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 The government requires some vaccination for public health. This has led to 

a debate in recent years, especially during the Covid-19 pandemic. This 

research aims to analyze the two sentiments of the public regarding the 

vaccination policy. This would be helpful to ensure the acceptance of the 

government campaign about vaccination. The data used was text data 

obtained from Twitter when Indonesia was facing the second wave of the 

Covid-19 pandemic. The data were pre-processed by removing noise data, 

case folding, stemming, and tokenizing. Then, the data were classified with 

random forest, Naïve Bayes, and XGBoost. The results showed that all 

classifiers exhibit satisfying performance but XGBoost performs slightly 

better in accuracy value. This method can be deployed to be an automatic 

sentiment analyzer to help the government understand public feedback about 

its policies. This would be given by proper pre-processing and enough 

datasets. 
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1. INTRODUCTION 

Vaccination requirements issued by the government have always created debate among the people 

throughout decades [1]–[3]. The various responses ranged from positive sentiments about the government’s 

good intent, to negative conspiracy theories [4]. It is important to understand what are the aspects that influence 

people’s sentiments, as they can be used to strengthen the power of the next public health campaign [5], [6]. 

To ensure the acceptance of the government’s campaign, especially public health-related campaigns, 

we must first understand the socio-cultural background of the people, or the audience [7]–[9]. During the 

Covid-19 pandemic in Indonesia, there are notably two sides of the spectrum: the conspiracy theorists and the 

positivists. Hence, it is important to analyze the two sentiments of the public regarding the vaccination policy. 

Considering the problems with Indonesians, social media, and how it has such a strong influence on 

the public’s general opinion, this research aims to establish a formal analysis of the public discourse about 

vaccination policy. Focusing on Indonesia, this study is trying to identify the various sentiment about 

vaccination policy, specifically to understand what aspects and topics underlie those sentiments. As 

mentioned in [5]–[7] understanding the theme that drives the various sentiments could give information for 

better future vaccination campaigns, as similar topics can be used for new campaign material. 

This research utilized well-tested baseline models for classifying the sentiments, such as Naive 

Bayes, XGBoost, and random forest classifiers. Also using term frequency-inverse document frequency  

(TF-IDF) to measure each word's importance in each tweet and the whole dataset. TF-IDF has been used by 
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many studies and has been shown to be reliable, especially to represent the knowledge within a corpus. It is 

also found to be performing well in the smaller dataset, running faster, and using less computing power 

compared to other feature extraction algorithms [10]–[16]. 

 

 

2. METHOD 

Twitter has been an enormous source of data about public responses. The experience of using 

Twitter made the public feel convenient about sharing their thoughts about anything on the platform, 

including their reaction to public policy, in this case, the Covid vaccination policy [13], [17]–[20]. Previous 

studies used social media data, specifically Tweets, to analyze public discourses and sentiments. It has shown 

reliable results, and the finding could be used as campaign material to better target the audience [5]–[7]. One 

of the best cases is about analyzing sentiments of human papillomavirus (HPV) vaccination requirement 

which created ripples of refusal in the US. Using a combination of automated text analysis and qualitative 

coding, the vaccine promoter can tailor their campaign content to be more relatable to their audience, 

resulting in better acceptance in future campaigns. 

Moreover, studying public sentiment as a whole and comparing it to the key opinion leader's 

narrative could give us insight into the communication structure in social media. In the traditional sense, 

targeting the key opinion leaders to follow the government's narrative could easily drive the masses' opinion, 

as the key opinion leader is often viewed as more trustworthy than the government itself. For example, on the 

Madura Island of Indonesia, the opinion of their local Kyai (religious leader) is often viewed as divine and 

must be carried on [21], [22]. Meanwhile, on the internet, the opinion of overly famous YouTubers and social 

media influencers are also perceived as divine by their followers [23], [24]. Therefore, analyzing the tweets 

of identified key opinion leaders and their impact on society may also bring insight into the research. 

The data used is text data obtained from Twitter containing the word "Covid-19 vaccination". The 

data was taken from May 15, 2021 to July 12, 2021, when Indonesia was facing the second wave of the 

Covid-19 pandemic [25]. The 6% of tweets per day were sampled to be analyzed. The tweets were labeled 

with positive and negative sentiments. The data obtained were preprocessed with several steps, such as 

removing noise and duplicate, cleaning, case folding, tokenizing, stemming, and feature extraction TF-IDF. 

The flow of preprocessing to the classification of the data is depicted in Figure 1. 

 

 

 
 

Figure 1. Research flow 
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Firstly, the data was obtained from Twitter. Then, duplicates were removed from the dataset. The 

duplicates may have emerged from Twitter's automated bots, and buzzers, which are typically sourced from a 

news feeder. Thus, it is noise for the dataset. After cleaning and preprocessing, the data used are 873 tweets. 

Before representing the text into weights, a word cloud for each sentiment group is formed to ensure that the 

most frequent words are not the query word, which is “Covid-19” and “vaccination”. If those words appeared 

dominant on the word cloud, it needs to be removed for it has not provided any useful information for the 

classification. Then, the tokens were assigned weights based on their frequency and relevance in the 

documents [12]. The number generated from that process is the representation of the token in the document 

and can provide value for the classifier. After the weighting process, each tweet has become a series of 

weights from each word comprising the tweet.  

Moreover, the tokenization process did not only produce unigrams. To better capture the semantic 

meaning in the whole sentence, the tokenization process also made bigrams and trigrams [26], [27]. These 

separate forms of tokens were then modeled separately. Afterward, the dataset is split for testing the 

classifier. Only 80% of the tweets are used for training while the remaining tweets are acting as a control. 

Finally, each classifier was trained and tested, then each classifier’s performance was measured. In the end, 

the analysis and conclusion are provided. 

 

 

3. RESULTS AND DISCUSSION 

The initial scrape resulted in a total of 58,165 tweets but considering the trends of the tweet on 

vaccination topics, it was resampled to 6% of each day's matching total tweets. Figure 2 shows the trends of 

vaccination-related tweets during the scraping session. Specifically, it started to jump on July 4th, 2021, 

which coincides with the start of the second wave pandemic in Indonesia. People started to aware of the 

benefits of vaccination and started to talk about it on Twitter.  

 

 

 
 

Figure 2. Vaccination-related tweet trend 

 

 

The second wave in Indonesia started a week after the Eid holiday, which was marked by massive 

hometown visits of nearly every person in Indonesia. Other than the broken social restriction, a new Covid 

variant (Delta) was also present during that time. Those massive turn of events incites online debate about the 

government's vaccination policy, which only imported Chinese vaccines at the time, and its effectiveness 

compared to other big pharma brands. 
Before further preprocessing was done, the tweets were labeled manually first. Most of the tweets 

have neutral sentiments (45%), which is perfectly normal in any online conversation since people have to be 

aware to not take sides and lose their online reputation. Furthermore, 39% of the tweets have positive 

sentiment, and the remainder (16%) expressed negative sentiment.  

Figure 3 shows the top 10 words of every tweet in their respective sentiment class, Figure 3(a) 

positive class and Figure 3(b) negative class. Note that the tweets in each class have been preprocessed, and 

stopwords, including search query words, were removed. In the positive sentiment class, the word “free”, 

“I hope”, and “Thanks God” expressed joy and hope for a better future, which is an optimistic view of the 
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vaccination policy and showing endorsement for the government’s policy. Free vaccination, as promoted by 

the Indonesian Government, was positively responded to by the people and became the main promotion 

narrative for the vaccination campaign. Another top word in the positive class, “healthy”, shows that people 

relate vaccines to their health, and by receiving the vaccine, they will become immune from Covid.  
In the negative sentiment class, “selling”, ‘paid”, and “sold” appeared as some of the top words. 

This sentiment is assumed to be stemmed from the notion that the government has made a back-alley deal 

with vaccine manufacturers, and most likely the tweet came from buzzers or anti-government agents. 

Because clearly, the Government has declared that the vaccination will be free to all citizens of Indonesia. 

This kind of debate is normal on an online platform, and tweets with negative sentiments are often mucky 

with hoaxes and blatant slander. 

 

 

  
(a) (b) 

 

Figure 3. Top 10 unigrams of each sentiment class; (a) positive sentiment and (b) negative sentiment 

 

  

Bigrams and trigrams forms of the tweets were also generated, and their respective top occurrences 

were also calculated. Figure 4 shows the Bigrams for the Figure 4(a) positive and Figure 4(b) negative 

classes. The top occurring bigrams in Figure 4 in positive sentiment class include “health protocol”, “herd 

immunity”, and “wearing mask” which portrays citizens’ optimism toward the vaccination during the second 

wave of the pandemic. The people are optimistic to reach herd immunity as soon as the vaccine is 

administered widely to the public and say that the health protocol must be maintained even after vaccination. 

From the bigrams, positive sentiment narratives about optimism toward a better post-pandemic future are still 

consistent with the unigram form, the difference is that from the bigram, the collective effort of the 

Indonesian people can be seen, and clearly shows Indonesian collectivism as a culture. While in the negative 

sentiment bigrams as shown in Figure 4(b), “selling out the people”, “making profit”, and “mutual 

assistance”, likely refer to the name of the vaccination campaign program, dominated the frequent bigrams. 

The negative sentiment bigram narratives also still focus on how vaccination policy is a kind of governmental 

fraud, aiming only to enrich big pharma and include shady back-alley deals, all of which are assumed to be 

generated by buzzers and fake accounts. 

Figure 5 shows its trigrams form, also for the Figure 5(a) positive and Figure 5(b) negative classes. 

There is not much difference in top occurring trigrams compared to the bigrams as shown in Figure 5. On 

average, the narratives for each respective class still stand. Moreover, the preprocessed tweets are plugged 

into several machine learning classifiers to be further used for automatic sentiment analysis, specifically 

related to Indonesian governmental policy responses. The automatic sentiment analyzer will help the 

Indonesian government “test the water” and see public responses almost instantly. 

The classifier algorithms used are XGBoost, random forest, and Naive Bayes. Before being plugged 

into the classifier, the TF-IDF values for each word are extracted. Each classifier has evaluation metrics value 

such as accuracy, precision, recall, and f1-score. Table 1 shows the performance comparison based on those 

metrics of the aforementioned classifiers. 
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(a) (b) 

 

Figure 4. Top 10 bigrams in each sentiment; (a) positive sentiment and (b) negative sentiment 

 

  
(a) (b) 

 

Figure 5. Top 10 trigrams for each sentiment; (a) positive sentiment and (b) negative sentiment 
 

 

Table 1. Classifier performance 
Classifiers Accuracy (%) Precision Recall F1-score 

Random forest 73.6 0.75 0.63 0.65 

Naive Bayes 72 0.76 0.55 0.55 
XGBoost 75.9 0.64 0.63 0.63 

 

 

From the classifier performance comparison, in terms of accuracy, XGBoost performs slightly well, 

although not so much compared to other baselines, much simpler and interpretable classifiers. Due to the 

dataset imbalance between the positive and negative sentiment tweets, the classifiers predict heavily into 

positive class. However, additional input of data into the negative class should solve this problem. In any 

case, TF-IDF as a feature extraction method coupled with several proven machine learning classifiers can be 

a quite reliable automatic sentiment classifier model. Overall, all classifiers exhibit satisfying performance. 

 

3.1.  Discussion 

From the results, there are clear differences in narratives between the positive and negative 

sentiments about Indonesia’s vaccination policy. The positive sentiments rely on hope and optimism as their 

driving factors, which are expected from Indonesian due to their cultural values. Contrary to the positive 

sentiments, the negative sentiments mostly expressed distrust and suspicion toward the Indonesian 

government and vaccine manufacturers or big pharma companies. These negative narratives are likely to be 

influenced by conspiracy theories and anti-government forum discussions.  
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However, it can also stem from the growing disappointment and skepticism toward the Indonesian 

government, due to their early pandemic anti-science stance. Understandably, people have negative 

sentiments toward the vaccination campaign because the Indonesian government initially denies covid as a 

serious national threat at the beginning of the pandemic, then suddenly promotes a science-backed campaign 

of mass vaccination. For machine learning modeling, the overall performance of the models is good, judging 

by the accuracy. However, due to the imbalanced class of positive and negative sentiments, the model tends 

to overgeneralize the positive sentiment. The models need more data in each respective class, but Indonesian 

tweets are noisy with many colloquialisms and mixed languages. 
 

3.2.  Limitations and future research 

This research is limited by the availability of the corpus. As seen in the tweet trends, the discourse 

about vaccination policy only peaked in 2 days, then died down exponentially. That leads to an imbalanced 

class for positive and negative sentiments. This research also did not focus on neutral sentiment tweets. The 

main limitation is that Indonesian Twitter users liked to shorten their typing. A text normalization dictionary 

is available to use to preprocess those texts, but most of the time, Indonesian Twitter users still invent new 

shortened words, and it is hard to contain all of the possible shortened words in a dictionary. Future research 

can address this problem by developing a machine-learning model to predict the full word from  

shortened words. 

Another limitation is that Indonesian Twitter users often use colloquial words and mixed languages, 

usually a mix of pure Indonesian and their ethnic-regional language. Although the use of code-switching is 

widespread in all regions of Indonesia, the corpus needed to standardize the language into Indonesian 

remains a challenge in the natural language processing field. Future research needs to address this problem 

by proposing a language standardizer by considering colloquial terms and code-switched text. 
 

 

4. CONCLUSION 

Governmental policy is often responded to with various sentiments. Twitter as an online platform 

enables people to directly express their concerns toward public policy, this allows for a healthier democracy 

at a national level. Machine learning models with a proper natural language processing method facilitate 

automating sentiment analysis so that the government can quickly receive feedback on their policy issues. 

Based on the accuracy value of the three methods used, XGBoost performs better than the other two 

methods. Previously, at the pre-processing stage, descriptive analysis was conducted on unigram, bigram, and 

trigram. Bigram analysis shows consistency with unigram in both positive and negative sentiments. Trigram 

analysis also shows the same context as bigrams and unigrams, so that unigrams are used in the classification 

analysis stage. It shows that with proper pre-processing and enough datasets, automatic public response 

sentiment analysis toward national policy is possible to be deployed, which eventually leads to direct 

communication between the government and the people.  
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