure 3 shows the optimized NMSE curves when the convex 

optimization procedure was applied to the sample covariance matrices in Figure 2. As a result, the error floor in 

Figure 3 is significantly reduced when the hardware quality 𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.99, while it is slightly better than 

before in the case of 𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.95. On the other hand, it is noticed that the NMSE curve when  

𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.99 is closely aligned to the ideal hardware case of 𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 1, which means that less quality 

hardware components can be used now at the BS with only a little performance loss in the channel estimation. 

 

 

 
 

Figure 2. The normalized MSE of the statistical channel estimation using the sample covariance matrix in 

phase 1 with equal hardware quality at the transceiver ends 

 

 

 
 

Figure 3. The normalized MSE of the optimized channel estimation using the convex optimization method in 

phase 2 with equal hardware quality at the transceiver ends 

𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.95 

𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.99 

𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.95 

𝜌𝑡
𝑇𝑈 = 𝜌𝑟

𝐵𝑆 = 0.99 
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5. CONCLUSION 

In this research, a channel estimate approach for large MIMO systems was suggested under two 

situations of impairment: the non-ideal hardware impairments at the transceiver ends of the transmitter and 

receiver, and the impairments caused by the BS's insufficient statistical information. We estimated the 

channels jointly under these conditions, regularized them, then compared them to the typical result from the 

local scattering model. In terms of hardware quality constants, the results show that our proposed technique 

beats the usual one in terms of lowering the error floor (almost by an order of magnitude). 
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