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1. INTRODUCTION

The global transition toward sustainable energy systems has intensified the challenges of power grid
management, particularly as electricity demand continues to surge with rapid urbanization and technological
advancement. Smart grid technology has emerged as a crucial solution for reducing losses and enhancing
system stability, while promoting dependability and efficient regulation of electrical energy supply [1]. The
integration of smart devices, however, creates significant data interchange between various grid components,
which can impact response and processing times [2].

Modern smart grids represent an evolution of electrical networks that connect highly efficient,
decentralized renewable energy sources. Through advanced communication and control technology, these
systems fulfill consumer demands while reducing both costs and greenhouse gas emissions [3]. The
transformation of traditional power grids into smart grids (SG) has been enabled by information and
communication technology (ICT), creating networks where millions of electronic devices communicate
through advanced metering infrastructure (AMI) [4].

The unit commitment problem (UCP) plays a vital role in this context, significantly contributing to
cost reduction in electrical power production through strategic allocation of production costs based on real
output power [5]. The UCP involves coordinating multiple generating units to meet forecasted electricity
demand over a 24-hour period, requiring careful planning of generator operations to achieve minimum cost
while satisfying operational constraints [6].
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The complexity of the UCP stems from its considerable dimensions, nonlinear objective function,
and coupling constraints. The problem can be decomposed into two distinct but interconnected components:
unit commitment and economic dispatch. The economic dispatch aspect requires careful consideration to
efficiently distribute electricity generated across the system [7]. This dual nature of the problem - combining
unit commitment decisions about operational status with economic dispatch determinations about power
output levels - creates a challenging optimization scenario.

This research introduces a novel eagle strategy based crow search algorithm (ES-CSA) as a solution
for the UCP in smart grid systems. Our proposed algorithm minimizes system generation costs while
simultaneously satisfying load demand and spinning reserve constraints. We demonstrate the effectiveness of
our ES-CSA method through implementation on a power system with 10 power units.

The remainder of this paper is organized as follows: section 2 presents the mathematical formulation
of the UCP. Section 3 introduces the fundamentals of ES and CSA algorithms. Section 4 discusses the
computational results. Finally, section 5 provides concluding remarks.

2. METHOD
2.1. Formulation of unit commitment problem

The UCP encompasses determining the optimal operational schedule of generating units across
discrete time intervals to meet demand while minimizing total operational costs [8]. This optimization must
satisfy both load requirements and spinning reserve constraints, while respecting individual unit limitations
including generation bounds and minimum up/down times.

The total production cost over the scheduling horizon comprises three primary components [9].
First, fuel costs are typically represented by quadratic polynomials derived from heat rate data and fuel
pricing [10]. Second, startup costs vary with unit downtime duration, commonly modeled through either
exponential cooling functions or binary hot/cold start classifications [11]. Finally, shutdown costs, primarily
reflecting labor and maintenance expenses, are treated as fixed values for each generating unit.

2.2. Objective function
The UCP main goal is to minimize the total production cost function:

MinFy = T2, TN [ [Fi(P(O)U(®) + ST,U,0)] + D) (1 = U ) Ui (£ - 1] )

where: U;(t) is the state of unit i at time ¢: a zero means that the plant is stopped, a 1 that it is in operation
F;(P,(t)) is the production cost of unit i at time ¢t, in the most frequent case:

F;i(P(t)) = a; + b;P;(t) + c;Pi(t)* 2
i=1,.... ,N
t=1,.... ,Nt

where a;, b;, and c; represent the unit cost coefficients.
ST;(t) represents the cost of restarting unit i at time t, it depends on the time which unit i was turned Ti"ff, it
can be represented by the following form:

HSC; si MDTi < TPFF < MDTi + SCi

3
CSC; si TOFF > MDTi + SCi ®)

STi(t) = {

where CSC; is (cold start cost) cold start cost of unit i ($), HSC; is (hot start cost) hot restart cost of unit i (3$),
SCi is (cold start) cold restart time of unit i (hours), and DC;(¢t) is the cost of shutting down unit i at time t, it
is often constant.

2.3. Constraints

The UCP is subject to several essential operational constraints that ensure reliable and secure power
system operation. These constraints govern power balance, spinning reserve requirements, generation limits,
and unit operational timing restrictions, collectively forming the technical framework for optimization.

2.3.1. Technical and operational constraints
— Demand to be satisfied:

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 833-844



Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 835

N PO U() =Pp() + P, () t =1, ..., Nt @)

where Pp, (t) is the system load demand at time t.
— Reserve to be guaranteed:

N P U () = Ppr()+ PR ()t =1, ...... Nt (5)
The losses through the transmission system can be approximated by:
P (t) = XiL, X321 B(8) BijPi(t) + X1y Boi Bi(t) + Boo (6)

where Pj minimum power of unit j (MW), Pj minimum power of unit j (MW), Bij element (i, j) of a square
matrix of dimension (NxM), Bio element i of a vector of dimension N, and Boo constant losses (MW).
— Bounded power

Pt < P(t) < P SiUy(H) = 1 )
where P/*™ and P/*** are the minimum and maximum generation limits of unit i. Minimum switch-on time.
When a unit is started, it can only be switched off if the running time exceeds the minimum running time of
that unit.

MUTi < TONi=1,..;N (8)

— Minimum extinction time
MDTi< TOFFi=1,..;N 9)

— Maximum power elevation:

P;(t) < min (P, Pi(t—1) —URDSiU;(t—1) =1etU;(t) =1 (10)
i=1 ... N
t=1, ... ,Nt

— Maximum power drop:

P(t) < max (P, P(t —1) —DRi)SiUj(t—1) = 1etU(t) = 1 (11)
i=1,....,N
t=1,.... ,Nt

The constraint (4) ensures power balance by equating total generation with the sum of demand and
losses. The constraint (5) guarantees sufficient spinning reserve capacity to handle contingencies. The
constraint (6) accounts for transmission system losses using the B-matrix coefficients. The constraint (7)
ensures each generating unit operates within its minimum and maximum power limits when committed. The
constraint (8) enforces minimum up-time requirements, ensuring units remain online for a specified duration
once started. The constraint (9) guarantees minimum down-time requirements are met before restarting a
unit. The constraint (10) ensures generation increases remain within ramp-up rate limits while constraint (11)
maintains ramp-down rates within acceptable bounds for committed units.

2.3.2. Electric vehicles constraints

Recent advancements in vehicle-to-grid (V2G) technology have enabled electric vehicles (EVS) to
participate actively in power system operations through bidirectional power flow capabilities. This
integration is facilitated through aggregator entities that serve as intermediaries between system operators
and multiple EV owners [12]-[15]. The aggregator model enables efficient coordination of distributed EV
resources, particularly during periods of vehicle inactivity when owners can establish contractual agreements
with system operators for load aggregation services.

From a system perspective, aggregated plug-in electric vehicles (PEVs) can be modeled as a
distinctive generating unit with unique characteristics. The cost structure of PEV aggregation follows a
quadratic function, reflecting the increasing marginal costs associated with expanding EV owner
participation. This economic behavior aligns with traditional power system unit commitment frameworks
while accounting for the distributed nature of EV resources.
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f(P(m, 1)) = a(m)P(m,t)? + b(m)P(m, t) + c(m) (12)

Electric vehicle integration into the grid requires careful consideration of several key operational
limits. First, we must maintain a minimum state of charge (SoC) to ensure EV owners have sufficient energy
for unexpected travel needs. Second, grid stability and safety necessitate setting an upper boundary on the
total power that EVs can feed back into the grid each hour. Third, since EVs have intermittent grid
connectivity patterns throughout the day, we need to define specific time windows when vehicles are
available for grid services. Finally, we must account for the maximum power capacity available from the
aggregated PEV fleet during each operational period.

S0C(t,m) = SOCpin, (13)
PEV(t) = YM_  P(t,m) < PEVpqax (14)

2.3.3. Pumped storage constraints

The operation of pumped storage systems presents unique characteristics in power system
optimization, as these units incur minimal operational costs due to their fuel-free nature. Their integration
into the UCP requires adherence to key operational bounds. Specifically, the generation output must be
maintained within defined lower and upper limits to ensure system stability and efficient operation.
Constraint (16) ensures the generation output of pumped storage units remains within specified minimum and
maximum power limits during operation mode. Constraint (17) enforces similar bounds for pumping
operation, maintaining power consumption within safe operational limits. Constraint (18) and (19) govern the
spinning reserve contribution, ensuring it stays within defined boundaries while limiting the total sum of
generation and reserve to the unit's maximum capacity. Constraint (20) enforces a fundamental operational
rule that prevents simultaneous pumping and generation modes. Constraint (21) maintains the energy balance
in the upper reservoir by accounting for pumping gains and generation losses through their respective
efficiencies. Constraint (22) defines the allowable storage capacity range for the upper reservoir. Constraint
(23) sets the initial stored energy level, while constraint (24) ensures a minimum final energy level in the
upper reservoir at the end of the planning horizon.

0 < Fy(m, t) < Fy_imax(m) (15)
0 P, (m,6) < By_max(m) (16)
0 < Py_spg(m, t) < Fy_jnax(m) 17)
0 < Py_sz(m,t) < P,(m, t) (18)
Py(m, t) + Py_sp(m, t) < Py_nax(m) (19)
u,(m, £) +uy(m, t) < 1 (20)

E(m,t) = E(m,t — 1) — P,(m, t) + 0P, (m, t) — (nps. Py_sp(m,t) + Py_sp(m, t)) re  (21)

Emin(m, t) < E(m,t) < Epgyx(m) (22)
E(m,T) = E(m,0) (23)
Emin (m: t) = Emin (m) +re (Pp—SR (m: t+ 1)+Pg—SR (m' t+ 1)) (24)

3. METHODS
3.1. Crow search algorithm

The CSA represents an innovative metaheuristic optimization technique that simulates the intelligent
behavior patterns of crow flocks. First introduced by Askarzadeh [16], this population-based algorithm has
demonstrated remarkable effectiveness in addressing complex engineering optimization challenges. Crows
exhibit sophisticated cognitive abilities, including facial recognition and strategic food-hiding behaviors,
which form the foundation of this optimization approach [17]. The CSA methodology follows a systematic
process organized in distinct stages:
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a. Initialization
—  Generate initial population of crows in d-dimensional space
—  Each crow i maintains position x"*" and memory m*tr
— Evaluate initial fitness values

b. Position update process

xhiter+1l —
5

Xi,iter+1 41 X ﬂi,iter X (mi,iter _ Xi,iter)
1 y
. 25
> AP**TA random positonofsearch spaceotherwise (25)
where APj; iter refers to crow j awareness probability, iter refers to iteration number, ri; rj refers to random
numbers, fli; iter is the crow i flight length to denote crow j memory.
¢. Memory update mechanism

xViter+1 if f(xliter )is hetter than f(mb%r)

. 26
mV'*’ otherwise (26)

ml,lter+1 — {

where f (*) stands for the objective function. Until the termination requirement is met, these procedures are
repeated. The best position that the crow flock has memorized at that point is presented as the best solution.

The exploration and exploitation capabilities of the CSA are illustrated in Figure 1. The overall
process of the CSA algorithm is summarized in the flowchart shown in Figure 2.

Crow i Crowj

&/ crow i new position l
'______T:)______* m(iter)
Xt trer) Pt = Pitr « flis (M)~ P
L. =1
Crow i Crowj

Figure 1. Exploration and exploitation of CSA

Start
l —> Update Position Using Eq. (25)
Initialise pop-size, termination condition l
and CSA parameters: fl, Ap Chack Solution Boundaries

! !

Randomly generate crows* position Evaluate Fitness

Il |

Initialise Crows Memory Initialise Crows Memory

! !

Terminate condition

!

Return Best Position

|

End

Evaluate Fitness

Figure 2. Flowchart of CSA
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Algorithm 1. Crow search algorithm

1: Randomly initialize the position of a flock of (Np) crows in the search space.
2: Evaluate the position of the Crows

3: Initialize the memory of each Crow

4: While (iter< itern.,) do

5: for i= 1: to Nrdo

6: Randomly choose one of the crows to follow (for example, j)
7 Define an awareness probability

8: if (r;=2AP - iter) then

9: xir dtertl_s i, iteryp wf]i, dtery (pmi, dter_x i, iter)

10: else

11: xi- iter*l=3 random position of search space.

12: end if

13: end for

14: Check the feasibility of new positions
15: Evaluate the new position of the Crows
16: Update the memory of crows

17: end while

Recent studies have demonstrated CSA's effectiveness in various optimization scenarios [18],
particularly in power system applications. The algorithm's success stems from its ability to balance
exploration and exploitation through the awareness probability (AP) parameter and flight length mechanisms.
The iterative process continues until meeting termination criteria, with the flock's best memorized position
representing the optimal solution. This approach has proven particularly effective in handling nonlinear
optimization problems with multiple constraints [17], [18].

3.2. Brief introduction to eagle strategy
ES represents a metaheuristic optimization approach introduced by Yang and Deb [19], which

emulates the distinctive hunting behavior of eagles. This two-phase optimization technique draws inspiration
from eagles' natural foraging patterns, combining global exploration with focused local search capabilities.
The ES methodology consists of two primary phases:
a. Global exploration

— Implements Levy flight patterns for broad search space exploration

—  Mimics eagles' random soaring behavior

—  Seeks promising regions in the solution space
b. Local search

If (promising_solution_found){
Perform intensive local search
Apply efficient local optimizer

Else
Restart global exploration

The algorithm alternates between these phases, systematically:

— Conducting global exploration to identify potential solutions

— Executing intensive local search when promising regions are discovered

— Restarting the process in new areas to maintain search diversity

This dual-phase approach has proven particularly effective for complex optimization problems [19],
combining the benefits of broad exploration with focused exploitation of promising solution regions.

Algorithm 2. ES

1: Objective function f (x)

2: Initialization and random initial guess x*™°

3: While (stop criterion) do

4: Global exploration by randomization (e; g; levy flights)
5: Evaluate the objectives and find a promising solution
6: Intensive local search via an efficient local optimizer
7 If (a better solution is found) then

8: Update the current best

9: End if

10: Update t=t+l

11: End while

3.3. Binary eagle startegy based crow search algorithm for unit commitment problem
The proposed methodology addresses the UCP through a two-phase approach that combines binary
ES-CSA with the Lambda-iteration method [20]. In this framework, the unit scheduling optimization, which
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represents the more complex aspect of the problem, is handled by a binary version of ES-CSA in the first
phase. The second phase employs the conventional Lambda-iteration method to resolve the economic load
dispatch subproblem, creating a comprehensive solution strategy for the complete unit commitment
challenge. In (27) convert (3) and (26) from continues to binary space:

hiter — {1 if s(x"t" ) > rand(), @7)
0 if otherwise

where s(xbiter ):i, y=1+e*""*" "and rand() is a random number from uniform distribution [0; 1] and x"e" is
the updated binary position at iter iteration.

3.3.1. Solution representation and initialization

In implementing the binary ES-CSA for UCP, the solution encoding plays a crucial role in algorithm
effectiveness. Each solution, represented as an artificial crow in the algorithm, encodes the operational
schedule of generating units across the planning horizon. The encoding structure utilizes a binary matrix
format where each element represents the operational state of a generating unit: 1 for operational (ON) and 0
for non-operational (OFF) status. The solution structure is organized as a matrix U with dimensions NG x H,
where NG represents the number of generating units and H denotes the planning horizon in hours. Each
column of this matrix constitutes the system state for a specific hour, comprising the operational status of all
units at that time point. This hourly collection of unit states forms what we define as a temporal segment of
the complete schedule.

1 .2 .3 H
up uy Uy U

1 .2 3 H
U=|Y%¥ Uz Uz Uz
uy uy ouy o ull

where uf is unit on/off status of unit i at time h (ul'=1\0 for on/off).

The algorithm begins with the creation of an initial population set, where each solution Uj (j=1, 2,
..., NP) represents a potential unit commitment schedule. For every member of the population of size NP, the
binary position uhi is generated using a uniform random distribution that assigns values of either 0 or 1 with
equal probability (0.5). This randomization process ensures diversity in the initial population while
maintaining the binary nature of the unit commitment decisions.

3.3.2. Generate new solutions

ES employs Levy flights as its primary mechanism in the first stage of optimization. These flights
represent a specialized stochastic process characterized by non-Gaussian step distributions. The step lengths
in Levy flights follow a unique probability distribution known as the Levy stable distribution, which enables
more effective exploration of the search space through a combination of short and occasional long-distance
movements. The generation of new solutions through Levy flights can be expressed as:

yhiter+1l — yiiter +a ® Levy(l) (28)

The Levy flight process adapts its movement through problem-specific step sizes that align with the
search space dimensions. By sampling from a heavy-tailed Levy distribution, this approach generates a
specialized random walk pattern that defines the search trajectory. The combination of step lengths and
movement directions through component-wise multiplication creates a dynamic search behavior, allowing the
algorithm to balance between detailed local searches and broader exploration through larger jumps in the
solution space.

Levy(d)) =u = t™*,1<A <3 (29)

In this research, we implement the Mantegna algorithm [19] to generate Levy flights effectively.
The step length s can be calculated using Levy(A)=s, which can be further expressed as:

xhiter+1 — siiter +a Ps (30)

The step length s in Levy flights can be computed using Mantegna's algorithm [21], which is
expressed as:

Eagle strategy-based crow search algorithm for UCP: integration of pumped storage units in ... (Adil Rizki)
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|
s= il (31)

vl

where u and v are drawn from normal distributions respectively. That is, u ~ N(0,cu?) and v ~ N(0,0v?) are

s By 1
%Sm(lfﬁ))? ,0, = 1. Here 0< B < 2 and (:) is the Gamma function.
r(B).p22>

The second optimization stage implements a modified version of the CSA configured specifically
for intensive local search operations. Although CSA fundamentally operates as a global optimization
methodology, its search characteristics can be effectively refined for localized exploitation through strategic
parameter adjustment. This adaptation is achieved primarily through the manipulation of two critical control
parameters: awareness probability (AP) and flight length (f1).

The algorithm's search behavior transitions from global exploration to focused local exploitation
through the reduction of the awareness probability to significantly lower values. This modification, coupled
with an empirically determined optimal flight length (fl=2), enables precise exploration of promising solution
regions. The synergistic interaction of these parameters produces superior optimization outcomes compared
to conventional CSA implementations.

For application to the UCP, where solution variables are constrained to binary integers representing
unit states (0O/OFF, 1/ON), the inherently continuous nature of CSA necessitates additional adaptation. This
binary constraint satisfaction is achieved through a specialized conversion mechanism that preserves the
algorithm'’s search efficiency while maintaining the discrete nature of generator scheduling decisions.

calculated as follows: (

4. RESULTS AND DISCUSSION

To evaluate the performance and effectiveness of the proposed ES-CSA [22], [23], extensive testing
was conducted across multiple system configurations ranging from 20 to 100 generating units [24]. The
experimental setup employed a 24-hour planning horizon with a spinning reserve requirement of 10% of the
total load demand. For larger systems analysis (20, 40, 60, 80, and 100 units), the base 10-unit system was
replicated with load demands scaled proportionally to system size.

The implementation was carried out in MATLAB on a computer equipped with a 2.26 GHz Intel
processor and 2 GB RAM. Initial testing focused on a 10-unit system, with 24-hour load demand profiles
presented in Table 1 and graphically represented in Figure 3. The generating unit specifications are detailed
in Table 2, while Table 3 presents the algorithm parameters. These specifications include power limits (Pmin
and Pmax), operating cost coefficients (ai, bi, ci), minimum startup and shutdown times, and startup costs
(hot and cold) for each generating unit.

Table 1. Test load demand data for 10 generating unit system

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12
Load (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500
Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Load (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

1400
1200

1000

800

600

Load Demand (MW)

400

200

=

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)

Figure 3. Test load demand curve for 10-unit system
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Table 2. Test data for 10 generating unit system

. Prax Prnin ai . . TON TOFF SCi  Start
Unit (MW) (MW) 3] bi[$/MW]  ci[$/MW?2] (h) () HSC[$] CSCi[$] (h)  time
Ul 455 150 1000 16.19 0.00048 8 8 4500 9000 5 8
U2 455 150 970 17.26 0.00031 8 8 5000 10,000 5 8
us 130 20 700 16.6 0.00200 5 5 550 1100 4 5
U4 130 20 680 16.5 0.00211 5 5 560 1120 4 -5
us 162 25 450 19.7 0.00398 6 6 900 1800 4 -6
U6 80 20 370 22.26 0.00712 3 3 170 340 2 -3
u7 85 25 480 27.74 0.00079 3 3 260 520 2 -3
us 55 10 660 25.92 0.00413 1 1 30 60 0 -1
U9 55 10 665 27.27 0.00222 1 1 30 60 0 -1
u10 55 10 670 27.79 0.00173 1 1 30 60 0 -1

Table 3. Parameters of ES-CSA [25]

Parameters/algorithms  CSA  ES-CSA
AP 0.2 0.2
FI 2 2
B 15

The simulation results yielded commitment schedules and demand distributions, presented in
Tables 4 and 5, with a total generation cost of $546,577 and startup cost of $3,910. Table 5 provides
comprehensive hourly distribution data and cost analysis for all 10 generators throughout the 24-hour

planning period, demonstrating that load requirements are successfully met.

Table 4. Commitment schedule for10 generating unit system

Time (h)

[
=

C
N

C
w

Commitment schedule (U1-U10)

U4 us

ué

u7

us

C
©

PR PRPRPRRPRPRRPPRPRPREPREPRPRPRPREPRPRPRPRRERERREREER

1

PR PRPRPRRPRPRRPPRPRPREPREPRPRPRPREPRPRPRPRRERERREREER

1

PRPPPOOCOO0OOCORRPRPRPPRPPPOOOOOOO

1

COORRRRPRRPRREPRREPRERREPRREPRLRRERREREPRLRRLROOO
COORRRRPRRPRREPRPREPREPREPRPREPRLRRLPRLRRLPOOO0OOO

Total production cost ($) = $550487

OCORPRRFPPRPROOOOOORRFPRFPPFPOOOOOOOOO

[eNeololololeoloNeollololelololoNolololNeloNeNololNo Nl

OO0 O0ODO0ODO0OO0OO0OO0OO0OO0OORPRPFPOOODOOOOOOO

[eNeoNoloNooloNololoNeolol JNeolloNolololloNeNoNoNo o)

OOOOOOOOOOOOOOOOOOOOOOOOE
o

The convergence characteristics across different system instances are illustrated in Figure 4,
demonstrating ES-CSA's robust convergence properties. The algorithm's effectiveness stems from its
dual-stage approach: the initial stage employs Levy flights for extensive exploration and local optima
avoidance, while the second stage utilizes CSA for intensive exploitation of promising regions. This strategic
combination enables the discovery of superior solutions.
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Table 5. Generation schedule for 10 generating unit system (PR(t)=0)

Time Generation schedule (U1-U10 ) (MW) Demand Start-up Cost of
(h) Ul U2 U3 U4 Us U6 U7 U8 U9 U10 (MW) cost ($) production ($/hr)
1 455 245 0 0 0 0 0 0 0 0 700 0 13683.14
2 455 295 0 0 0 0 0 0 0 0 750 0 14554.51
3 455 395 0 0 0 0 0 0 0 0 850 0 16809.46
4 455 365 0 130 0 0 0 0 0 0 950 560 18638.69
5 455 415 0 130 0 0 0 0 0 0 1000 0 19513.03
6 455 455 0 130 60 0 0 0 0 0 1100 900 21860.06
7 455 455 0 130 110 0 0 0 0 0 1150 0 22879.99
8 455 455 130 130 160 0 0 0 0 0 1200 1100 23522.48
9 455 455 130 130 130 0 0 0 0 0 1300 0 26184.08
10 455 455 130 130 162 68 0 0 0 0 1400 340 28768.57
11 455 455 130 130 162 80 0 38 0 0 1450 60 30699.08
12 455 455 130 130 162 80 0 55 33 0 1500 60 32713.19
13 455 455 130 130 162 68 0 0 0 0 1400 0 28768.57
14 455 455 130 130 130 0 0 0 0 0 1300 0 26184.08
15 455 455 0 130 160 0 0 0 0 0 1200 0 23918.36
16 455 440 0 130 25 0 0 0 0 0 1050 0 20896.67
17 455 390 0 130 25 0 0 0 0 0 1000 0 20020.84
18 455 455 0 130 60 0 0 0 0 0 1100 0 21860.06
19 455 455 0 130 160 0 0 0 0 0 1200 0 23918.36
20 455 455 130 130 162 68 0 0 0 0 1400 890 28768.57
21 455 455 130 130 110 20 0 0 0 0 1300 0 26589.08
22 455 455 130 0 0 60 0 0 0 0 1100 0 21976.99
23 455 315 130 0 0 0 0 0 0 0 900 0 17795.71
24 455 215 130 0 0 0 0 0 0 0 800 0 16053.43
The sum of the production costs 546577%
transition cost (generator start-up costs) 3910%
Total cost ($/hr) 550487
< 10% Convergence Curves - UT0
) i i ! i . i ) ——
5.656 P —ESCSA
5.654 5.63955%
z 632 5.6395
7 ses| 1
H 5.63945
g 5.648
£ 5.646 5'6“94‘—_\'\. 1
5.6 36393350 300 350 40 40 500
5.642 k /‘ \
5.64 - i
50 100 IS0 200 250 300 350 400 450 500
Iteration (t)

Figure 4. Convergence of ES-CSA system 10 unit

5. CONCLUSION

This research presents a comprehensive investigation into solving the UCP through a novel
hybridization of ES-CSA. Our work establishes a detailed mathematical framework encompassing both the
objective function and associated constraints of the UCP. The developed ES-CSA approach leverages the
binary strategy characteristics of eagle behavior combined with the local search capabilities of CSA, creating
a robust optimization method. Testing across multiple unit commitment scenarios, particularly with systems
containing 10 generating units, demonstrates the algorithm's efficacy. A significant finding emerges in the
economic performance of our approach: the ES-CSA consistently achieves lower overall production costs
across the planning horizon compared to contemporary optimization techniques. Notably, the computational
efficiency of our method shows a linear relationship with system size, making it particularly valuable for
industrial applications. This scalability characteristic, combined with superior cost performance, positions
ES-CSA as a promising solution for practical power system operations. The results validate our initial
hypothesis and suggest that this hybrid approach offers a viable pathway for solving complex UCP in
real-world power systems.
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