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As oscillator applications, resistance-inductor-capacitor (RLC) circuits are
employed in a diversity of settings. A low-pass, band-stop, band-pass, or
high-pass filters can all be designed using an RLC circuit. A two-loop RLC
circuit could not be represented mathematically in prior studies. Laplace
transform is one type of integral transformation, which is able to resolve
both second order non-uniform and uniform linear differential equations.
This work solves the differential equations (DEs) of a two loops RLC circuit
of an alternating voltage source by using two alternative approaches,
Laplace transform (LT) and deep learning convolutional neural network
(DLCNN). Initially, two DE have been declared. Next, Laplace transform is
computed to solve these equations with symbolic variables for the first loop
current and capacitor charge. Finally, we substitute the numerical values of
the circuit elements for the symbolic variables. The charge and current
initially decline exponentially. On the other hand, they oscillate over a long
period of time. The capacitor charge and current initially decline
exponentially and oscillate over a long period of time. The qualities of the
result can be examined with a symbolic result, which is not possible with a
numeric result.
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1. INTRODUCTION

Due to experimental or numerical analyses on the behavior between a dissipative and conservative
system and the absence of fractionalized systematic techniques, recent research has been diverted from the
importance of the recent fractional derivatives including the non-singular kernel with non-locality and the
singular kernel with the locality. The mathematical representation of an ordinary differential equation (DE)
with second-order cubic nonlinearity is the Van-der-Pol equation. The Van-der-Pol equation has been given a
time delay in several investigations. Theresistor-inductor-capacitor (RLC) circuit differential equation is
derived as a delay differential equation in this study together with the Van der Pol model differential
equation [1]. Analytical solutions for the Caputo-Fabrizio, Liouville-Caputo, and new Mittag-Leffler
function-based fractional derivative to describe the electrical RLC circuit model were previously discussed.
The fractional differential equations take different sources into account. When the fractional order equals 1,
the conventional behaviors are restored [2]. Dynamical system approaches and Melnikov theory can be used
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to examine tiny amplitude perturbations of some implicit differential equations appearing in RLC circuits [3].
A steady-state process in an RLC circuit with power sources operating at unrelated frequencies is also
considered [4]. An expansion of an ordinary differential equation is taken into consideration in order to
achieve the periodic steady-state behavior. This expansion is based on changing from ordinary differential
equations to partial differential equations with two-time variables by adding an additional time variable. The
two-dimensional Laplace transform is used to solve the obtained differential equations. Active power and
frequency responses for the domain of two time variables are specified by the use of double integral formulas
for a transfer function. The voltage and current amplitude-frequency properties of the RLC circuit can be
given in the domain of two variables. A nonlinear fractional derivative based Volterra integral-differential
equation with Caputo, several kernels, and numerous constant delays is also considered to look into the
qualitative properties of solutions to this equation, including the boundedness of nonzero solutions and the
Mittag-Leffler stability, uniform stability, and asymptotic stability of the zero solution [5]. The
Lyapunov-Razumikhin approach and selecting an acceptable Lyapunov function are the methods employed
in the proofs of these theorems related to an RLC circuit.

A modified Laplace transform approach to find solutions to a series-connected simple electric
circuits (RLC) model of linear differential equations (DEs) was presented in [6]. Although the study
suggested that non-homogenous second order linear differential equations in the form of electric charge
equations can be solved over time using a modified Laplace transform method, only homogeneous second
order linear DEs was considered. Certain approximation techniques for generated nonlinear terms of
characteristic exponents to offer the stability analysis of delay integral-differential equations with fractional
order derivatives were discussed in [7]. Such methods allow for the proof of the presence of some analytical
solutions close to their equilibrium points. The formulas for the critical time delay and critical frequency are
determined through the construction of stability charts to describe general RLC circuits that expose the delay
and fractional order derivatives. A straightforward method was used to determine the electromagnetic energy
density distribution in a dispersive and dissipative met material made up of wire arrays and split-ring
resonators [8]. The paper demonstrated that the system’s energy may be thought of as being made up of the
energy densities of the electric and magnetic fields as well as energy densities associated with the medium’s
reaction. Therefore, the system’s equations of motion for polarization have been compared with the
corresponding differential equations of suitable RLC circuits to develop formulas for the energy density of
the medium. The electrical RLC circuit with a fractional DE is investigated in [9], where a new auxiliary
parameter was added to maintain the three physical measures C, L, and R’s three dimensions. Through the
circuit’s physical properties of RLC, the analytical solution was specified in terms of Mittag-Leffler’s
formula. An analytical approach to examine the impacts of contemporary fractional differentiation on the
RLC electrical circuit was discussed in [10]. The leading RLC electrical circuit DE has been fractionalized
with three kinds of partial derivatives, where the RLC electrical circuit was seen for unit step sources,
periodic, and exponential.

Melnikov’s theory for implied ordinary DEs of little amplitude perturbations was presented in [11].
If certain Melnikov-like criteria are met, it is specifically explored how long orbits linking singularities can
endure in finite time for nonlinear RLC circuit systems. The two delays in the Van der Pol delay model and
delay differential equations were produced from ordinary differential equations using the Taylor series to
define the model for treating Parkinson’s disease [1]. Floquet’s theory to examine the linear dynamic analysis
of RLC circuits representing AC generators with periodically time-varying inductances was presented
in [12]. The dynamic stability’s prerequisites are derived. The stability domains and transition curves were
predicted using the harmonic balancing approach. A fractional order differential equation can be used to
describe the dynamics of noninteger order RLC electrical circuits by adding an auxiliary parameter [13],
where an analytical determination of the filter parameters and numerical validation of the outcomes were
used. Despite the fact that differential equations are marketed as applied mathematics, the course rarely
includes any practical applications [14]. Deep learning convolutional neural networks (DLCNN) [15]-[18]
and reinforcement learning [19], [20] that were undergone fast growth in modern decades, were employed to
solve the nonlinear DEs in general. Deep learning-based data assimilation algorithms [21], [22] were lately
presented to train Navier—Stokes network formulas to estimate different quantities of interesting.
DLCNN-based methods can be classified into three kinds: i) DLCNN that maps indirectly to the parameters
or inner results of an algebraic explanation to use them for deriving numerical solutions [23], [24]; ii)
DLCNN that maps directly toward the solutions with a discrete method, which is same as numerical solutions
[25], [26]; and iii) DLCNN that maps straight to the solution characterized by a DLCNN with a continuous
way and it is similar to that in analytical solutions [27]-[29]. In this type, the data applied for training the
network are arbitrarily modeled inside the whole solution range in every training batch, including boundary
and initial circumstances. The necessary characteristic of all of these techniques is the adopting the benefit of
the nonlinearity depiction capability of DLCNNs. New development [30] in mechanics with this capability
has been stated such as, Li et al. [31] presented a generative adversarial model network for mapping hidden
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variables for a microstructure to use in fabrication. The major contribution of this work is to model the DEs
of a two loops RLC circuit of an alternating voltage AC-source by using two alternative approaches; Laplace
transform and DLCNN in MATLAB environment. To obtain this aim, several objectives are accomplished
such as: i) to model and solve the DEs of a 2-loop RLC AC circuit; ii) to plot and analyze the obtained results
of the capacitor charging and inductor current; and iii) to solve and compare the results with the
DLCNN-based solution.

2. METHOD
2.1. Object and research hypothesis

This work solves the RLC circuit differential equations by using Laplace transform. It is possible to
define the Laplace transform by a function f(t), which is given by:

fowf(t) e tdt

Calculations are kept in their native symbolic form rather than in numerical form using symbolic
workflows. This method enables using precise symbolic values and comprehends the properties of the
obtained answer. When a quantitative result is required or symbolically continuing is impossible, numbers
are substituted for symbolic variables. In general, the symbolic workflows of solving equations include;
equations definition, equations solving, values substitution, plotting results, and analyzing results.

2.2. Equations definition

To solve differential equations using beginning conditions, utilize the Laplace transform. We will
consider solving the RLC circuit shown in Figure 1. Capacitor charge is referred to as Q(t) in coulomb, AC
voltage source in volts is referred to as E(t), capacitance in farad is referred to as C, inductance in henry is
referred to as L, currents in ampere are referred as I1, 12, I3, resistances in ohm are referred as R1, R2, R3.
Apply Kirchhoff’s current and voltage laws, following equations, are obtained:

11 = 12 + 13
LE24+ LR, + 1R, = 0 (1)

E(t) + I,R, =2~ I;R; = 0

Figure 1. RLC circuit analysis

By substituting the term I3 = d@Q/dt (which represents the rate of charge of the capacitor) into
eqn(1), the following differential equations are obtained for the RLC circuit:

di RydQ _ RitRy,
dt  Ldt L ?
)

w__t _e Ry
dt ~ Rp+R3 (E(t) C) + Ry+R3 h

Since the magnitude of the practical components are with positive quantities, we stat the variables of
equations. Then, we set the equivalent statements for the variables. Suppose that E(t)is a 1 V AC source
voltage (1.sin(t)), and assuming t, L, C, and R are greater than 0. Therefore, the differential equations are:
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f)
] Rp520(t) 11 (t)(R1+R2)
eqni(t) = Z1,(r) - 2 = L0t 3)
. 2
-9 = SO | ReL(®
eqn2(t) = at o) = Ry+R3 Ry+R3 @

2.3. Deep learning convolutional neural network framework

From a physical perspective, the initial and boundary circumstances are continued with time, and as
a result, the parameters of the approach circuit are also continuous in time: the parameters at the current step
are used as an ideal initialization for the next step, allowing the parameters of the DLCNN to transmit with
the time phase in the solution procedure, which makes the process rapid for the remaining time stages. The
derivatives of the current and capacitor charge equations are computed according to the gradient of the
network output according to the input. The hidden layers activation functions are selected as rectified linear
unit (ReLU) functions to conserve the stability of those derivatives. The network architecture is trained
according to the computed loss based on the gradient descent process. A common nonlinear differential
equation has the following format:

u; + Nw,9)=0 )

The term u(x, t) represents the underlying equation solution, u, represents the time derivative, while
N(u,9) denotes the nonlinear function with parameter 9. Specifying the required condition, represented by
the initial and boundary parameters, the equation solution is a nonlinear map within the solution range (x, t).
DLCNNs have revealed noteworthy achievements in the learning of nonlinear high-dimensional
functions [32]. The proposed DLCNN technique approximates the nonlinearity mapping that has a
probabilistic network g (a|s) employed through a DLCNN with the parameter 6. The contender solution is
sampled from the network probability, which means u ~ my(als). The network’s loss function for
continuous solution action domain. The symbols employed here are recognizable from traditional DLCNN
learning for simplicity, and Figure 2 shows how they apply to a particular solution problem.

Sampled solution {&, ~ 7, (a|s,)} {i1,}
Tr,, (a | S) ,-Circuit condifion \‘
Network ft_______ Governing equation
’ g eqnl(t)
eqn2(t)

Boundary conditon

2<t<25 and 0<t<l15

Initial condition
initial current I1(0) 2A
S ‘{s =(x,,z )} i=l- N s. initial charge Q(0) 2C ./

State (sampled computational domain ) y

Figure 2. DLCNN framework for the DEs of the adopted two-loop RLC circuit

This research uses a DLCNN with six convolution layers and one fully linked layer. A max pooling
layer, activation layer (linear rectified unit, or ReLU), and normalization batch layer are present in every
convolution layer, with the exception of the final convolution level, when an average pooling level is utilized
in place of the maximum layer. In the output layer, softmax activation is present. Figure 3 displays the
screenshot for the specifics of the created network layers. The training configuration are: i) every nine
epochs, the learning rate is decreased by a factor of 10; ii) setting the initial learning rate to 2e-2; iii) setting
the maximum number of epochs to 12; iv) using a stochastic gradient descent with momentum (SGDM)
solver with a mini-batch size of 256; and v) plotting the training progress.

Modeling two loops RLC circuit AC power source using symbolic arithmetic ...(Inaam Rikan Hassan)



494 a

ISSN:2302-9285

trainedNet
Analysis date: 01-Nov-2022 14:58.02
® Input Layer
|
® CNNT
1
® BN1
=
1  MaxPool5
® RelU1 4
Y
#® CNNB
® MaxPooll 1
! ® BN6
® CNN2 1
'
® Rel Us
® BN2 '
! ® AP1
® RelU2 !
! *FC
® MaxPool2 ¥
T
® SoftMax
® CNN3 '
! ® Quiput
® BN3
1
® RelU3
1
® MaxPool3
Y
® CNN4 l\
T
® BN4
'
® Rel U4
T
® MaxPoold
1
® CNN5
'
® BNS
T
® RelUS
—e

ANALY SIS RESULT °
Name Type Activations Learnables
Input Layer Image Input 1x1924%2 -
1x1024x2 images
- CNN1 Convolution 1x1824x16 Weights 1x8x2x16
16 1=8<2 convolutions wit Bias 1x1x16
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Batch normalization with 1 Scale 1xix16
4 RelLU1 RelU 1x1024x16 -
RelU
MaxPool1 Max Pooling 1x512x16 -
1%2 max pooling with strid
e CNN2 Convolution 1x512%24 Weights 1x8x16x24
24 1=8=16 convolutions wi Bias Ix1x24
7 BN2 Batch Normalization | 1x512x24 Offset 1xlx24
Batch normalization with 2. Scale 1x1x24
8 RelLU2 RelU 1x512x%24 -
RelU
9 MaxPool2 Max Pooling 1x256%24 =
1=2 max poaling with strid
Q CNN3 Convolution 1x256x%32 Weights 1x8x24x%32
32 1=8=24 convolutions wi Bias Ix1x32
t BN3 Batch Normalization |1x256x32 Offset 1x1x32
Batch normalization with 3 Scale 1x1x32
2 RelLU3 RelU 1x256%32 -
RelU
3 MaxPool3 Max Pooling 1x128x32 =
1x2 max pocling with strid
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Batch normalization with 4 Scale 1x1x48
e RelU4 RelU 1x128x%48 -
RelU
7 MaxPool4 Max Pooling 1x64%48 =
1x2 max pooling with strid
8 CNN5 Convolution 1x64x64 bWeights 1x8x48x64
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9 BN5 Batch Normalization |1x64x64 Offset 1xl1xb4
Batch normalization with 6 Scale 1x1x64
20 RelUS ReLU 1x64%64 -
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21 MaxPool5 Max Pooling 1x32x64 -
1=2 max pooling with strid
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96 1=8x64 convolutions wi.. Bias 1x1x96
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Batch normalization with 9 Scale 1x1x96
24 RelUsS ReLU 1x32x96 =
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26 FC1 Fully Connected 1x1x11 Weights 11x96
11 fully connected layer Bias 111
27 SoftMax Softmax Ixdxdl -
softmax
28 Output Classification Output | 1x1x11 -
crossentropyex with '16QA

Figure 3. Screenshot for the details of the developed network layers

3.  RESULTS AND DISCUSSION

3.1. Equations’solving

The Laplace transform is calculate for eqnl and eqn2 as:

eqnlLT = laplace(eqnl,t,s) =

Iaplace(I,(t),t,s) — I,(0) +

R2(Q(0)-s laplace(Q(t)t,s)) __ (Ri+Ry)laplace (1 (t),t,5)

L

eqn2LT = laplace(eqn2,t,s) =

s laplace(Q(t),t,s) — Q(0) =

Rylaplace(I1(t),t,s)

[y
s2+1

— laplace (Q(t),t,s)

(Rz2+R3)

¢ (R2+R3)

By substituting Laplace laplace(Q(t), t,s) and (I1(t),t,s) by the variables Q_LT and I1_LT we get:

eqnlLT = I ps — 1 (0) +22¢

)=9urs) _ _ I1L7(R1+R2)

L

L

(6)

(M

®)
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C
I1LTR oLT—Z
eqn2lT = Qyurs —Q(0) = 202 — — === ©)

Solving the equations for Q_LT and I1_LT we get:
LI1(0)=R20Q(0)+CR,s+Ls? I; (0)—R252 Q(0)+C L Rps3 15 (0)+

C L R3s311(0)+C L R3511(0)+C (Rqy+Rp+Ls+L Ry11(0)+R1R,0(0)
(s2 +1)(Rq+Ry+Ls+C L Rys2 +C L R3s%2+C Ry Rys+ C Ry R3s+ C Ry R3s )

I1—-LT =

+R1R30(0)+R2R30(0)+L Ry52 I3 (0)+L Ry53 Q(0)+L R3s3 Q(0)+R1R,5% Q(0)+ (10)
R1R35% 0(0)+RR352 Q(0)+L Rys Q(0)+L R3s 0(0)
(52 +1)(Ry+R2+Ls+C L Ry52 +C L R35%2+C Ry R25+ C Ry R3s+ CRy R3s )

Calculate Q@ and I1 by calculating the inverse Laplace transform of Q_LT and I1_LT. Then
simplifying the answer and substituting the symbolic variables with the circuit element values as listed in
Table 1 to get I;5,; and Q-

Table 1. The symbolic variables with the circuit element values

Description Value
R1 4Q
R2 2Q
R3 3Q
L 1.6 H
C VaF

Initial current I1(0) 2A
Initial charge Q(0) 2C

. (Yizeit
742529 V1761 si
81t cosh YI761t) ( (40)
o)

1612 40

4 14195421
200 cos (t) 405 sin(t)
I1sol =
8161 8161 8161
81t 1109425 {1761 sinh(vlzgl t)
17377¢ ~ 40| cosh(Y1Z6LE) S
40 )7 30600897
924 sin(t 1055 cos(t
0sol = © _ ®

8161 8161 8161

3.2. Laplace transform results
Splitting the steady state and transient terms for Qsol and I1sol results in:

Ilsteadystate — (20() cos (t) 405 sin (t))
8161 8161
. (Vi761t
81t 742529 {1761 sinh|
T V1761 t\ ( (40) >
1612 0 <COSh( 40 ) 14195421
I1steadystate =

8161

The drawing shown in Figure 4 represents the transient (on the left) and steady-state (on the right)
behaviors for the current I1sol (a) and the charge Qsol (b) over two unlike periods given by 2 < t < 25 and
0 <t <15 is shown in, while Figure 5 shows the transient in (a) and steady state in (b) terms.

5 Current Current 5 Charge Charge
L / 5 Transient
= 1 = \ / \ / = 1 =02 Steady State
s = \/ \/ g <A
0.5 Steady State 0.5 o
0 0
0 5 10 15 5 10 15 20 25 0 5 10 15 5 10 15 20 25
t t t t
(a) (b)

Figure 4. The transient and steady state behavior for the charge: (a) @sol and (b) the current I1sol over two
unlike time periods given by 2 < t < 25 and 0 < t < 15 respectively
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Likewise, splitting @sol into steady state and transient terms expresses how symbolic computations
assist to problem analysis, as given by:

1055 cos (t) 924 sin (t))

Qsteadystate = ( 1e1 o101

40 30600897

81t ST 1109425\/1761sinh(—vl1€61t>
1737 40 cos ( ):

Qtransient =

8161
Current terms Charge terms
25 l 25
2 2
15 15
3 K
& 9 o
0.5 0.5
0 pr—— —— 0 — <N\ o
——— -
-0.5 -05
0 5 10 15 0 5 10 15
Time (sec) Time (sec)
(@) (b)

Figure 5. The transient and steady state terms of; (a) /1sol and (b) @sol

3.3. Comparison results

Figure 6 shows the comparison results between the Laplace transform (LT) and the developed DLCNN
of the transient in Figure 6(a), where in Figure 6(b) is steady state. For behaviors for the current /750l and charge
Osol over two unlike time periods given by 2 <t < 25 (Figure 6(c)) and 0 < t < 15 (Figure 6(d)). The
modeling DEs of the current I1sol and the capacitor charging @sol are derived according to the symbolic
variables with the circuit element values of Table 1. The charge and current initially decline exponentially. On the
other hand, they oscillate over a long period of time. The terms “steady state” and “transient” are used to obtain
these characteristics. The qualities of the result can be examined with a symbolic result, but this is not possible with
anumeric result. Figure 4 demonstrated that examining @sol and I1sol visually shows that these equations consist
of many terms. The plotting of the behaviors over [0 15] is performed to determine their contributions. The plots in
Figure 5 show that Qsol has two steady-state terms and a transient, while I1sol has a steady-state term and
transient. From visual inspection, it is noted that Qsol and I1sol are with an exp function term, which is assumed
to cause the decay in transient exponentially.

25 2.5
= LT solution —— LT solution 0.05 : 0.5 |Charge —LTsoW
3 —— DLCNN solution ) —e— DLCNN solution / 04l —= DLCNN solution
Transient
Lo L5 2 0 q y 03}
=5 ) S 'y ] Zo2 Steady State
o =i 1 g ,
-0.05 v} Y 0.1
0.5 05 j Steady State
. ; ) 7 TL solution 0
0 W 0.1 § Transient ="—DLCNN solution ol
3 0.5
< 0.5 =
o 5o 10 13 0 5, 10 15 510,15 20 25 8 100520 25
(a) (b) (c) (d)

Figure 6. The comparison of transient and steady-state behavior for (a) the charge @sol and (b) the current
I1sol over two unlike time periods given by; (¢)2 <t < 25and(d)0 <t <15

The Laplace transform and deep learning CNN solutions show excellent consistency for the steady
solutions and there is a good agreement between the obtained transients. Future work can be recommended
when comparing the solving of such symbolic differential equations of the 2-loop RLC AC circuit with deep
learning convolutional neural network [33], [34].
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4. CONCLUSION

This work solves the DEs of a two loops RLC circuit of an alternating voltage source by using
Laplace transform. The capacitor charge and current initially decline exponentially and they oscillate over a
long period. The qualities of the transient and steady-state results can be examined with a symbolic result,
which is not possible with a numeric result. Three major points can be concluded: i) the approach presented
has successfully modeled and solved the symbolic differential equations of the currents and the capacitor
charging of the 2-loop RLC AC circuit; ii) the visualization of the obtained results of the capacitor charging
and inductor current shows that these equations consist of many terms that are assumed to cause the decay in
transient exponentially; and iii) this work presented the DLCNN-based solution and compared the results
with its corresponding Laplace transform solution.
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