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 As oscillator applications, resistance-inductor-capacitor (RLC) circuits are 
employed in a diversity of settings. A low-pass, band-stop, band-pass, or 
high-pass filters can all be designed using an RLC circuit. A two-loop RLC 
circuit could not be represented mathematically in prior studies. Laplace 
transform is one type of integral transformation, which is able to resolve 
both second order non-uniform and uniform linear differential equations. 
This work solves the differential equations (DEs) of a two loops RLC circuit 
of an alternating voltage source by using two alternative approaches, 
Laplace transform (LT) and deep learning convolutional neural network 
(DLCNN). Initially, two DE have been declared. Next, Laplace transform is 
computed to solve these equations with symbolic variables for the first loop 
current and capacitor charge. Finally, we substitute the numerical values of 
the circuit elements for the symbolic variables. The charge and current 
initially decline exponentially. On the other hand, they oscillate over a long 
period of time. The capacitor charge and current initially decline 
exponentially and oscillate over a long period of time. The qualities of the 
result can be examined with a symbolic result, which is not possible with a 
numeric result. 
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1. INTRODUCTION 

Due to experimental or numerical analyses on the behavior between a dissipative and conservative 
system and the absence of fractionalized systematic techniques, recent research has been diverted from the 
importance of the recent fractional derivatives including the non-singular kernel with non-locality and the 
singular kernel with the locality. The mathematical representation of an ordinary differential equation (DE) 
with second-order cubic nonlinearity is the Van-der-Pol equation. The Van-der-Pol equation has been given a 
time delay in several investigations. Theresistor-inductor-capacitor (RLC) circuit differential equation is 
derived as a delay differential equation in this study together with the Van der Pol model differential  
equation [1]. Analytical solutions for the Caputo-Fabrizio, Liouville-Caputo, and new Mittag-Leffler 
function-based fractional derivative to describe the electrical RLC circuit model were previously discussed. 
The fractional differential equations take different sources into account. When the fractional order equals 1, 
the conventional behaviors are restored [2]. Dynamical system approaches and Melnikov theory can be used 
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to examine tiny amplitude perturbations of some implicit differential equations appearing in RLC circuits [3]. 
A steady-state process in an RLC circuit with power sources operating at unrelated frequencies is also 
considered [4]. An expansion of an ordinary differential equation is taken into consideration in order to 
achieve the periodic steady-state behavior. This expansion is based on changing from ordinary differential 
equations to partial differential equations with two-time variables by adding an additional time variable. The 
two-dimensional Laplace transform is used to solve the obtained differential equations. Active power and 
frequency responses for the domain of two time variables are specified by the use of double integral formulas 
for a transfer function. The voltage and current amplitude-frequency properties of the RLC circuit can be 
given in the domain of two variables. A nonlinear fractional derivative based Volterra integral-differential 
equation with Caputo, several kernels, and numerous constant delays is also considered to look into the 
qualitative properties of solutions to this equation, including the boundedness of nonzero solutions and the 
Mittag-Leffler stability, uniform stability, and asymptotic stability of the zero solution [5]. The  
Lyapunov-Razumikhin approach and selecting an acceptable Lyapunov function are the methods employed 
in the proofs of these theorems related to an RLC circuit. 

A modified Laplace transform approach to find solutions to a series-connected simple electric 
circuits (RLC) model of linear differential equations (DEs) was presented in [6]. Although the study 
suggested that non-homogenous second order linear differential equations in the form of electric charge 
equations can be solved over time using a modified Laplace transform method, only homogeneous second 
order linear DEs was considered. Certain approximation techniques for generated nonlinear terms of 
characteristic exponents to offer the stability analysis of delay integral-differential equations with fractional 
order derivatives were discussed in [7]. Such methods allow for the proof of the presence of some analytical 
solutions close to their equilibrium points. The formulas for the critical time delay and critical frequency are 
determined through the construction of stability charts to describe general RLC circuits that expose the delay 
and fractional order derivatives. A straightforward method was used to determine the electromagnetic energy 
density distribution in a dispersive and dissipative met material made up of wire arrays and split-ring 
resonators [8]. The paper demonstrated that the system’s energy may be thought of as being made up of the 
energy densities of the electric and magnetic fields as well as energy densities associated with the medium’s 
reaction. Therefore, the system’s equations of motion for polarization have been compared with the 
corresponding differential equations of suitable RLC circuits to develop formulas for the energy density of 
the medium. The electrical RLC circuit with a fractional DE is investigated in [9], where a new auxiliary 
parameter was added to maintain the three physical measures C, L, and R’s three dimensions. Through the 
circuit’s physical properties of RLC, the analytical solution was specified in terms of Mittag-Leffler’s 
formula. An analytical approach to examine the impacts of contemporary fractional differentiation on the 
RLC electrical circuit was discussed in [10]. The leading RLC electrical circuit DE has been fractionalized 
with three kinds of partial derivatives, where the RLC electrical circuit was seen for unit step sources, 
periodic, and exponential.  

Melnikov’s theory for implied ordinary DEs of little amplitude perturbations was presented in [11]. 
If certain Melnikov-like criteria are met, it is specifically explored how long orbits linking singularities can 
endure in finite time for nonlinear RLC circuit systems. The two delays in the Van der Pol delay model and 
delay differential equations were produced from ordinary differential equations using the Taylor series to 
define the model for treating Parkinson’s disease [1]. Floquet’s theory to examine the linear dynamic analysis 
of RLC circuits representing AC generators with periodically time-varying inductances was presented  
in [12]. The dynamic stability’s prerequisites are derived. The stability domains and transition curves were 
predicted using the harmonic balancing approach. A fractional order differential equation can be used to 
describe the dynamics of noninteger order RLC electrical circuits by adding an auxiliary parameter [13], 
where an analytical determination of the filter parameters and numerical validation of the outcomes were 
used. Despite the fact that differential equations are marketed as applied mathematics, the course rarely 
includes any practical applications [14]. Deep learning convolutional neural networks (DLCNN) [15]–[18] 
and reinforcement learning [19], [20] that were undergone fast growth in modern decades, were employed to 
solve the nonlinear DEs in general. Deep learning-based data assimilation algorithms [21], [22] were lately 
presented to train Navier–Stokes network formulas to estimate different quantities of interesting.  
DLCNN-based methods can be classified into three kinds: i) DLCNN that maps indirectly to the parameters 
or inner results of an algebraic explanation to use them for deriving numerical solutions [23], [24]; ii) 
DLCNN that maps directly toward the solutions with a discrete method, which is same as numerical solutions 
[25], [26]; and iii) DLCNN that maps straight to the solution characterized by a DLCNN with a continuous 
way and it is similar to that in analytical solutions [27]–[29]. In this type, the data applied for training the 
network are arbitrarily modeled inside the whole solution range in every training batch, including boundary 
and initial circumstances. The necessary characteristic of all of these techniques is the adopting the benefit of 
the nonlinearity depiction capability of DLCNNs. New development [30] in mechanics with this capability 
has been stated such as, Li et al. [31] presented a generative adversarial model network for mapping hidden 
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variables for a microstructure to use in fabrication. The major contribution of this work is to model the DEs 
of a two loops RLC circuit of an alternating voltage AC-source by using two alternative approaches; Laplace 
transform and DLCNN in MATLAB environment. To obtain this aim, several objectives are accomplished 
such as: i) to model and solve the DEs of a 2-loop RLC AC circuit; ii) to plot and analyze the obtained results 
of the capacitor charging and inductor current; and iii) to solve and compare the results with the  
DLCNN-based solution. 

 
 

2. METHOD 
2.1.  Object and research hypothesis 

This work solves the RLC circuit differential equations by using Laplace transform. It is possible to 
define the Laplace transform by a function 𝑓(𝑡), which is given by: 

 

න 𝑓(𝑡)
ஶ

଴

𝑒ି௧௦𝑑𝑡 

 
Calculations are kept in their native symbolic form rather than in numerical form using symbolic 

workflows. This method enables using precise symbolic values and comprehends the properties of the 
obtained answer. When a quantitative result is required or symbolically continuing is impossible, numbers 
are substituted for symbolic variables. In general, the symbolic workflows of solving equations include; 
equations definition, equations solving, values substitution, plotting results, and analyzing results. 

 
2.2.  Equations definition 

To solve differential equations using beginning conditions, utilize the Laplace transform. We will 
consider solving the RLC circuit shown in Figure 1. Capacitor charge is referred to as 𝑄(𝑡) in coulomb, AC 
voltage source in volts is referred to as 𝐸(𝑡), capacitance in farad is referred to as 𝐶, inductance in henry is 
referred to as 𝐿, currents in ampere are referred as I1, I2, I3, resistances in ohm are referred as R1, R2, R3. 
Apply Kirchhoff’s current and voltage laws, following equations, are obtained: 

 
𝐼ଵ = 𝐼ଶ + 𝐼ଷ 

𝐿
ௗூభ

ௗ௧
+ 𝐼ଵ𝑅ଶ + 𝐼ଶ𝑅ଶ = 0 (1) 

𝐸(𝑡) + 𝐼ଶ𝑅ଶ −
ொ

஼
− 𝐼ଷ𝑅ଷ = 0  

 
 

 
 

Figure 1. RLC circuit analysis 
 
 

By substituting the term 𝐼3 = 𝑑𝑄/𝑑𝑡 (which represents the rate of charge of the capacitor) into 
𝑒𝑞𝑛(1), the following differential equations are obtained for the RLC circuit: 

 
𝑑𝐼ଵ

𝑑𝑡
−

𝑅ଶ𝑑𝒬

𝐿𝑑𝑡
= −

𝑅ଵ+𝑅ଶ

𝐿
𝐼ଵ 

 (2) 

 
ௗ𝒬

ௗ௧
=

ଵ

ோమାோయ
ቀ𝐸(𝑡) −

𝒬

஼
ቁ +

ோమ

ோమାோయ
𝐼ଵ 

 
Since the magnitude of the practical components are with positive quantities, we stat the variables of 

equations. Then, we set the equivalent statements for the variables. Suppose that 𝐸(𝑡)is a 1 V AC source 
voltage (1. 𝑠𝑖𝑛(𝑡)), and assuming 𝑡, 𝐿, 𝐶, and 𝑅 are greater than 0. Therefore, the differential equations are:  
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𝑒𝑞𝑛1(𝑡) =
డ

డ௧
𝐼ଵ(𝑡) −

ோమ
ങ

ങ೟
𝒬(௧)

௅
 =  −

ூభ(௧)(ோభାோమ)

௅
 (3) 

 

𝑒𝑞𝑛2(𝑡) =
డ

డ௧
 𝒬(𝑡) =

௦௜௡(௧)ି
𝒬(೟)

೎

ோమାோయ
+

ோమூభ(௧)

ோమାோయ
 (4)  

 
2.3.  Deep learning convolutional neural network framework 

From a physical perspective, the initial and boundary circumstances are continued with time, and as 
a result, the parameters of the approach circuit are also continuous in time: the parameters at the current step 
are used as an ideal initialization for the next step, allowing the parameters of the DLCNN to transmit with 
the time phase in the solution procedure, which makes the process rapid for the remaining time stages. The 
derivatives of the current and capacitor charge equations are computed according to the gradient of the 
network output according to the input. The hidden layers activation functions are selected as rectified linear 
unit (ReLU) functions to conserve the stability of those derivatives. The network architecture is trained 
according to the computed loss based on the gradient descent process. A common nonlinear differential 
equation has the following format: 
 

𝑢௧ + 𝑁(𝑢, 𝜗) = 0 (5) 
 

The term 𝑢(𝑥, 𝑡) represents the underlying equation solution, u୲ represents the time derivative, while 
𝑁(𝑢, 𝜗) denotes the nonlinear function with parameter 𝜗. Specifying the required condition, represented by 
the initial and boundary parameters, the equation solution is a nonlinear map within the solution range (𝑥, 𝑡). 
DLCNNs have revealed noteworthy achievements in the learning of nonlinear high-dimensional  
functions [32]. The proposed DLCNN technique approximates the nonlinearity mapping that has a 
probabilistic network 𝜋ఏ(𝑎|𝑠) employed through a DLCNN with the parameter 𝜃. The contender solution is 
sampled from the network probability, which means 𝑢̂ ∼ 𝜋ఏ(𝑎|𝑠). The network’s loss function for 
continuous solution action domain. The symbols employed here are recognizable from traditional DLCNN 
learning for simplicity, and Figure 2 shows how they apply to a particular solution problem. 
 
 

 
 

Figure 2. DLCNN framework for the DEs of the adopted two-loop RLC circuit 
 
 

This research uses a DLCNN with six convolution layers and one fully linked layer. A max pooling 
layer, activation layer (linear rectified unit, or ReLU), and normalization batch layer are present in every 
convolution layer, with the exception of the final convolution level, when an average pooling level is utilized 
in place of the maximum layer. In the output layer, softmax activation is present. Figure 3 displays the 
screenshot for the specifics of the created network layers. The training configuration are: i) every nine 
epochs, the learning rate is decreased by a factor of 10; ii) setting the initial learning rate to 2e-2; iii) setting 
the maximum number of epochs to 12; iv) using a stochastic gradient descent with momentum (SGDM) 
solver with a mini-batch size of 256; and v) plotting the training progress. 
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Figure 3. Screenshot for the details of the developed network layers 
 
 
3. RESULTS AND DISCUSSION 
3.1.  Equations’solving 
The Laplace transform is calculate for 𝑒𝑞𝑛1 and 𝑒𝑞𝑛2 as: 

 
               𝑒𝑞𝑛1𝐿𝑇 = 𝑙𝑎𝑝𝑙𝑎𝑐𝑒(𝑒𝑞𝑛1, 𝑡, 𝑠) = 

𝐼𝑎𝑝𝑙𝑎𝑐𝑒(𝐼ଵ(𝑡), 𝑡, 𝑠) − 𝐼ଵ(0) +
ோమ൫𝒬(଴)ି௦ ௟௔௣௟௔௖௘(𝒬(௧),௧,௦)൯

௅
= −

(ோభାோమ)௟௔௣௟௔௖௘(ூభ(௧),௧,௦)

௅
 (6) 

 
              𝑒𝑞𝑛2𝐿𝑇 = 𝑙𝑎𝑝𝑙𝑎𝑐𝑒(𝑒𝑞𝑛2, 𝑡, 𝑠) = 

𝑠 𝑙𝑎𝑝𝑙𝑎𝑐𝑒(𝒬(𝑡), 𝑡, 𝑠) − 𝒬(0) =
ோమ௟௔௣௟௔௖௘(ூభ(௧),௧,௦)

(ோమାோయ)
+  

಴

ೞమశభ
ି ௟௔௣௟௔௖௘(𝒬(௧),௧,௦)

௖ (ோమାோయ)
 (7) 

 
By substituting Laplace 𝑙𝑎𝑝𝑙𝑎𝑐𝑒(𝑄(𝑡), 𝑡, 𝑠) and (𝐼1(𝑡), 𝑡, 𝑠) by the variables 𝑄_𝐿𝑇 and 𝐼1_𝐿𝑇 we get: 

 

𝑒𝑞𝑛1𝐿𝑇 =  𝐼ଵ,௅்𝑠 − 𝐼ଵ(0) +
ோమ(𝒬(଴)ି𝒬ಽ೅௦)

௅
= −

ூభ,ಽ೅(ோభାோమ)

௅
 )8 (  
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𝑒𝑞𝑛2𝐿𝑇 =  𝒬ଵ,௅்𝑠 − 𝒬(0) =
ூభ,ಽ೅ோమ

ோమାோయ
−  

𝒬ಽ೅ି
಴

ೞమశభ

௖ (ோమାோయ)
 )9 (  

 
Solving the equations for 𝑄_𝐿𝑇 and 𝐼1_𝐿𝑇 we get: 
 

𝐼1 − 𝐿𝑇 =

௅ூభ(଴)ିோమ𝒬(଴)ା஼ோమ௦ା௅௦మ ூభ(଴)ିோమ௦మ 𝒬(଴)ା஼ ௅ ோమ௦య ூభ(଴)ା

஼ ௅ ோయ௦య ூభ(଴)ା஼ ௅ ோయ௦ூభ(଴)ା஼ (ோభାோమା௅௦ା௅ ோమூభ(଴)ାோభோమ𝒬(଴)

(௦మ ାଵ)(ோభାோమା௅௦ା஼ ௅ ோమ௦మ ା஼ ௅ ோయ௦మା஼ ோభ ோమ௦ା ஼ ோభ ோయ௦ା ஼ ோమ ோయ௦   )
  

 

    

ାோభோయ𝒬(଴)ାோమோయ𝒬(଴)ା௅ ோమ௦మ ூభ(଴)ା௅ ோమ௦య 𝒬(଴)ା௅ ோయ௦య 𝒬(଴)ାோభோమ௦మ 𝒬(଴)ା

ோభோయ௦మ 𝒬(଴)ାோభோయ௦మ 𝒬(଴)ା௅ ோమ௦ 𝒬(଴)ା௅ ோయ௦ 𝒬(଴)

(௦మ ାଵ)(ோభାோమା௅௦ା஼ ௅ ோమ௦మ ା஼ ௅ ோయ௦మା஼ ோభ ோమ௦ା ஼ ோభ ோయ௦ା ஼ ோమ ோయ௦   )
  

   (10) 

 
Calculate 𝑄 and 𝐼1 by calculating the inverse Laplace transform of 𝑄_𝐿𝑇 and 𝐼1_𝐿𝑇. Then 

simplifying the answer and substituting the symbolic variables with the circuit element values as listed in 
Table 1 to get 𝐼ଵ௦௢௟  and 𝑄௦௢௟ . 
 
 

Table 1. The symbolic variables with the circuit element values 
Description Value 

R1 4 Ω 
R2 2 Ω 
R3 3 Ω 
L 1.6 H 
C ¼ F 

Initial current 𝐼1(0) 2 A 
Initial charge 𝑄(0) 2 C 

 
 

𝐼1𝑠𝑜𝑙 =
ଶ଴଴ ௖௢௦ (௧)

଼ଵ଺ଵ
+  

ସ଴ହ ௦௜௡(௧)

଼ଵ଺ଵ
+

ଵ଺ଵଶ
    ష

ఴభ೟
రబ ൮௖௢௦௛

√భళలభ ೟

రబ
൰ି

ళరమఱమవ √భళలభ ೞ೔ ቆ√భళలభ ೟
(రబ) ቇ

భరభవఱరమభ
൲

଼ଵ଺ଵ
  

𝑄𝑠𝑜1 =
ଽଶସ ௦௜௡(௧) 

଼ଵ଺ଵ
−  

ଵ଴ହହ ௖௢௦(௧)

଼ଵ଺ଵ
+

ଵ଻ଷ଻଻௘
    ష

ఴభ೟
రబ ൮௖௢௦௛൬

√భళలభ ೟

రబ
൰ା

భభబవరమఱ √భళలభ ೞ೔೙೓ቆ√భళలభ ೟
(రబ) ቇ

యబలబబఴవళ
൲

଼ଵ଺ଵ
  

 
3.2.  Laplace transform results 
Splitting the steady state and transient terms for 𝑄𝑠𝑜𝑙 and 𝐼1𝑠𝑜𝑙 results in: 

 

𝐼1𝑠𝑡𝑒𝑎𝑑𝑦𝑠𝑡𝑎𝑡𝑒 = ቀ
ଶ଴଴ ௖௢௦ (௧)

଼ଵ଺ଵ

ସ଴ହ ௦௜௡ (௧)

଼ଵ଺ଵ
ቁ  

 

𝐼1𝑠𝑡𝑒𝑎𝑑𝑦𝑠𝑡𝑎𝑡𝑒 =

ଵ଺ଵଶ
    ష

ఴభ೟
రబ ൮௖௢௦௛൬

√భళలభ ೟

రబ
൰ି

ళరమఱమవ √భళలభ ೞ೔೙೓ቆ√భళలభ ೟
(రబ) ቇ

భరభవఱరమభ
൲

଼ଵ଺ଵ
  

 
The drawing shown in Figure 4 represents the transient (on the left) and steady-state (on the right) 

behaviors for the current 𝐼1𝑠𝑜𝑙 (a) and the charge 𝑄𝑠𝑜𝑙 (b) over two unlike periods given by 2 ≤ 𝑡 ≤ 25 and 
0 ≤ 𝑡 ≤ 15 is shown in, while Figure 5 shows the transient in (a) and steady state in (b) terms.  

 
 

    
(a) (b) 

    
Figure 4. The transient and steady state behavior for the charge: (a) 𝑄𝑠𝑜𝑙 and (b) the current 𝐼1𝑠𝑜𝑙 over two 

unlike time periods given by 2 ≤ t ≤ 25 and 0 ≤ t ≤ 15 respectively 
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Likewise, splitting 𝑄𝑠𝑜𝑙 into steady state and transient terms expresses how symbolic computations 
assist to problem analysis, as given by: 

 

𝑄𝑠𝑡𝑒𝑎𝑑𝑦𝑠𝑡𝑎𝑡𝑒 = ቀ−
ଵ଴ହହ ௖௢௦ (௧)

଼ଵ଺ଵ

ଽଶସ ௦௜௡ (௧)

଼ଵ଺ଵ
ቁ  

 

𝑄𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 =  

ଵ଻ଷ଻
ష

ఴభ೟
రబ ൮௖௢௦ ൬

√భళలభ ೟

రబ
൰ା

భభబవరమఱ√భళలభ ೞ೔೙೓ቆ√భళలభ  ೟
రబ ቇ

యబలబబఴవళ
൲

଼ଵ଺ଵ
  

 
 

  
(a) (b) 

  
Figure 5. The transient and steady state terms of; (a) 𝐼1𝑠𝑜𝑙 and (b) 𝑄𝑠𝑜𝑙 

 
 
3.3.  Comparison results  

Figure 6 shows the comparison results between the Laplace transform (LT) and the developed DLCNN 
of the transient in Figure 6(a), where in Figure 6(b) is steady state. For behaviors for the current I1sol and charge 
Qsol over two unlike time periods given by 2 ≤ 𝑡 ≤ 25 (Figure 6(c)) and 0 ≤ 𝑡 ≤ 15 (Figure 6(d)). The 
modeling DEs of the current 𝐼1𝑠𝑜𝑙 and the capacitor charging 𝑄𝑠𝑜1 are derived according to the symbolic 
variables with the circuit element values of Table 1. The charge and current initially decline exponentially. On the 
other hand, they oscillate over a long period of time. The terms “steady state” and “transient” are used to obtain 
these characteristics. The qualities of the result can be examined with a symbolic result, but this is not possible with 
a numeric result. Figure 4 demonstrated that examining 𝑄𝑠𝑜𝑙 and 𝐼1𝑠𝑜𝑙 visually shows that these equations consist 
of many terms. The plotting of the behaviors over [0 15] is performed to determine their contributions. The plots in 
Figure 5 show that 𝑄𝑠𝑜𝑙 has two steady-state terms and a transient, while I1sol has a steady-state term and 
transient. From visual inspection, it is noted that 𝑄𝑠𝑜𝑙 and 𝐼1𝑠𝑜𝑙 are with an exp function term, which is assumed 
to cause the decay in transient exponentially. 
 
 

(a) (b) (c) (d) 
    

Figure 6. The comparison of transient and steady-state behavior for (a) the charge 𝑄𝑠𝑜𝑙 and (b) the current 
𝐼1𝑠𝑜𝑙 over two unlike time periods given by; (c) 2 ≤ 𝑡 ≤ 25 and (d) 0 ≤ 𝑡 ≤ 15 

  
 

The Laplace transform and deep learning CNN solutions show excellent consistency for the steady 
solutions and there is a good agreement between the obtained transients. Future work can be recommended 
when comparing the solving of such symbolic differential equations of the 2-loop RLC AC circuit with deep 
learning convolutional neural network [33], [34]. 
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4. CONCLUSION 
This work solves the DEs of a two loops RLC circuit of an alternating voltage source by using 

Laplace transform. The capacitor charge and current initially decline exponentially and they oscillate over a 
long period. The qualities of the transient and steady-state results can be examined with a symbolic result, 
which is not possible with a numeric result. Three major points can be concluded: i) the approach presented 
has successfully modeled and solved the symbolic differential equations of the currents and the capacitor 
charging of the 2-loop RLC AC circuit; ii) the visualization of the obtained results of the capacitor charging 
and inductor current shows that these equations consist of many terms that are assumed to cause the decay in 
transient exponentially; and iii) this work presented the DLCNN-based solution and compared the results 
with its corresponding Laplace transform solution. 
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