
Bulletin of Electrical Engineering and Informatics

Vol. 12, No. 6, December 2023, pp. 3593~3600

ISSN: 2302-9285, DOI: 10.11591/eei.v12i6.5362  3593

Journal homepage: http://beei.org

Implemantation of firefly algorithm on Arduino Uno

Denda Dewatama1, Oktriza Melfazen2, Mila Fauziyah1
1Department of Electrical Engineering, State Polytechnic of Malang, Malang, Indonesia

2Department of Electrical Engineering, Faculty of Engineering, University of Islam Malang, Malang, Indonesia

Article Info ABSTRACT

Article history:

Received Nov 28, 2022

Revised Feb 23, 2023

Accepted Apr 24, 2023

 Not only getting the optimal solution of a problem, embedding the algorithm

on the microcontroller is also expected to work optimally without burdening

the system and fast response. Getting a microcontroller specification that

matches the complexity of an algorithm is necessary so that the system can

execute the algorithm perfectly. Values for the basic parameters of

optimization algorithms inspired by nature such as the firefly algorithm

(FFA) which are interpreted into variables greatly affect the performance of

the microcontroller in obtaining the expected optimal solution. The observed

performance of the Arduino Uno microcontroller in running the FFA

includes execution time and memory capacity required to obtain optimal

values based on changes in absorption coefficient, random parameters,

iterations, and population. Changes in the absorption coefficient and random

parameters affect the optimal value but do not significantly affect the

execution time and memory capacity of Arduino Uno. Iteration changes

greatly affect execution time and population changes most affect the

performance of Arduino Uno. With a dynamic memory capacity of 2 Kb, the

FFA can be run with a maximum range of 50 populations and up to 20

iterations.

Keywords:

Arduino Uno

Dynamic memory

Firefly algorithm

Iteration

Population

This is an open access article under the CC BY-SA license.

Corresponding Author:

Denda Dewatama

Department of Electrical Engineering, State Polytechnic of Malang

Soekarno Hatta no. 9, Jatimulyo, Malang, East Java 65141, Indonesia

Email: denda.dewatama@polinema.ac.id

1. INTRODUCTION

Engineering problems are not always able to be solved manually or with ordinary mathematical

calculations. Certain methods are needed in the form of algorithms to get the best results for solving a problem

through optimization [1]–[3]. Nature-based metaheuristic algorithms by imitating animal behavior in colonies

have been developed and chosen to solve global optimization problems [4]–[6] such as war strategy

optimization [7], giant Trevally optimizer [8], artificial rabbits optimization [9], Bat algorithm [10], and Firefly

algorithm (FFA) [11]. FFA is also one of the nature-inspired algorithms to find the optimal value and is still

relatively new, introduced in 2010 [12], [13]. As compared to other algorithms, FFA has been shown in a

number of studies to achieve optimal values for various cases due to the fact that it can handle multimodality

and automatic subdivision. FFA has a much quicker convergent program and a straightforward process in the

computer system [14], [15]. When used to solve many optimizations, especially routing optimization problems

and tracking problems, firefly's method is very efficient and goes beyond traditional algorithms [16], [17].

Problems were found when using this optimization algorithm on the microcontroller. Sometimes the

complexity of the formula of the algorithm in question cannot be fully supported by the specifications of the

microcontroller used. Therefore when run sometimes it takes a very long time to execute or in other conditions the

maximum value is not reached because the memory capacity of the microcontroller is not suitable to execute an

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 6, December 2023: 3593-3600

3594

algorithm program perfectly. In 2017, Mahmood and Jawaherry [18] tested the performance of the Arduino mega

microcontroller in executing the FFA only based on changes in the number of iterations, while other basic

parameters were kept the same. By only making changes to one parameter, the performance of the microcontroller

has not been clearly described. Therefore, in this study, observations were made on the performance of the Arduino

Uno microcontroller which was implanted with the FFA with more varied test parameters. Arduino Uno was

chosen because it is one of the popular microcontrollers, in addition to programming that is easy to do, it also has a

large library and adequate capacity to test various parameter conditions of the FFA.

2. METHOD

2.1. Research specification

This study focuses on the effectiveness of the performance of the FFA-implanted Arduino Uno to

determine the optimal value by varying the parameter values. This study provides an appropriate parameter

solution for FFA applied to the Arduino Uno. The system is tested to find the maximum value of the Sphare

mathematical equation where i=1..n and x=1..10 is a random variable.

𝑓1(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 (1)

Arduino Uno is an open-source microcontroller-based electronic device that uses an ATmega328P

chip with surface-mount device (SMD) or dual in-line package (DIP) that functions as a controller of the

electronic system [19]–[21]. To be able to use serial communication, this microcontroller is equipped with an

ATmega16U2 chip. Arduino Uno has 14 digital input and output pins as well as 6 analog input pins and

works at a frequency of 16 MHz, an ICSP header, a USB connection, a reset button, and 32 Kb flash memory

capacity to store coding or sketch embedded in it. While SRAM is available at 2 Kb and 1 Kb

EEPROM [22]. Considering its specifications, Arduino Uno was chosen to be used in this research.

As we known, FFA is a method of finding the optimal value by imitating the blinking pattern,

behavior of fireflies, and bioluminescent communication phenomena [13], [23]. The inspiration for FFA

comes from the behavior of fireflies, which use the light emitted from within their own bodies when they are

active. A firefly with a less bright will always seek and approach the brighter one, then the position of the

lighter fireflies will be represented as a solution. The fitness value represents the brightness intensity of the

firefly. This repetitive activity becomes the firefly's unique behavior, inspiring FFA. In algorithm language,

FFA is formulated as follows [24]: fireflies are unisexual animals, so their attraction to each other is

irrespective of the gender between them. Fireflies attraction rises in direct proportion to their brightness.

However, when the distance between the two fireflies goes up, the attractiveness reduces.

Several fireflies with the same brightness level will move randomly. This random movement

generates a new solution. The objective function of the problem is based on the brightness level of the

fireflies. The fireflies form small groups according to their attractiveness, then each subgroup swarms around

local models. FFA is a very effective engineering algorithm due to its ability to resolve optimization issues

even in dynamic domains. In applied mathematics, this algorithm works with simple mathematical logic [25].

Global and local optimization can be found simultaneously because FFA works based on global

communication between fireflies in optimizing, especially by using real random values. Fireflies outside the

subgroups work autonomously and lend themselves well to parallel implementations [15], [26], [27].

In (2) shows the light intensity of the firefly. Where the absorption coefficient is denoted by γ and

the initial value is denoted by (I0) at (r=0) [19]–[21].

𝐼(𝛾) = 𝐼0𝑒−𝛾𝑟𝑖𝑗 (2)

In (3) states the attractiveness. Where the firefly attractiveness value denoted by β0 at (r=0).

𝛽(𝛾) = 𝛽0 𝑒−𝛾𝑟2
 (3)

The distance between two fireflies, i and j, in locations xi and xj respectively is calculated in (4), where

the problem's dimension is represented by D and xik is the kth element of the spatial coordinate xj of the ith firefly.

r𝑖𝑗 = |r𝑖 − r𝑗| = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2𝐷
𝑘=1 (4)

In (5) illustrates the transition of a firefly at location xi to a brighter firefly at position xj.

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛽0𝑒−𝛾𝑟2
(𝑥𝑖 − 𝑥𝑗) + 𝛼(𝑟𝑎𝑛𝑑 − 0.5)

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Implemantation of firefly algorithm on Arduino Uno (Denda Dewatama)

3595

Where xi (t+1) is the displacement of firefly i at iteration t+1. The position of the firefly at iteration t is

represented by the first term on the right side of (5). The second term is related to attraction and the final term

represents randomization (blind flying in the absence of light) where α is the random parameter α ∈ [0,1]. To

use the FFA in this research, it is necessary to assign certain values to several basic parameters in the FFA

which will work to get the expected optimal value in question, including:

Random parameter (α) : 0.1; 0.3; 0.6

Absorption coefficient (γ) : 0.1; 0.3

Population (n) : 10; 25; 50; 65

Iteration : 3; 5; 10; 15; 20

After setting the basic parameters, the FFA is coded on the Arduino Uno following the pseudocode of FFA:

Initialize parameter of FA algorithm: n, α, γ, iteration

Generate initial fireflies’ population xi, (i=1, 2, …, n)

Calculate intensity I(i)=f(xi)

While (t < iteration)

 For i = 1 : n all n fireflies

 For j = 1 : j all n fireflies

 Calculate the distance r between xi and xj

 If (Ij > Ii)

 Move firefly I towards j in all d dimensions

 End if

 Evaluate new solution and update light intensity

 End for j

 End for i

 Rank the fireflies and find fireflies with best intensity gives controller

parameter

End while

Execute the program on the Arduino Uno and through the serial monitor the results can be observed on

the PC. Observations were made on the best value generated by FFA (GBest), execution time, and Arduino Uno

memory capacity used to produce optimal values based on the values determined for each parameter of the FFA.

2.2. Research stages

Based on several predetermined specifications, steps were developed to test the performance of Arduino

Uno in optimization using this FFA, starting with initializing initial conditions for the basic parameters of the

FFA (γ, α, n, iterations, and β). These parameters are started to be generated based on the initial conditions

according to (2). FFA started to work on calculating the light intensity and evaluating the weight of each firefly

population according to (3) and (4). The fireflies with low intensity will move closer to the lighter fireflies, while

the fireflies with lighter intensity will continue to move randomly within a predetermined random space limit as

in (5). When the movement of all individuals in the population has reached its best position in a certain number of

iterations, then an evaluation and weighting of all individuals in the population is carried out. The individual with

the highest score will be updated as GBest. The research steps are depicted in a flow chart as shown in Figure 1.

Figure 1. Flowchart of firefly algorithm implementation in Arduino Uno

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 6, December 2023: 3593-3600

3596

3. RESULTS AND DISCUSSION

The basic parameters (an absorption coefficient or γ, random parameter or α, population or n, and the

first iteration) began to be generated with initial conditions as shown in Figure 2. Each firefly is randomly

generated in a maximum population of 25 fireflies (shown on the x-axis) and a random value of 0 to 100 is the

maximum achievable position of the fireflies (shown on the y-axis). Several tests were carried out on the

system to analyze Arduino Uno's performance related to execution time and memory capacity to obtain

optimal values based on the embedded FFA, as shown in Table 1. More complex observations were made

compared to research conducted by Melfazen et al. [11] in 2017 which only tested the performance of the

Arduino mega microcontroller in executing the FFA based on changes in the number of iterations only. In this

study, we examine the effect of changes in firefly parameters (γ, α, n, and iterations) on the best value (GBest),

the time required for processing, and dynamic memory requirements (dm). Based on the test results listed in

Table 1, it will be explained one by one the effect of changing the work area value of each parameter on the

optimal value that can be generated, execution time, and Arduino Uno dynamic memory capacity usage.

Figure 2. Generate initial firefly population

Table 1. Arduino Uno's performance in getting the best value on the execution of the firefly algorithm

γ n α

Iteration

3 5 10 15 20

GBest time dm GBest time dm GBest time dm GBest time dm GBest time dm

0.1 10 0.1 78.00 0.26 518 78.07 0.30 518 78.26 0.40 518 78.47 0.50 518 78.67 0.70 518

0.3 78.00 0.26 518 78.22 0.30 518 78.77 0.40 518 79.40 0.50 518 80.00 0.70 518

0.6 78.00 0.26 518 78.44 0.30 518 79.53 0.40 518 80.82 0.50 518 81.95 0.70 518

25 0.1 92.03 4.07 938 92.06 4.26 938 92.27 4.74 938 92.48 5.22 938 92.69 5.70 938

0.3 92.08 4.07 938 92.18 4.26 938 92.73 4.74 938 93.41 5.22 938 94.04 5.70 938

0.6 92.16 4.07 938 92.36 4.26 938 93.46 4.74 938 94.81 5.22 938 96.15 5.70 938

50 0.1 99.07 4.78 1638 99.16 8.11 1638 99.33 16.31 1638 99.56 24.58 1638 99.80 32.89 1638

0.3 99.20 4.78 1638 99.47 8.11 1638 100.07 16.31 1638 100.73 24.58 1638 101.45 32.89 1638

0.6 99.43 4.78 1638 99.95 8.11 1638 101.19 16.31 1638 102.59 24.58 1638 104.00 32.89 1638

65 0.1 err err err err err err err err err err err err err err err

0.3 err err err err err err err err err err err err err err err

0.6 err err Err err err err err err err err err err err err err

0.3 10 0.1 78.03 0.26 518 78.11 0.30 518 78.11 0.40 518 78.48 0.50 518 78.67 0.70 518

0.3 78.10 0.26 518 78.23 0.30 518 78.32 0.40 518 79.43 0.50 518 79.99 0.70 518

0.6 78.21 0.26 518 78.63 0.30 518 78.63 0.40 518 80.90 0.50 518 82.05 0.70 518

25 0.1 92.03 4.07 938 92.06 4.26 938 92.06 4.74 938 92.45 5.22 938 92.68 5.70 938

0.3 92.08 4.07 938 92.18 4.26 938 92.18 4.74 938 93.56 5.22 938 94.24 5.70 938

0.6 92.16 4.07 938 92.36 4.26 938 92.36 4.74 938 94.88 5.22 938 96.20 5.70 938

50 0.1 99.07 4.78 1638 99.11 8.11 1638 99.11 16.31 1638 99.11 24.58 1638 99.79 32.89 1638

0.3 99.22 4.78 1638 99.33 8.11 1638 99.33 16.31 1638 100.66 24.58 1638 101.32 32.89 1638

0.6 99.43 4.78 1638 99.66 8.11 1638 99.66 16.31 1638 102.15 24.58 1638 103.49 32.89 1638

65 0.1 err err err err err err err err err err err err err err err

0.3 err err err err err err err err err err err err err err err

0.6 err err err err err err err err err err err err err err err

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Implemantation of firefly algorithm on Arduino Uno (Denda Dewatama)

3597

3.1. The effect of changes in absorption coefficient (γ) and random parameter (α) on GBest, execution

time, and dynamic memory

The amount of light that is absorbed (γ) determines how much light is lost. The γ parameter

influences how quickly the FFA converges and explains the fluctuation in attraction. Testing on the γ

parameter by changing the value to it shows that there is only a small effect on changes in the resulting GBest

value and has no effect on execution time and dynamic memory requirements.

The random parameter is one of the variables that affect the calculation of the level of interest

between fireflies. It was determined that this random parameter had a value from 0 and 1. In this study, the

random step size was determined at 0.1, 0.3, and 0.6. Testing on changes in random parameter values and

explains that the use of larger random parameter values will produce better GBest values. However random

parameters do not affect execution time and dynamic memory requirements.

3.2. The effect of iteration change on GBest, execution time, and dynamic memory

The best fireflies have the highest light intensity in each iteration. It would be a potential solution.

Based on the test results in Table 1, iteration changes have a beneficial effect on the resulting GBest value.

The more iterations used, the better the GBest value will be. Conversely, a large number of iterations is also

detrimental because the execution process takes longer to find the best value. Iteration changes do not affect

Arduino Uno's dynamic memory usage. Figure 3 shows the fitness of the firefly obtained for each given

iteration (3rd, 5th, 10th, 15th, and 20th iterations). Proper iteration provides a better chance for each individual

firefly to reach the most optimal value at the predetermined maximum position.

Figure 3. The effect of iteration change on GBest

3.3. The effect of population change on GBest, execution time, and dynamic memory

The population in the FFA is the total number of fireflies involved, which consists of a set of codes

that represent the solution to the problem. In this study, changes were made to the number of population

variables (10; 25; 50; and 65), based on Table 1. It can be seen that changes in population values have a

significant effect on the resulting GBest value, the required execution time, and the amount of dynamic

memory needed.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 6, December 2023: 3593-3600

3598

The first experiment was given an absorption value (γ) of 0.1, a population (n) of 10, and a variable

value of 0.1; 0.3; 0.6. Observations were made on the optimal value, execution time, and dynamic memory of

Arduino Uno used. The optimal value (GBest) is 78.00. The best value generated in this condition is only

78% of the fitness set. The longest execution time in this condition is 0.7 seconds. Arduino Uno's dynamic

memory used is quite small, around 518 bytes, and only 25% of the total available dynamic memory is used.

The results of program execution can be seen in Figure 4.

Figure 4. Population (n)=10

In the next experiment, an absorption coefficient of 0.1 was given. With random parameter values

varying from 0.1; to 0.3; 0.6, the firefly population was enlarged to 25. It turns out that the increase in the

firefly population increases the optimal value (GBest) that can be produced at the maximum achievable

position of the fireflies that has been determined. Arduino Uno requires a longer execution time than if

fireflies have a smaller population as shown in Table 1, it takes almost five times more execution time.

Increase the memory capacity used up to 45% of the maximum available memory, as shown in Figure 5.

Figure 5. Population (n)=25

The next test was carried out by making the population twice as large as the second experiment (50)

at an absorption coefficient of 0.1 and the random parameters varied by 0.1; 0.3; and 0.6 then the most

optimal value (GBest) can be obtained close to the maximum position that the fireflies can reach that has

been determined with a fairly short execution time of only 4.78 seconds. It can be seen that the execution

time is not much different from the previous population value even though the dynamic memory capacity

used is increased to 79% of the maximum available memory or about 1,638 bytes. As seen in Figure 6,

Arduino Uno gives a warning that memory usage above 75% can cause stability problems, there may be

corrupted data or data that is not executed.

Figure 6. Population (n)=50

When the program is executed by giving a population greater than 65 and an absorption coefficient

of 0.1 and random parameters varying at 0.1; 0.3; and 0.6 then the words "error compiling for Arduino Uno

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Implemantation of firefly algorithm on Arduino Uno (Denda Dewatama)

3599

board" appear as shown in Figure 7. In this condition, Arduino Uno can no longer work to find the optimal

value of the FFA. The memory required is 2,058 bytes, exceeding the available capacity of 2,048 bytes.

It means the increase in population has an effect on increasing the amount of memory capacity

usage because more variables need to be stored as the implementation of each individual firefly. It is

necessary to attend to the warning given by Arduino Uno in determining the maximum population limit

related to the use of dynamic memory capacity that has been used. Understandably from all tests, population

changes are very influential not only to get the optimal value (GBest) but also on execution time and the most

significant effect of this population change is on memory usage. Giving a large population causes a lot of

memory to be used for data storage and reduces the ability of the Arduino Uno microcontroller to execute

commands to search for optimal values.

Figure 7. Population (n)=65

4. CONCLUSION

By observing the results of Arduino Uno performance testing in the problem-solving process using

the FFA, it can be concluded that changes in absorption coefficient and random parameters are greatly affect

in achieving the most optimal values but changes in absorption coefficient and random parameters have no

significant effect on Arduino Uno’s execution time and memory capacity. Iteration changes greatly affect the

time needed to execute the program. Of all the parameters in the FFA, the population is the most influential

on the performance of the Arduino Uno. The 2 Kb of dynamic memory on the Arduino Uno is capable of

handling programming for the FFA with a maximum population range of 50 and up to 20 iterations. Setting a

large population of fireflies can improve the ability of the algorithm to get the optimal value to the maximum

position that can be reached by the fireflies, but it impacts on the amount of memory capacity used because

more variables need to be stored as the whereabouts of each individual firefly.

To achieve the optimal value in solving a problem using the FFA in a microcontroller, it is necessary

to estimate memory usage correctly. Thus, making it more flexible in determining the size of the population.

Using a microcontroller with a higher working frequency will shorten the execution time.

REFERENCES
[1] J. O. Agushaka and A. E. Ezugwu, “Advanced arithmetic optimization algorithm for solving mechanical engineering design

problems,” PLoS ONE, vol. 16, no. 8, pp. 1–29, 2021, doi: 10.1371/journal.pone.0255703.
[2] B. Chen, H. Chen, and M. Li, “Improvement and optimization of feature selection algorithm in swarm intelligence algorithm

based on complexity,” Complexity, vol. 2021, pp. 1–10, 2021, doi: 10.1155/2021/9985185.

[3] S. Taheri, M. Mammadov, and S. Seifollahi, “Globally convergent algorithms for solving unconstrained optimization problems,” Optimization:

A Journal of Mathematical Programming and Operations Research, vol. 64, no. 2, pp. 249–263, 2012, doi: 10.1080/02331934.2012.745529.

[4] B. J. Saharia, H. Brahma, and N. Sarmah, “A review of algorithms for control and optimization for energy management of hybrid

renewable energy systems,” Journal of Renewable and Sustainable Energy, vol. 10, pp. 1–33, Sep. 2018, doi: 10.1063/1.5032146.
[5] K. C. Tan, L. Feng, and M. Jiang, “Evolutionary transfer optimization-a new frontier in evolutionary computation research,” IEEE

Computational Intelligence Magazine, vol. 16, no. 1, pp. 22–33, 2021, doi: 10.1109/MCI.2020.3039066.

[6] M. J. -Tehrani, O. B. -Haddad, and H. A. Loáiciga, “A review of applications of animal-inspired evolutionary algorithms in
reservoir operation modelling,” Water and Environment Journal, vol. 35, no. 2, pp. 628–646, 2021, doi: 10.1111/wej.12657.

[7] T. S. L. V. Ayyarao et al., “War strategy optimization algorithm: a new effective metaheuristic algorithm for global

optimization,” IEEE Access, vol. 10, pp. 25073–25105, 2022, doi: 10.1109/ACCESS.2022.3153493.
[8] H. T. Sadeeq and A. M. Abdulazeez, “Giant trevally optimizer (GTO): a novel metaheuristic algorithm for global optimization

and challenging engineering problems,” IEEE Access, vol. 10, pp. 121615–121640, 2022, doi: 10.1109/ACCESS.2022.3223388.

[9] L. Wang, Q. Cao, Z. Zhang, S. Mirjalili, and W. Zhao, “Artificial rabbits optimization: a new bio-inspired meta-heuristic
algorithm for solving engineering optimization problems,” Engineering Applications of Artificial Intelligence, vol. 114, p.

105082, 2022, doi: 10.1016/j.engappai.2022.105082.

[10] J. Liu, H. Ji, Q. Liu, and Y. Li, “A bat optimization algorithm with moderate orientation and perturbation of trend,” Journal of
Algorithms and Computational Technology, vol. 15, pp. 1–11, 2021, doi: 10.1177/17483026211008410.

[11] O. Melfazen, M. T. Alawity, and D. Dewatama, “Firefly algorithm for optimizing single axis solar tracker,” Kinetik: Game

Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 6, no. 4, pp. 313–320, 2021, doi:
10.22219/kinetik.v6i4.1338.

[12] X. S. Yang, “Multiobjective firefly algorithm for continuous optimization,” Engineering with Computers, vol. 29, no. 2, pp. 175–

184, 2013, doi: 10.1007/s00366-012-0254-1.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 6, December 2023: 3593-3600

3600

[13] X. S. Yang and X. He, “Firefly algorithm: recent advances and applications,” International Journal of Swarm Intelligence, vol. 1,

no. 1, pp. 36–50, 2013, doi: 10.1504/ijsi.2013.055801.
[14] N. J. Cheung, X. M. Ding, and H. B. Shen, “A non-homogeneous firefly algorithm and its convergence analysis,” Journal of

Optimization Theory and Applications, vol. 170, no. 2, pp. 616–628, 2016, doi: 10.1007/s10957-016-0875-4.

[15] N. F. Johari, A. M. Zain, N. H. Mustaffa, and A. Udin, “Firefly algorithm for optimization problem,” Applied Mechanics and
Materials, vol. 421, pp. 512–517, 2013, doi: 10.4028/www.scientific.net/AMM.421.512.

[16] D. Dewatama, Siswoko, H. K. Safitri, and O. Melfazen, “MPPT using firefly algorithm for Cuk converter in photovoltaic,”

ELKHA: Jurnal Teknik Elektro, vol. 14, no. 1, pp. 34–39, 2022, doi: 10.26418/elkha.v14i1.52461.
[17] M. L. Gao, X. H. He, D. S. Luo, J. Jiang, and Q. Z. Teng, “Object tracking using firefly algorithm,” IET Computer Vision, vol. 7,

no. 4, pp. 227–237, 2013, doi: 10.1049/iet-cvi.2012.0207.

[18] R. Z. Mahmood and M. A. A. -Jawaherry, “Firefly algorithm implementation based on Arduino microcontroller,” International
Journal of Computer Science and Information Security (IJCSIS), vol. 15, no. 12, pp. 1–5, 2017.

[19] B. Setiawan, E. S. Putra, I. Siradjuddin, M. Junus, D. Dewatama, and S. Wiyanto, “Study of LoRa (long range) communication for monitoring

of a ship electrical system,” Journal of Physics: Conference Series, vol. 1402, no. 4, pp. 1–6, 2019, doi: 10.1088/1742-6596/1402/4/044022.
[20] K. K. Khaing, K. S. Raju, G. R. Sinha, and W. Y. Swe, “Automatic temperature control system using Arduino,” in Proceedings of the

Third International Conference on Computational Intelligence and Informatics, 2020, pp. 219–226, doi: 10.1007/978-981-15-1480-7_18.

[21] Y. A. Badamasi, “The working principle of an Arduino,” in 2014 11th International Conference on Electronics, Computer and
Computation (ICECCO), 2014, pp. 1–4, doi: 10.1109/ICECCO.2014.6997578.

[22] R. H. Sudhan, M. G. Kumar, A. U. Prakash, S. A. R. Devi, and P. Sathiya, “Arduino ATMEGA-328 microcontroller,”

International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, vol. 3, no. 4,
pp. 27–29, 2015, doi: 10.17148/ijireeice.2015.3406.

[23] Y. Zhang, L. Wu, and S. Wang, “Solving two-dimensional HP model by firefly algorithm and simplified energy function,”

Mathematical Problems in Engineering, vol. 2013, pp. 1–10, 2013, doi: 10.1155/2013/398141.
[24] S. Arora and S. Singh, “The firefly optimization algorithm: convergence analysis and parameter selection,” International Journal

of Computer Applications, vol. 69, no. 3, pp. 48–52, 2013, doi: 10.5120/11826-7528.
[25] L. Zhang, L. Liu, X. S. Yang, and Y. Dai, “A novel hybrid firefly algorithm for global optimization,” PLoS ONE, vol. 11, no. 9,

pp. 1–17, 2016, doi: 10.1371/journal.pone.0163230.

[26] S. Yu, S. Su, Q. Lu, and L. Huang, “A novel wise step strategy for firefly algorithm,” International Journal of Computer
Mathematics, vol. 91, no. 12, pp. 2507–2513, 2014, doi: 10.1080/00207160.2014.907405.

[27] M. K. A. Ariyaratne and T. G. I. Fernando, “A comparative study on nature inspired algorithms with firefly algorithm,”

International Journal of Engineering and Technology, vol. 4, no. 10, pp. 611–617, 2014.

BIOGRAPHIES OF AUTHORS

Denda Dewatama received the S.T and M.T. degrees in Department of Electrical

Engineering from the University of Brawijaya Malang, in 2004 and 2009. From 1999-2001, he

worked at PT Hartono Istana Engineering as Design Quality Assurance. From 2005, he has

taught in Department of Electrical Engineering at the State Polytechnic of Malang. He has

written or co-written more than five research studies and one book. His areas of interest in

research include renewable energy, artificial intelligence, control systems, and DC-DC

converters. He can be contacted at email: denda.dewatama@polinema.ac.id.

Oktriza Melfazen received bachelor of engineering and master of engineering

degrees in Department of Electrical Engineering from the University of Brawijaya Malang, in

2005 and 2012. She has worked as a lecturer in Department of Electrical Engineering at

University of Islam Malang, since 2013. The scope of her research is the application of

automatic control and renewable energy involving artificial intelligence. She has written one

book. She can be contacted at email: oktriza.melfazen@unisma.ac.id.

Mila Fauziyah received her S.T. degree at Department of Electrical Engineering,

University of Brawijaya Malang in 2000 and received her M.T. degree in Department of

Electrical Engineering from the University of Gadjah Mada in 2007. Since 2000, she has

taught in Department of Electrical Engineering at the State Polytechnic of Malang. She serves

as a lecturer, academic adviser, and P3AI secretary at the Indonesian State Polytechnic in

Malang. She has written or co-written for over 7 publications. Applications of NN, BP-NN,

PID control, fuzzy logic, and image processing are among her areas of interest in the study.

She can be contacted at email: mila.fauziyah@polinema.ac.id.

https://orcid.org/0000-0002-8305-5378
https://scholar.google.com/citations?hl=en&user=Ne4jGIMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57203958276
https://www.webofscience.com/wos/author/record/HOA-8002-2023
https://orcid.org/0009-0004-5142-1179
https://scholar.google.com/citations?user=nioE1fAAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57941754400
https://www.webofscience.com/wos/author/record/HOA-8103-2023
https://orcid.org/0000-0003-2944-1283
https://scholar.google.com/citations?user=qVJIc8kAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57215947298

