Bulletin of Electrical Engineering and Informatics
Vol. 12, No. 5, October 2023, pp. 3115~3123
ISSN: 2302-9285, DOI: 10.11591/eei.v12i5.4729 g 3115

Reducing waiting and idle time for a group of jobs in the grid
computing

Mahdi S. Almhanna, Firas Sabah Al-Turaihi, Tariqg A. Murshedi

Department of Information Networks, College of Information Technology, University of Babylon, Babylon, Iraq

Article Info ABSTRACT

Article history: Johnson's rule is a scheduling method for the sequence of jobs. Its primary
. goal is to find the perfect sequence of functions to reduce the amount of idle

Received Sep 8, 2022 time, and it also reduces the total time required to complete all functions. It

Revised Nov 25, 2022 is a suitable method for scheduling the purposes of two functions in a

Accepted Dec 28, 2022 specific time-dependent sequence for both functions and where the time

factor is the only parameter used in this way. Therefore, it is not suitable for

scheduling work for computers network, where there are many factors
Keywords: affecting the completion time such as CPU speed, memory, bandwidth, and
size of data. In this research, Johnson's method will adopt by adding many

Big data . factors that affect the completion time of the work so that it becomes
Cloud C_Ompu“”g suitable for the site’s job scheduling purposes to reduce the waiting and idle
Data grid time for a group of jobs.

Grid computing

Distributed systems This is an open access article under the CC BY-SA license.

Load balancing algorithm
Weighted round-robin ‘@ ® @

Corresponding Author:

Mahdi S. Almhanna

Department of Information Security, College of Information Technology, University of Babylon
Babylon, Iraq

Email: mahdi.almhanna@uobabylon.edu.iq

1. INTRODUCTION

Johnson's rule is a scheduling method for the sequence of jobs [1]. When the database saves on
multiple sites across various locations, it’s called distributed database [2], this database stores in multiple
computers existing on the same sites, or it can share through a network of computers connected to each other
[2], [3]. This system comprises a database distributed over unrelated sites with some [4], [5] because it does
not share any of the physical system components. Administrators can have control over these databases, as
they can distribute sets of similar data through the replication process, or even sets of different data, and in
both cases, this can by distributing them to multiple physical sites on network servers or decentralized
computers on the internet, such as by allowing tasks to be performed on multiple devices and end-user
performance can have improved by using distributed databases [6].

The problem we may have is that in some requests we may need some data on one server called A
which contains part of the database and the other data keep on another server, let’s call it B, the data on
server A may be an input to that data on server B. Such a dilemma may require careful scheduling of these
requests so that processing is in the least amount of time and can get by maximizing interference in servers
work (reducing the total elapsed time as much as possible) and reducing the idle time as much as possible
from both servers [7], [8]. According to Johnson’s procedure [1] which is based on the processing time of
requests only, has improved. It has developed by adding some other variables in order to simulate the actual
and practical reality of this method.

In other words, the dilemma is how to find the best order in which you must implement a set of tasks
to execute on different devices for effective use of the facilities available to reach greater throughput through
reduces the total time elapsed (the time of starting processes first job to the end of processes of the last one).

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

3116 O3 ISSN: 2302-9285

For example, suppose that on two machines there are two tasks need processing. Then the function can
enumerate by the counting method. However, if the number of required functions and the machines to be
performed increases, the problem will be more complicated. So, the traditional method of counting will be
inappropriate and useless. Suppose we have M number of machines and N number of functions. Then we
have around N! to the power of M sequences. For example, if N=6 and M=5, then (6!)5=193, 491, 763,
200,000 sequences we have. It takes a long time to search for all sequences and choose the optimal sequence
among all sequences. Next, we are looking for an easier way to find the optimal sequence. Johnson’s
procedure is a good way to explain the interference between machines and to reduce the idle time of those
machines, but this method relies on one parameter to calculate that relationship, which is the time required to
complete the work. But for computers, there are several parameters that affect the completion speed, such as
the speed of the central processor, memory requirements, RAM, bandwidth, path length to, and from the
devices, as well as possible path congestion [5], [9]. In this paper, we used some of these parameters with the
Johnson procedure and apply it to several servers. As a result, it is possible to get the desired sequence by
which the overlap of servers is optimal and suitable for application in a computing environment.

2. METHOD
2.1. Principal assumptions

The general assumptions for sequence problems are: i) know the processing times on each server,
ii) the time required to complete the task is independent of the order of the functions to be processed, iii) no
servers can process more than one function at the same time, and iv) transition time from one server to
another is negligible. Every task is non-preemptive (once it starts the execution on the server, we cannot
interrupt it until the execution finished). When several functions given to be executed and require processing
on two or more servers, the major concern of the manager is to find the order or sequence to perform these
functions [3], [10]-[12]. We can broadly divide these sequence problems into two groups.

In the first case, there are N number of tasks to be performed, each of which requires processing on
some or all different k servers. We can determine the effectiveness of both sequences that are technically
workable (i.e. those that meet the limitations of the order in which each function must be processed through
machines) and choose a sequence that improves effectiveness. For clarity, we may specify the processing
times of each of the N functions on each of the k machines. In a certain order and the performance time of the
functions may be the measure of effectiveness. We will choose sequences in which the total time spent
processing all functions on the devices is minimal. The possibilities that could include the number of tasks
and the number of servers is: i) two machines A and B have N functions, and each function will go to
machine A first and then to B, ii) three machines A, B, and C have N functions, and each function will go to
machine A first and B second and then to C, and iii) problems with n jobs and m machines. All of the above
possibilities can take the same approach used in this research paper, where we have explained the first case in
(3.2) and in the same way that the other second and third cases can have adopted.

2.1.1. Handling N number of tasks on two devices

The easier possible sequence problem is the N-machine sequence problem. Where we want to
determine which sequence n-job should be handled by two machines to reduce the total elapsed time T [13].
The matter can be qualified as: i) two devices were used A and B only, ii) each function is implemented in a
sequence of AB, and iii) right or predictable times of implementation of all jobs recognized and given in the
following Table 1.

Table 1. Expected processing times

. Job(s)
Machine 1 2 3 _ . i _) n
A Ay A, As -- - A -- - A,
B B, B, Bs -- - Bi -- - Bs

2.2. Johnson procedure steps
The dilemma is to find the order of functions to reduce the amount of elapsed time T. We know the
solution to this dilemma is the Johnson procedure [1] which includes the following steps:
a. Step 1: select the lowest processing time occurring in the list of jobs, if there is a tie, select any one.
b. Step 2: if the minimum processing time is Ar, select the rth function first. If the minimum processing
time is Bs, select the sth function last. because the given order is AB.

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3115-3123

Bulletin of Electr Eng & Inf ISSN: 2302-9285 g 3117

c. Step 3: repeat the first and second steps for the remaining set of processing times obtained by omitting
the processing time for each of the two machines corresponding to the already assigned task.
Step 4: continue in the same way until all functions are processed.

e. Step 5: find the idle times and the sum of elapsed time on devices A and B, then the result is an optimal
sequence.

Total elapsed time=T1-T2

Where T1= the starting time of the first task in the optimum order on the first device, and T2= the completing

time of the last process in the optimum order on the second device.

Idle time on machine A=T2—(T1+ turnaround time of the first task).

Machines performance: there are five most common causes that cause a bottleneck.

- CPU utilization

CPU usage can increase significantly. In particular, if each entity can interact with each other in the
same space, the load will increase quadratically with the number of entities [14]. When the system is
overloaded, the rate to send updates to the users is slowing down, and responses to user input, can lead to a
significant deterioration in user experiences.

Figure 1 shows examples of CPU usage with different loads on different actors. The increase in load
is directly proportional to the increase in the number of simultaneous users. As the number of simultaneous
users increases, the CPU's quadratic load will increase around O (n2). With the rise in the grist of
simultaneous users, the network can flood the traffic with a square speed that coincides with the number of
concurrent users. According to Microsoft, “if the processor is too busy and cannot respond to all requests
within that time, then there will be bottlenecks in the processor”. It therefore cannot to perform its assigned
tasks in a timely manner. This bottleneck appears in two cases: the first is when the processor is working at
over 80% of its capacity for a long time, and the second is when the queue is extremely long.

- Memory utilization

As shown in Figure 1, the computer memory bottlenecks indicate that the system does not have fast
RAM and/or does not have enough one [15]. Then the speed of data delivery to the CPU will reduce, as a
result, the slow implementation of the processes. Where the system does not have enough will transfer the
stored data to the hard drive through the swap-out and swap-in process to keep the processes running, which
significantly slows down the system. If the RAM cannot connect data to the CPU quickly enough, the device
will experience a slowdown, and therefore the CPU will enter the idle phase most of the time [16].

Download | Upload Ping Download | Upload Ping
0.09 Mbps | 0.68 Mbps 102 Ms. | 0.16Mbps | 3.17 Mbps 114 Ms.
P 37.239.128.19 P 37.239.128.19

Provider N/A Provider N/A

Download | Upload Ping Download | Upload Ping
0.54 Mbps | 2.91 Mbps 161 Ms. | 0.79 Mbps | 4.10 Mbps 129 Ms.
P 37.239.128.19 1P 37.239.128.19

Provider N/A Provider N/A

Bandwidth
(===l [

.2
1
8
.6
4
.2
0
One user Two user Three user Four user

Figure 1. Bandwidth and CPU utilization vs number of simultaneous users

- Network utilization

If the required bandwidth is insufficient for inter-device communication or processing power to
complete the task quickly enough, network bottlenecks will occur [17], [18]. It is also unnecessary to use
bandwidth more than the actual need. According to Microsoft, bottlenecks on the network occur when the
network loses its integrity and when there is an overload on the server, or on the network connection device.
If we ask, how much bandwidth do we really need, anyway? I1SPs, have the simplest answer to this question,
there must be a balance between price and performance and the result is the best option. Determining the

Reducing waiting and idle time for a group of jobs in the grid computing (Mahdi S. Almhanna)

3118 O3 ISSN: 2302-9285

level of performance that you need is directly related to the type of service required, as prices vary from place
to place for service providers, and this requires us to make some concessions in one option at the expense of
another. So, first, we need to know the speed we need to support the devices used on the job site [19]. A
service offering that provides a range of megabits per second of download bandwidth should provide a good
level of performance that supports all the current optimal use cases for most people working on these devices.
- Software limitation

Sometimes, identifying bottlenecks due to the program itself. Programs handle a few tasks
simultaneously, so that the program does not use any additional CPU or RAM assets, even when they are
available. In addition, we write the program in a manner not compliant with multiple CPU streams [20].
Therefore; it used only one core even if the processor is multi-core.
- Disk usage

Typically, long-term storage is the slowest component inside a computer. This includes a hard disk
drives and SSDs, often a bottleneck in computers. Even with faster long-term storage, its actual speed is
limited [21].

2.2.1. Example of Johnson method

Suppose we have seven jobs. All of them must pass to servers A and B in the order AB, and the
processing time in milliseconds shown as in Table 2. To determine the order of these functions that will minimize
the total elapsed time T. We find the smallest job is 1 ms for job 6 on machine B so we have to schedule job 6 last
on machine A as shown in Table 3. The processing time reduced set becomes as shown in Table 4.

Table 2. Processing time

Job number 1 2 3 4 5 6 7
Server
Server A 3 12 15 6 10 11 9
Server B 8 10 10 6 12 1 3

Table 3. Schedule task number 6
Job number
Job sorting 6

Table 4. Updating processing time
3 4

ob number 1 2 5 7
Server

Server A 3 12 15 6 10
Server B 8 10 10 6 12

w ©

There are two equal minimum values processing time of 3 ms for job 1 on machine A and for job 7
on machine B, according to the rules, job 1 is scheduled first and job 7 next to job 6 as shown in Table 5.
After that, Repeat the procedure until the end, so the sequence will be as shown in Table 6. Thus, the final
result that can be obtained through the work of both servers can be obtained in Table 7. The minimum
elapsed time is 67 ms, the idle time for server A is 1 (67-66), and the idle time for server B is 17 ms. If the
processing time is changed by another representing the bandwidth or memory capacity, the string will change
to a different one.

Table 5. Schedule task number 1, 6, 7 Table 6. Schedule all the tasks
Job number Job number
Jobsorting 1 7 6 Job sorting 1 4 5 3 2 7 6

Table 7. Idle time for servers A and B

Servers Server A Server B
Jobs Timein Time out Time in Time out Idle time for server B
1 0 3 3 11 3
4 3 9 11 17 0
5 9 19 19 31 2
3 19 34 34 44 3
2 34 46 46 56 2
7 46 55 56 59 0

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3115-3123

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 3119

6 55 66 66 67 7
2.3. Proposed strategy
While all parameters are important and cannot neglect at the expense of a single parameter with load
balancing [22]-[25], the distribution of loads relied on calculating memory. For example, as in the weighted
Round Robin algorithm, the weights representing memory capacity are the target in the number of requests
sent to a particular server. In this paper, we have proposed a simple method to integrate most of all these
requirements in a certain percentage that is determined by the admin, as shown in (1):

Let result i = Pigw X Wipw + Picpu X Wicpy+Pij0 X Wyjo and Wigw + Wicpy + W0 = 1 1)

Where result j represents the cost of selecting the required model for the service i where 1< i < n, Pigw
represents the percentage of the available bandwidth between the client and the server i, which should be
divided by the higher theoretical bandwidth, Wisw represents the percentage of network and server
bandwidth i determined by the administrator of the organization, Picpu represents the CPU idle state of server
I, Wicpu represents the percentage of CPU of server i determined by the administrator of the data grid
organization, P; i, represents the memory-free space of server I, and Wi o represents the percentage of
memory-free space determined by the administrator of the data grid organization.

2.4. Proposed algorithm

The following algorithm is implemented using the C++ language; this algorithm is used to
implement two functions (A and B), the output of one of which is the input of the other. This algorithm is
supported by some parameters; the first is the CPU speed and memory capacity, which slightly affects the
speed of task execution; the second parameter is the value of the bandwidth between servers and clients; this
value is the most important factor affecting the speed of task completion. The purpose of implementing the
algorithm is to reduce the idle time of the processor and thereby reduce the execution time.

Start

Wigw + Wiceu + Wio =1,

for all server; Read CPU speed and Memory capacity;

for all servers; Read the bandwidth amount between servers and clients;

for all servers; Read the weight of CPU speed, Memory capacity, and bandwidth;
For all i of first server A;

Ali]=result i = Pigyy X Wigy, + Picpy X Wicpy+Piy o X W03/l i=number of job
For all i of second server B;

Blil=resulti = Pigyy X Wigy, + Picpy X Wicpy+Piis0 X W0,

For all i; Read minimum value of A[i] and minimum value of B[i];

If A[i] < BJ[i];

K[i]=Ali] else K[i]=B][i]; // K[i]=scheduling array

Remove A[i] and BJi] from the list;

Continue until the list become empty;

End

3. RESULTS AND DISCUSSION

Suppose that a certain agent works to provide services to its customers. Through his experience, the
requirements for CPU speed are 70% important while the memory capacity is 30%, but the bandwidth size is
10% of what is available is enough. Table 8 illustrates the process time, bandwidth, and memory capacity
between each job (clients) and server A.

Table 8. The process time, bandwidth, and memory capacity between each client and server A

I Job 1 2 3 4 5 6 7
Server specification
CPU speed 3 12 15 6 10 11 9
bandwidth 5 4 7 8 5 3 10
Memory capacity in GB 200 400 800 500 100 600 300

Result i = Pipy X Wigy + Picpy X Wicpu+Pis0 X Wijo 626 1288 2512 155 375 188 96.4

Reducing waiting and idle time for a group of jobs in the grid computing (Mahdi S. Almhanna)

3120 O3 ISSN: 2302-9285

Table 9 illustrates the CPU speed in gigahertz, bandwidth, and memory capacity in GB between
each job (clients) and server B. Now we have values that differ from those in the example, which depend on
the processing speed. When we use these values and do the same processing above, the chain that is best to
follow is as follows and the result of implementation of the Jonson method is as shown in Table 10, while the
work of both servers together can be illustrated by Table 11.

Table 9. Processing time

Job 1 2 3 4 5 6 7
Server
Server A 62.5 128.8 251.2 155 375 188 96.4
Server B 35.7 91.5 211.4 125 38.8 180.9 123
Table 10. Tasks schedule
Execution seqguence
Tasks 5 [7] 3 | 6 [4 T 2 T 1
Table 11. Idle time for servers A and B
Server Server A Server B Idle time for server B
Jobs Time in Time out Time in Time out
5 0 10 10 5 0
7 10 19 22 7 10
3 19 34 34 3 19
6 34 45 45 6 34
4 45 51 51 4 45
2 51 63 63 2 51
1 63 66 73 1 63

The minimum elapsed time is 81 ms (it is the time when all tasks are completed by both servers), the
idle time for server A is 15 (the difference between the server’s end time =81-66=15), and the idle time for
server B is 31 ms. Figure 2 illustrates the processing time for all the jobs by each server individually, while
Figure 3 shows the overlap times between servers. Figures 4 and 5 shows the processing time, bandwidth,
and memory capacity between each client and servers A and B respectively. Servers A's and B's processing
time for each task is shown in Table 9 and Figure 6 shows the relationship between these two servers based
on the score value of each.

w1 w2 3 =4 5 6 w7
15

1

N

12
11
10

Juny
o

10

Processing Time

NANNANARANANNANNNY
SIS
ANARANRRNNRRRAN

HTHTHITHTH =
HTHTHITHTH <

A

Server A Server B
Servers

Figure 2. Process time for all jobs

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3115-3123

Bulletin of Electr Eng & Inf ISSN: 2302-9285 g 3121

HtimeinA #timeoutA timeinB #time outB

O
N
g 9%
" .'-':
L a%e mxie
— “ £ :: WA ::
= ’ Y RE
= ~ 224 Anis NE
N : .
RIS T VRN 11 VAN Y
. D p Ty iy Y]
non m/"'_'.!' >“~-_'.ﬁ X-_-_ﬂ x._-_,.-
SUVRINT VRN VRN FE VRN FEY
JOB1 JOB2 JOB3 JOB4 JOBS
JOBS
Figure 3. Interference times between servers
900 800
800 :
700
< 600
§ 500
S 400
Y 300
200
100 31215 6 1011 547 85 3
0 U e s mmm e e s
Process time Bandwidth Memory capacity in GB Score

Clients

Sl w2 =3 W4 m5 ®6

Figure 4. The processing time, bandwidth, and memory capacity between each job (clients) and server A

800
700
600
a 500
400
300
200

100 g 1010 6 12 10 8 7 8 4

O L m m meee . ooooooo: R v—

400

Server

Process time Bandwidth Memory capacity
Clients

=Jobl ~Job2 «Job3 iJob4 = Job5

Figure 5. Score of the process time, bandwidth, and memory capacity between each clients and server B

Reducing waiting and idle time for a group of jobs in the grid computing (Mahdi S. Almhanna)

3122 O3 ISSN: 2302-9285

Figure 6. The process time, bandwidth, and memory capacity between each client and servers

4. CONCLUSION

Through the example, we found that the idle time of both servers is higher with entering other values
such as bandwidth and memory that may be desired in the calculations such as the size of the RAM or the
speed of the network. But in fact the application from the practical side is contrary to this because the
theoretical calculations do not reflect the reality of the situation. For example, calculating the values for the
processing speed of the server is inside the machine only, while the data may not reach it due to poor internet,
lack of bandwidth, or low speed in the network itself, and perhaps due to high traffic. These reasons may lead
to a very high idle time if the rest of the parameters are not considered.

ACKNOWLEDGEMENTS
We extend our thanks and appreciation to the University of Babylon and the College of Information
Technology for their continuous support of the staff.

REFERENCES

[1] S. M. Johnson, “Optimal two-and three-stage production schedules with setup times included,” Naval Research Logistics
Quarterly, vol. 1, no. 1, pp. 61-68, 1954, doi: 10.1002/nav.3800010110.

[2] M. Koehler and S. Benkner, “A service oriented approach for distributed data mediation on the Grid,” 8th International
Conference on Grid and Cooperative Computing, GCC 2009, pp. 401-408, 2009, doi: 10.1109/GCC.2009.35.

[3]1 S. A. Abbas and M. S. Almhanna, “Distributed denial of service attacks detection system by machine learning based on
dimensionality reduction,” Journal of Physics: Conference Series, vol. 1804, no. 1, pp. 1-12, 2021, doi: 10.1088/1742-
6596/1804/1/012136.

[4] N. E. Y. Kouba, M. Menaa, M. Hasni, and M. Boudour, “Load frequency control in multi-area power system based on fuzzy
logic-PID controller,” in 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE), 2015, pp. 1-6, doi:
10.1109/SEGE.2015.7324614.

[5] M.S. Almhanna, “Minimizing replica idle time,” in 2017 Annual Conference on New Trends in Information and Communications
Technology Applications, NTICT 2017, 2017, pp. 128-131, doi: 10.1109/NTICT.2017.7976134.

[6] B. Cornelis, “Site autonomy in a distributed database environment,” in Digest of Papers. COMPCON Spring 88 Thirty-Third
IEEE Computer Society International Conference, 1988, pp. 440443, doi: 10.1109/CMPCON.1988.4908.

[71 R. L. Chakrasali, H. N. Nagaraja, B. S. Shavaladi, and V. R. Sheelavant, “Rural load management using information technology,”
Bulletin of Electrical Engineering and Informatics, vol. 1, no. 3, pp. 199-202, 2012, doi: 10.12928/eei.v1i3.236.

[8] H. K. Omar, K. H. Jihad, and S. F. Hussein, “Comparative analysis of the essential cpu scheduling algorithms,” Bulletin of
Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2742-2750, 2021, doi: 10.11591/eei.v10i5.2812.

[91 N. Todorov, I. Ganchev, and M. O’Droma, “Exploring the congestion level index for defining the QoS performance profile of
internet paths,” in 2020 28th National Conference with International Participation (TELECOM), 2020, pp. 97-100, doi:
10.1109/TELECOM50385.2020.9299545.

[10] R. M. Almuttairi, R. Wankar, A. Negi, R. R. Chillarige, and M. S. Almahna, “New replica selection technique for binding replica
sites in data grids,” in EPC-1Q01 2010 - 2010 1st International Conference on Energy, Power and Control, 2010, pp. 187-194,
doi: 10.37917/ijeee.6.2.16.

[11] R. M. Almuttairi, R. Wankar, A. Negi, and C. R. Rao, “Enhanced data replication broker,” in Multi-disciplinary Trends in
Artificial Intelligence: 5th International Workshop, 2011, pp. 286—297, doi: 10.1007/978-3-642-25725-4_25.

[12] K. H. Anun and M. S. Almhanna, “Web server load balancing based on number of client connections on docker swarm,” in
Proceedings of 2021 2nd Information Technology to Enhance E-Learning and other Application Conference, IT-ELA 2021, 2021,
pp. 70-75, doi: 10.1109/1T-ELA52201.2021.9773748.

[13] A. Attanasio, G. Ghiani, L. Grandinetti, and F. Guerriero, “Auction algorithms for decentralized parallel machine scheduling,”
Parallel Computing, vol. 32, no. 9, pp. 701-709, 2006, doi: 10.1016/j.parc0.2006.03.002.

[14] H. Liu, M. Bowman, R. Adams, J. Hurliman, and D. Lake, “Scaling virtual worlds: simulation requirements and challenges,” in
Proceedings - Winter Simulation Conference, 2010, pp. 778-790, doi: 10.1109/WSC.2010.5679112.

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 3115-3123

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 3123

[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]

[25]

L. D. Paulson, “Faster RAM tackles data and marketplace bottlenecks,” Computer, vol. 35, no. 3, pp. 17-19, 2002, doi:
10.1109/2.993766.

M. Hans and V. Jogi, “Peak load scheduling in smart grid using cloud computing,” Bulletin of Electrical Engineering and
Informatics, vol. 8, no. 4, pp. 1525-1530, 2019, doi: 10.11591/eei.v8i4.1919.

A. A. Taiwo, K. R. K.-Mahamud, and M. S. b. Sajat, “Locating bottleneck nodes on a large wired local area network,” in 2011
National Postgraduate Conference, 2011, pp. 1-5, doi: 10.1109/NatPC.2011.6136343.

S. Dublish, V. Nagarajan, and N. Topham, “Evaluating and mitigating bandwidth bottlenecks across the memory hierarchy in
GPUs,” in 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2017, pp. 239-248,
doi: 10.1109/ISPASS.2017.7975295.

A. Saoud and A. Recioui, “Hybrid algorithm for cloud-fog system based load balancing in smart grids,” Bulletin of Electrical
Engineering and Informatics, vol. 11, no. 1, pp. 477-487, 2022, doi: 10.11591/eei.v11i1.3450.

S. S. Jalali, H. Rashidi, and E. Nazemi, “A new approach to evaluate performance of component-based software architecture,” in
2011 UKSim 5th European Symposium on Computer Modeling and Simulation, 2011, pp. 451-456, doi: 10.1109/EMS.2011.77.
B. Liskov and L. Shrira, “Escaping the disk bottleneck in fast transaction processing,” in 3rd Workshop on Workstation Operating
Systems, WWOS 1992, 1992, pp. 118-121, doi: 10.1109/WWQOS.1992.275677.

Y. Zhang and N. Lu, “Parameter selection for a centralized thermostatically controlled appliances load controller used for intra-
hour load balancing,” IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 2100-2108, 2013, doi: 10.1109/TSG.2013.2258950.

H. J. Abd and M. S. Almahanna, “Suppression of a nonlinear effect for high data transnission rate systems with a wavelength
division multiplexer using the optimization of fiber properties,” Ukrainian Journal of Physics, vol. 62, no. 7, pp. 583-588, 2017,
doi: 10.15407/ujpe62.07.0583.

R. Kaur and G. Kaur, “Proactive scheduling in cloud computing,” Bulletin of Electrical Engineering and Informatics, vol. 6, no.
2, pp. 174-180, 2017, doi: 10.11591/eei.v6i2.649.

M. V. Gopalachari, P. Sammulal, and A. V. Babu, “Correlating scheduling and Load balancing to achieve optimal performance
from a cluster,” in 2009 IEEE International Advance Computing Conference, 2009, pp. 320-325, doi:
10.1109/IADCC.2009.4809029.

BIOGRAPHIES OF AUTHORS

Mahdi S. Almhanna © £ 2 received the Ph.D. in Computer Science from
Osmania University, India. Over the years, he was assigned the duties of the head of
the Department of Computer Technology at the College of Almustagbal and
supervised several M.Sc. students. Currently, he is associate professor in Department
of Information Security at University of Babylon, Babylon, Iraq. He can be
contacted at email: mahdi.almhanna@uobabylon.edu.iq or
mahdialmhanna@gmail.com.

Firas Sabah Al-Turaihi @ B4 B © js a lecturer at University of Babylon, College
of Information Technology, and Networks Departments. He received his PhD degree
from Brunel University London, United Kingdom. He received his BSc and MSc
degrees in Computer Science. His research interests cover communication networks.
He can be contacted at email: firassabahalturaihi@uobabylon.edu.ig.

Tariq A. Murshedi © B4 B © received the Ph.D from Northeastern University,
Shenyang, China. He is also an instructor in Cisco Networking Academy, Babylon
University, Irag. His research interests include routing protocols in mobile ad hoc
networks and wireless network. Currently, he is lecture in Department of
Information Networks at University of Babylon, Babylon, Iraq. He can be contacted
at email: tarig_alwan@itnet.uobabylon.edu.ig.

Reducing waiting and idle time for a group of jobs in the grid computing (Mahdi S. Almhanna)

https://orcid.org/0000-0002-3144-5358
https://scholar.google.com/citations?hl=en&user=mzwisyUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57195381498
https://www.webofscience.com/wos/author/record/GYA-5867-2022
https://orcid.org/0000-0001-9092-428X
https://www.scopus.com/authid/detail.uri?authorId=57202247734
https://orcid.org/0009-0004-7687-8490
https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=2VcpAZIAAAAJ

