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1. INTRODUCTION  

The global transition toward sustainable energy systems has intensified the challenges of power grid 

management, particularly as electricity demand continues to surge with rapid urbanization and technological 

advancement. Smart grid technology has emerged as a crucial solution for reducing losses and enhancing 

system stability, while promoting dependability and efficient regulation of electrical energy supply [1]. The 

integration of smart devices, however, creates significant data interchange between various grid components, 

which can impact response and processing times [2]. 

Modern smart grids represent an evolution of electrical networks that connect highly efficient, 

decentralized renewable energy sources. Through advanced communication and control technology, these 

systems fulfill consumer demands while reducing both costs and greenhouse gas emissions [3]. The 

transformation of traditional power grids into smart grids (SG) has been enabled by information and 

communication technology (ICT), creating networks where millions of electronic devices communicate 

through advanced metering infrastructure (AMI) [4]. 

The unit commitment problem (UCP) plays a vital role in this context, significantly contributing to 

cost reduction in electrical power production through strategic allocation of production costs based on real 

output power [5]. The UCP involves coordinating multiple generating units to meet forecasted electricity 

demand over a 24-hour period, requiring careful planning of generator operations to achieve minimum cost 

while satisfying operational constraints [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The complexity of the UCP stems from its considerable dimensions, nonlinear objective function, 

and coupling constraints. The problem can be decomposed into two distinct but interconnected components: 

unit commitment and economic dispatch. The economic dispatch aspect requires careful consideration to 

efficiently distribute electricity generated across the system [7]. This dual nature of the problem - combining 

unit commitment decisions about operational status with economic dispatch determinations about power 

output levels - creates a challenging optimization scenario. 

This research introduces a novel eagle strategy based crow search algorithm (ES-CSA) as a solution 

for the UCP in smart grid systems. Our proposed algorithm minimizes system generation costs while 

simultaneously satisfying load demand and spinning reserve constraints. We demonstrate the effectiveness of 

our ES-CSA method through implementation on a power system with 10 power units.  

The remainder of this paper is organized as follows: section 2 presents the mathematical formulation 

of the UCP. Section 3 introduces the fundamentals of ES and CSA algorithms. Section 4 discusses the 

computational results. Finally, section 5 provides concluding remarks. 

 

 

2. METHOD 

2.1.  Formulation of unit commitment problem 

The UCP encompasses determining the optimal operational schedule of generating units across 

discrete time intervals to meet demand while minimizing total operational costs [8]. This optimization must 

satisfy both load requirements and spinning reserve constraints, while respecting individual unit limitations 

including generation bounds and minimum up/down times. 

The total production cost over the scheduling horizon comprises three primary components [9]. 

First, fuel costs are typically represented by quadratic polynomials derived from heat rate data and fuel 

pricing [10]. Second, startup costs vary with unit downtime duration, commonly modeled through either 

exponential cooling functions or binary hot/cold start classifications [11]. Finally, shutdown costs, primarily 

reflecting labor and maintenance expenses, are treated as fixed values for each generating unit. 

 

2.2.  Objective function 

The UCP main goal is to minimize the total production cost function: 

 

𝑀𝑖𝑛𝐹𝑇 = ∑ ∑ [[𝐹𝑖(𝑃𝑖(𝑡))𝑈𝑖(𝑡) + 𝑆𝑇𝑖(𝑡)𝑈𝑖(𝑡)] + 𝐷𝐶𝑖(𝑡)(1 − 𝑈𝑖(𝑡))𝑈𝑖(𝑡 − 1)] 𝑁𝑡
𝑡=1

𝑁
𝑖=1  (1) 

 

where: 𝑈𝑖(𝑡) is the state of unit 𝑖 at time 𝑡: a zero means that the plant is stopped, a 1 that it is in operation 

Fi(Pi(𝑡)) is the production cost of unit 𝑖 at time 𝑡, in the most frequent case: 

 

𝐹𝑖(𝑃𝑖(𝑡)) = 𝑎𝑖 + 𝑏𝑖𝑃𝑖(𝑡) + 𝑐𝑖𝑃𝑖(𝑡)
2  (2) 

𝑖 = 1,… … ,𝑁  

𝑡 = 1,… … ,𝑁𝑡  

 

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 represent the unit cost coefficients. 

STi(𝑡) represents the cost of restarting unit i at time t, it depends on the time which unit i was turned  Ti
off, it 

can be represented by the following form: 

 

 𝑆𝑇𝑖(𝑡)  =  {
 𝐻𝑆𝐶𝑖  𝑠𝑖 𝑀𝐷𝑇𝑖 ≤  𝑇𝑖

𝑂𝐹𝐹 ≤ 𝑀𝐷𝑇𝑖 + 𝑆𝐶𝑖

𝐶𝑆𝐶𝑖  𝑠𝑖 Ti
OFF > 𝑀𝐷𝑇𝑖 + 𝑆𝐶𝑖

  (3) 

 

where 𝐶𝑆𝐶𝑖  is (cold start cost) cold start cost of unit i ($), 𝐻𝑆𝐶𝑖  is (hot start cost) hot restart cost of unit i ($), 

𝑆𝐶𝑖 is (cold start) cold restart time of unit i (hours), and DCi(𝑡) is the cost of shutting down unit i at time t, it 

is often constant. 

 

2.3.  Constraints 

The UCP is subject to several essential operational constraints that ensure reliable and secure power 

system operation. These constraints govern power balance, spinning reserve requirements, generation limits, 

and unit operational timing restrictions, collectively forming the technical framework for optimization. 

 

2.3.1. Technical and operational constraints 

− Demand to be satisfied: 
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∑ 𝑃𝑖(𝑡)
𝑁
𝑖=1 𝑈𝑖(𝑡) = 𝑃𝐷(𝑡) + 𝑃𝐿  (𝑡) 𝑡 = 1,… … . . , 𝑁𝑡  (4) 

 

where 𝑃𝐷(t) is the system load demand at time t. 

− Reserve to be guaranteed: 
 

∑ 𝑃𝑖
𝑚𝑎𝑥(𝑡)𝑁

𝑖=1 𝑈𝑖(𝑡) ≥ 𝑃𝐷(𝑡) +  𝑃𝑅  (𝑡) 𝑡 = 1,……  𝑁𝑡  (5) 
 

The losses through the transmission system can be approximated by: 
 

𝑃𝐿(𝑡) = ∑ ∑ Pi(𝑡)
𝑁
𝑗=1

𝑁
𝑖=1 𝐵𝑖𝑗𝑃𝑗(𝑡) + ∑ 𝐵𝑂𝑖

𝑁
𝑖=1 Pi(𝑡) + 𝐵𝑂𝑂 (6) 

 

where Pj minimum power of unit j (MW), Pj minimum power of unit j (MW), Bij element (i, j) of a square 

matrix of dimension (N×M), Bio element i of a vector of dimension N, and Boo constant losses (MW). 

− Bounded power 
 

𝑃𝑖
𝑚𝑖𝑛 ≤ Pi(𝑡) ≤ 𝑃𝑖

𝑚𝑎𝑥  𝑆𝑖 Ui(t) = 1 (7) 
 

where 𝑃𝑖
𝑚𝑖𝑛 and 𝑃𝑖

𝑚𝑎𝑥 are the minimum and maximum generation limits of unit i. Minimum switch-on time. 

When a unit is started, it can only be switched off if the running time exceeds the minimum running time of 

that unit. 
 

𝑀𝑈𝑇𝑖 ≤   Ti
ON 𝑖 = 1, … ;𝑁 (8) 

 

− Minimum extinction time 
 

𝑀𝐷𝑇𝑖 ≤   Ti
OFF 𝑖 = 1, … ;𝑁  (9) 

 

− Maximum power elevation: 
 

𝑃𝑖(𝑡) ≤ 𝑚𝑖𝑛 (𝑃𝑖
𝑚𝑎𝑥 , 𝑃𝑖(𝑡 − 1)  − 𝑈𝑅𝑖) 𝑆𝑖 𝑈𝑖(𝑡 − 1) = 1 𝑒𝑡 𝑈𝑖(𝑡) = 1 (10) 

𝑖 = 1,… … ,𝑁  

𝑡 = 1,… … ,𝑁𝑡  
 

− Maximum power drop:  
 

Pi(𝑡) ≤ max (𝑃𝑖
𝑚𝑖𝑛 , Pi(𝑡 − 1)  − DRi) Si Ui(t − 1) = 1 et Ui(t) = 1  (11) 

𝑖 = 1,…… ,𝑁  

𝑡 = 1,…… ,𝑁𝑡  
 

The constraint (4) ensures power balance by equating total generation with the sum of demand and 

losses. The constraint (5) guarantees sufficient spinning reserve capacity to handle contingencies. The 

constraint (6) accounts for transmission system losses using the B-matrix coefficients. The constraint (7) 

ensures each generating unit operates within its minimum and maximum power limits when committed. The 

constraint (8) enforces minimum up-time requirements, ensuring units remain online for a specified duration 

once started. The constraint (9) guarantees minimum down-time requirements are met before restarting a 

unit. The constraint (10) ensures generation increases remain within ramp-up rate limits while constraint (11) 

maintains ramp-down rates within acceptable bounds for committed units. 

 

2.3.2. Electric vehicles constraints 

Recent advancements in vehicle-to-grid (V2G) technology have enabled electric vehicles (EVs) to 

participate actively in power system operations through bidirectional power flow capabilities. This 

integration is facilitated through aggregator entities that serve as intermediaries between system operators 

and multiple EV owners [12]-[15]. The aggregator model enables efficient coordination of distributed EV 

resources, particularly during periods of vehicle inactivity when owners can establish contractual agreements 

with system operators for load aggregation services. 

From a system perspective, aggregated plug-in electric vehicles (PEVs) can be modeled as a 

distinctive generating unit with unique characteristics. The cost structure of PEV aggregation follows a 

quadratic function, reflecting the increasing marginal costs associated with expanding EV owner 

participation. This economic behavior aligns with traditional power system unit commitment frameworks 

while accounting for the distributed nature of EV resources. 
 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 833-844 

836 

𝑓(𝑃(𝑚, 𝑡)) = 𝑎(𝑚)𝑃(𝑚, 𝑡)2 + 𝑏(𝑚)𝑃(𝑚, 𝑡) + 𝑐(𝑚)  (12) 

 

Electric vehicle integration into the grid requires careful consideration of several key operational 

limits. First, we must maintain a minimum state of charge (SoC) to ensure EV owners have sufficient energy 

for unexpected travel needs. Second, grid stability and safety necessitate setting an upper boundary on the 

total power that EVs can feed back into the grid each hour. Third, since EVs have intermittent grid 

connectivity patterns throughout the day, we need to define specific time windows when vehicles are 

available for grid services. Finally, we must account for the maximum power capacity available from the 

aggregated PEV fleet during each operational period. 
 

𝑆𝑂𝐶(𝑡,𝑚) ≥ 𝑆𝑂𝐶𝑚𝑖𝑛 (13) 
 

𝑃𝐸𝑉(𝑡) = ∑ 𝑃(𝑡,𝑚) ≤ 𝑃𝐸𝑉𝑚𝑎𝑥
𝑀
𝑚=1   (14) 

 

2.3.3. Pumped storage constraints 

The operation of pumped storage systems presents unique characteristics in power system 

optimization, as these units incur minimal operational costs due to their fuel-free nature. Their integration 

into the UCP requires adherence to key operational bounds. Specifically, the generation output must be 

maintained within defined lower and upper limits to ensure system stability and efficient operation. 

Constraint (16) ensures the generation output of pumped storage units remains within specified minimum and 

maximum power limits during operation mode. Constraint (17) enforces similar bounds for pumping 

operation, maintaining power consumption within safe operational limits. Constraint (18) and (19) govern the 

spinning reserve contribution, ensuring it stays within defined boundaries while limiting the total sum of 

generation and reserve to the unit's maximum capacity. Constraint (20) enforces a fundamental operational 

rule that prevents simultaneous pumping and generation modes. Constraint (21) maintains the energy balance 

in the upper reservoir by accounting for pumping gains and generation losses through their respective 

efficiencies. Constraint (22) defines the allowable storage capacity range for the upper reservoir. Constraint 

(23) sets the initial stored energy level, while constraint (24) ensures a minimum final energy level in the 

upper reservoir at the end of the planning horizon. 
 

0 ≤ 𝑃𝑔(𝑚, 𝑡) ≤ 𝑃𝑔−𝑚𝑎𝑥(𝑚)  (15) 
 

0 ≤ 𝑃𝑝(𝑚, 𝑡) ≤ 𝑃𝑝−𝑚𝑎𝑥(𝑚)  (16) 
 

0 ≤ 𝑃𝑔−𝑆𝑅(𝑚, 𝑡) ≤ 𝑃𝑔−𝑚𝑎𝑥(𝑚)  (17) 
 

0 ≤ 𝑃𝑝−𝑆𝑅(𝑚, 𝑡) ≤ 𝑃𝑝(𝑚, 𝑡)  (18)  
 

𝑃𝑔(𝑚, 𝑡) + 𝑃𝑔−𝑆𝑅(𝑚, 𝑡) ≤ 𝑃𝑔−𝑚𝑎𝑥(𝑚)  (19) 
 

𝑢𝑝(𝑚, 𝑡) + 𝑢𝑔(𝑚, 𝑡) ≤ 1  (20) 
 

𝐸(𝑚, 𝑡) = 𝐸(𝑚, 𝑡 − 1) − 𝑃𝑔(𝑚, 𝑡) + 𝜂𝑝𝑠𝑃𝑝(𝑚, 𝑡) − (𝜂𝑝𝑠. 𝑃𝑝−𝑆𝑅(𝑚, 𝑡) + 𝑃𝑔−𝑆𝑅(𝑚, 𝑡)) 𝑟𝑒  (21) 

 

𝐸𝑚𝑖𝑛(𝑚, 𝑡) ≤ 𝐸(𝑚, 𝑡) ≤ 𝐸𝑚𝑎𝑥(𝑚) (22) 
 

𝐸(𝑚, 𝑇) = 𝐸(𝑚, 0)  (23) 
 

𝐸𝑚𝑖𝑛(𝑚, 𝑡) = 𝐸𝑚𝑖𝑛(𝑚) + 𝑟𝑒(𝑃𝑝−𝑆𝑅(𝑚, 𝑡 + 1)+𝑃𝑔−𝑆𝑅(𝑚, 𝑡 + 1))  (24) 

 

 

3. METHODS 

3.1.  Crow search algorithm 

The CSA represents an innovative metaheuristic optimization technique that simulates the intelligent 

behavior patterns of crow flocks. First introduced by Askarzadeh [16], this population-based algorithm has 

demonstrated remarkable effectiveness in addressing complex engineering optimization challenges. Crows 

exhibit sophisticated cognitive abilities, including facial recognition and strategic food-hiding behaviors, 

which form the foundation of this optimization approach [17]. The CSA methodology follows a systematic 

process organized in distinct stages: 
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a. Initialization 

− Generate initial population of crows in d-dimensional space 

− Each crow i maintains position xi,iter and memory mi,iter  

− Evaluate initial fitness values 

b. Position update process 

 

xi,iter+1 = {
xi,iter+1 + ri  × fli,iter  × (mi,iter − xi,iter),

       rj  ≥ APj,iterA random positonofsearch spaceotherwise
  (25) 

 

where APj; iter refers to crow j awareness probability, iter refers to iteration number, ri; rj refers to random 

numbers, fli; iter is the crow i flight length to denote crow j memory. 

c. Memory update mechanism 
 

mi,iter+1 = {
xi,iter+1, if f(xi,iter )is better than f(mi,iter )

mi,iter, otherwise
 (26) 

 

where f (*) stands for the objective function. Until the termination requirement is met, these procedures are 

repeated. The best position that the crow flock has memorized at that point is presented as the best solution.  

The exploration and exploitation capabilities of the CSA are illustrated in Figure 1. The overall 

process of the CSA algorithm is summarized in the flowchart shown in Figure 2. 
 

 

 
 

Figure 1. Exploration and exploitation of CSA 
 
 

 
 

Figure 2. Flowchart of CSA 
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 Algorithm 1. Crow search algorithm 
1: Randomly initialize the position of a flock of (NP) crows in the search space. 

2: Evaluate the position of the Crows 

3: Initialize the memory of each Crow 

4: While (iter≤ itermax) do 
5: for i= 1: to NP do 

6: Randomly choose one of the crows to follow (for example, j) 

7: Define an awareness probability  

8: if (rj≥AP j, iter) then 
9: xi, iter+1=x i, iter+ri∗fli, iter∗ (mj, iter−x i, iter) 
10: else 

11: xi, iter+1=a random position of search space. 

12:   end if  

13: end for  

14: Check the feasibility of new positions 

15: Evaluate the new position of the Crows  

16: Update the memory of crows 

17: end while 

 

Recent studies have demonstrated CSA's effectiveness in various optimization scenarios [18], 

particularly in power system applications. The algorithm's success stems from its ability to balance 

exploration and exploitation through the awareness probability (AP) parameter and flight length mechanisms. 

The iterative process continues until meeting termination criteria, with the flock's best memorized position 

representing the optimal solution. This approach has proven particularly effective in handling nonlinear 

optimization problems with multiple constraints [17], [18]. 

 

3.2.  Brief introduction to eagle strategy 

ES represents a metaheuristic optimization approach introduced by Yang and Deb [19], which 

emulates the distinctive hunting behavior of eagles. This two-phase optimization technique draws inspiration 

from eagles' natural foraging patterns, combining global exploration with focused local search capabilities. 

The ES methodology consists of two primary phases: 

a. Global exploration 

− Implements Levy flight patterns for broad search space exploration 

− Mimics eagles' random soaring behavior 

− Seeks promising regions in the solution space 

b. Local search 
 

𝑰𝒇 (𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑓𝑜𝑢𝑛𝑑){

                 Perform intensive local search
               Apply efficient local optimizer

𝐄𝐥𝐬𝐞                                                        
       Restart global exploration

 

 

The algorithm alternates between these phases, systematically: 

− Conducting global exploration to identify potential solutions 

− Executing intensive local search when promising regions are discovered 

− Restarting the process in new areas to maintain search diversity 

This dual-phase approach has proven particularly effective for complex optimization problems [19], 

combining the benefits of broad exploration with focused exploitation of promising solution regions. 
 

 Algorithm 2. ES 
1: Objective function f(x)  

2: Initialization and random initial guess xt=o 

3: While (stop criterion) do  

4: Global exploration by randomization (e; g; levy flights) 

5: Evaluate the objectives and find a promising solution  

6: Intensive local search via an efficient local optimizer  

7: If (a better solution is found) then  

8: Update the current best  

9: End if 

10: Update t=t+1 

11:  End while 

 

3.3.  Binary eagle startegy based crow search algorithm for unit commitment problem 

The proposed methodology addresses the UCP through a two-phase approach that combines binary 

ES-CSA with the Lambda-iteration method [20]. In this framework, the unit scheduling optimization, which 
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represents the more complex aspect of the problem, is handled by a binary version of ES-CSA in the first 

phase. The second phase employs the conventional Lambda-iteration method to resolve the economic load 

dispatch subproblem, creating a comprehensive solution strategy for the complete unit commitment 

challenge. In (27) convert (3) and (26) from continues to binary space: 

 

xi,iter = {1 if s(xi,iter ) ≥ rand(),
 0 if otherwise

  (27) 

 

where s(xi,iter )=
1

y
, y=1+e−xi,iter

, and rand() is a random number from uniform distribution [0; 1] and xi,iter is 

the updated binary position at iter iteration. 

 

3.3.1. Solution representation and initialization 

In implementing the binary ES-CSA for UCP, the solution encoding plays a crucial role in algorithm 

effectiveness. Each solution, represented as an artificial crow in the algorithm, encodes the operational 

schedule of generating units across the planning horizon. The encoding structure utilizes a binary matrix 

format where each element represents the operational state of a generating unit: 1 for operational (ON) and 0 

for non-operational (OFF) status. The solution structure is organized as a matrix U with dimensions NG × H, 

where NG represents the number of generating units and H denotes the planning horizon in hours. Each 

column of this matrix constitutes the system state for a specific hour, comprising the operational status of all 

units at that time point. This hourly collection of unit states forms what we define as a temporal segment of 

the complete schedule. 

 

𝑈 =

[
 
 
 
u1

1 u1
2 𝑢1

3

𝑢2
1 𝑢2

2 𝑢2
3 ⋯

𝑢1
𝐻

𝑢2
𝐻

⋮ ⋱ ⋮
𝑢𝑁

1 𝑢𝑁
2 𝑢𝑁

3 ⋯ 𝑢𝑁
𝐻]
 
 
 

 

 

where ui
h is unit on/off status of unit i at time h (ui

h=1\0 for on/off). 

The algorithm begins with the creation of an initial population set, where each solution Uj (j=1, 2, 

..., NP) represents a potential unit commitment schedule. For every member of the population of size NP, the 

binary position uhi is generated using a uniform random distribution that assigns values of either 0 or 1 with 

equal probability (0.5). This randomization process ensures diversity in the initial population while 

maintaining the binary nature of the unit commitment decisions. 

 

3.3.2. Generate new solutions 

ES employs Levy flights as its primary mechanism in the first stage of optimization. These flights 

represent a specialized stochastic process characterized by non-Gaussian step distributions. The step lengths 

in Levy flights follow a unique probability distribution known as the Levy stable distribution, which enables 

more effective exploration of the search space through a combination of short and occasional long-distance 

movements. The generation of new solutions through Levy flights can be expressed as: 

 

𝑥𝑖,𝑖𝑡𝑒𝑟+1 = 𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝜆) (28) 

 

The Levy flight process adapts its movement through problem-specific step sizes that align with the 

search space dimensions. By sampling from a heavy-tailed Levy distribution, this approach generates a 

specialized random walk pattern that defines the search trajectory. The combination of step lengths and 

movement directions through component-wise multiplication creates a dynamic search behavior, allowing the 

algorithm to balance between detailed local searches and broader exploration through larger jumps in the 

solution space. 

 

Levy(λ)  = u =  t−λ , 1 ≤ λ ≤ 3 (29) 

 

In this research, we implement the Mantegna algorithm [19] to generate Levy flights effectively. 

The step length s can be calculated using Levy(λ)=s, which can be further expressed as: 

 

xi,iter+1 = xi,iter + α ⊕ s  (30) 

 

The step length s in Levy flights can be computed using Mantegna's algorithm [21], which is 

expressed as: 
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s =
μ

|v|
1

β⁄   (31) 

 

where u and v are drawn from normal distributions respectively. That is, u ~ N(0,σu²) and v ~ N(0,σv²) are 

calculated as follows: (
Γ(1+β).sin(

πβ

2
)

Γ(
β+1

2
).β.2

(
1−β
2 )

)
1

β ,σv , = 1. Here 0≤ β ≤ 2 and (:) is the Gamma function.  

The second optimization stage implements a modified version of the CSA configured specifically 

for intensive local search operations. Although CSA fundamentally operates as a global optimization 

methodology, its search characteristics can be effectively refined for localized exploitation through strategic 

parameter adjustment. This adaptation is achieved primarily through the manipulation of two critical control 

parameters: awareness probability (AP) and flight length (fl). 

The algorithm's search behavior transitions from global exploration to focused local exploitation 

through the reduction of the awareness probability to significantly lower values. This modification, coupled 

with an empirically determined optimal flight length (fl=2), enables precise exploration of promising solution 

regions. The synergistic interaction of these parameters produces superior optimization outcomes compared 

to conventional CSA implementations. 

For application to the UCP, where solution variables are constrained to binary integers representing 

unit states (0/OFF, 1/ON), the inherently continuous nature of CSA necessitates additional adaptation. This 

binary constraint satisfaction is achieved through a specialized conversion mechanism that preserves the 

algorithm's search efficiency while maintaining the discrete nature of generator scheduling decisions. 

 

 

4. RESULTS AND DISCUSSION  

To evaluate the performance and effectiveness of the proposed ES-CSA [22], [23], extensive testing 

was conducted across multiple system configurations ranging from 20 to 100 generating units [24]. The 

experimental setup employed a 24-hour planning horizon with a spinning reserve requirement of 10% of the 

total load demand. For larger systems analysis (20, 40, 60, 80, and 100 units), the base 10-unit system was 

replicated with load demands scaled proportionally to system size. 

The implementation was carried out in MATLAB on a computer equipped with a 2.26 GHz Intel 

processor and 2 GB RAM. Initial testing focused on a 10-unit system, with 24-hour load demand profiles 

presented in Table 1 and graphically represented in Figure 3. The generating unit specifications are detailed 

in Table 2, while Table 3 presents the algorithm parameters. These specifications include power limits (Pmin 

and Pmax), operating cost coefficients (ai, bi, ci), minimum startup and shutdown times, and startup costs 

(hot and cold) for each generating unit. 

 

 

Table 1. Test load demand data for 10 generating unit system 
Time (h) 1 2 3 4 5 6 7 8 9 10 11 12 

Load (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500 

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24 

Load (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800 

 
 

 
 

Figure 3. Test load demand curve for 10-unit system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Eagle strategy-based crow search algorithm for UCP: integration of pumped storage units in … (Adil Rizki) 

841 

Table 2. Test data for 10 generating unit system  

Unit 
Pmax 

(MW) 

Pmin 

(MW) 

ai 
[$] 

bi[$/MW] ci[$/MW2] 
Ti

ON 

(h) 

Ti
OFF 

(h) 
𝐻𝑆𝐶𝑖[$] 𝐶𝑆𝐶𝑖[$] 

𝑆𝐶𝑖 
(h) 

Start 
time 

U1 455 150 1000 16.19 0 .00048 8 8 4500 9000 5 8 
U2 455 150 970 17.26 0 .00031 8 8 5000 10,000 5 8 

U3 130 20 700 16.6 0.00200 5 5 550 1100 4 -5 

U4 130 20 680 16.5 0.00211 5 5 560 1120 4 -5 
U5 162 25 450 19.7 0.00398 6 6 900 1800 4 -6 

U6 80 20 370 22.26 0.00712 3 3 170 340 2 -3 

U7 85 25 480 27.74 0.00079 3 3 260 520 2 -3 
U8 55 10 660 25.92 0.00413 1 1 30 60 0 -1 

U9 55 10 665 27.27 0.00222 1 1 30 60 0 -1 

U10 55 10 670 27.79 0.00173 1 1 30 60 0 -1 

 

 

Table 3. Parameters of ES-CSA [25] 
Parameters/algorithms  CSA ES-CSA  

AP 0.2 0.2 

Fl 2 2 
β - 1.5 

 

 

The simulation results yielded commitment schedules and demand distributions, presented in  

Tables 4 and 5, with a total generation cost of $546,577 and startup cost of $3,910. Table 5 provides 

comprehensive hourly distribution data and cost analysis for all 10 generators throughout the 24-hour 

planning period, demonstrating that load requirements are successfully met. 

 

 

Table 4. Commitment schedule for10 generating unit system 

Time (h) 
Commitment schedule (U1-U10) 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

1 1 1 0 0 0 0 0 0 0 0 

2 1 1 0 0 0 0 0 0 0 0 

3 1 1 0 0 0 0 0 0 0 0 
4 1 1 0 1 0 0 0 0 0 0 

5 1 1 0 1 0 0 0 0 0 0 

6 1 1 0 1 1 0 0 0 0 0 
7 1 1 0 1 1 0 0 0 0 0 

8 1 1 1 1 1 0 0 0 0 0 

9 1 1 1 1 1 0 0 0 0 0 
10 1 1 1 1 1 1 0 0 0 0 

11 1 1 1 1 1 1 0 1 0 0 

12 1 1 1 1 1 1 0 1 1 0 
13 1 1 1 1 1 1 0 0 0 0 

14 1 1 1 1 1 0 0 0 0 0 

15 1 1 0 1 1 0 0 0 0 0 
16 1 1 0 1 1 0 0 0 0 0 

17 1 1 0 1 1 0 0 0 0 0 

18 1 1 0 1 1 0 0 0 0 0 
19 1 1 0 1 1 0 0 0 0 0 

20 1 1 1 1 1 1 0 0 0 0 

21 1 1 1 1 1 1 0 0 0 0 

22 1 1 1 0 0 1 0 0 0 0 

23 1 1 1 0 0 0 0 0 0 0 
24 1 1 1 0 0 0 0 0 0 0 

Total production cost ($) = $550487 

 

 

The convergence characteristics across different system instances are illustrated in Figure 4, 

demonstrating ES-CSA's robust convergence properties. The algorithm's effectiveness stems from its  

dual-stage approach: the initial stage employs Levy flights for extensive exploration and local optima 

avoidance, while the second stage utilizes CSA for intensive exploitation of promising regions. This strategic 

combination enables the discovery of superior solutions. 
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Table 5. Generation schedule for 10 generating unit system (PR(t)=0) 
Time 

(h) 

Generation schedule (U1-U10 ) (MW) Demand 

(MW) 

Start-up 

cost ($) 

Cost of 

production ($/hr) U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

1 455 245 0 0 0 0 0 0 0 0 700 0 13683.14 

2 455 295 0 0 0 0 0 0 0 0 750 0 14554.51 

3 455 395 0 0 0 0 0 0 0 0 850 0 16809.46 
4 455 365 0 130 0 0 0 0 0 0 950 560 18638.69 

5 455 415 0 130 0 0 0 0 0 0 1000 0 19513.03 

6 455 455 0 130 60 0 0 0 0 0 1100 900 21860.06 
7 455 455 0 130 110 0 0 0 0 0 1150 0 22879.99 

8 455 455 130 130 160 0 0 0 0 0 1200 1100 23522.48 

9 455 455 130 130 130 0 0 0 0 0 1300 0 26184.08 
10 455 455 130 130 162 68 0 0 0 0 1400 340 28768.57 

11 455 455 130 130 162 80 0 38 0 0 1450 60 30699.08 

12 455 455 130 130 162 80 0 55 33 0 1500 60 32713.19 
13 455 455 130 130 162 68 0 0 0 0 1400 0 28768.57 

14 455 455 130 130 130 0 0 0 0 0 1300 0 26184.08 

15 455 455 0 130 160 0 0 0 0 0 1200 0 23918.36 
16 455 440 0 130 25 0 0 0 0 0 1050 0 20896.67 

17 455 390 0 130 25 0 0 0 0 0 1000 0 20020.84 

18 455 455 0 130 60 0 0 0 0 0 1100 0 21860.06 
19 455 455 0 130 160 0 0 0 0 0 1200 0 23918.36 

20 455 455 130 130 162 68 0 0 0 0 1400 890 28768.57 

21 455 455 130 130 110 20 0 0 0 0 1300 0 26589.08 
22 455 455 130 0 0 60 0 0 0 0 1100 0 21976.99 

23 455 315 130 0 0 0 0 0 0 0 900 0 17795.71 

24 455 215 130 0 0 0 0 0 0 0 800 0 16053.43 
 The sum of the production costs 546577$ 

 transition cost (generator start-up costs) 3910$ 

 Total cost ($/hr) 550487 

 

 

 
 

Figure 4. Convergence of ES-CSA system 10 unit 

 

 

5. CONCLUSION  

This research presents a comprehensive investigation into solving the UCP through a novel 

hybridization of ES-CSA. Our work establishes a detailed mathematical framework encompassing both the 

objective function and associated constraints of the UCP. The developed ES-CSA approach leverages the 

binary strategy characteristics of eagle behavior combined with the local search capabilities of CSA, creating 

a robust optimization method. Testing across multiple unit commitment scenarios, particularly with systems 

containing 10 generating units, demonstrates the algorithm's efficacy. A significant finding emerges in the 

economic performance of our approach: the ES-CSA consistently achieves lower overall production costs 

across the planning horizon compared to contemporary optimization techniques. Notably, the computational 

efficiency of our method shows a linear relationship with system size, making it particularly valuable for 

industrial applications. This scalability characteristic, combined with superior cost performance, positions 

ES-CSA as a promising solution for practical power system operations. The results validate our initial 

hypothesis and suggest that this hybrid approach offers a viable pathway for solving complex UCP in  

real-world power systems. 
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