
Bulletin of Electrical Engineering and Informatics

Vol. 13, No. 1, February 2024, pp. 396~404

ISSN: 2302-9285, DOI: 10.11591/eei.v13i1.5413  396

Journal homepage: http://beei.org

Customizing the minimum number of replicas for achieving

fault tolerance in a cloud/grid environment

Mahdi S. Almhanna1, Tariq A. Murshedi1, Firas Sabah Al-Turaihi1, Rafah M. Almuttairi2
1Department of Information Networks, College of Information Technology, University of Babylon, Babylon, Iraq

2Collage of Information Technology Engineering, Al-Zahraa University for Women, Karbala, Iraq

Article Info ABSTRACT

Article history:

Received Dec 4, 2022

Revised May 25, 2023

Accepted Jun 4, 2023

 Networks consist of numerous resources; it is crucial not to overlook fault

tolerance and consider it during planning. This is because errors during

implementation can result in wasted time and effort, thereby squandering

these resources. One solution to address this issue effectively is to

implement the task on multiple resources to minimize the occurrence of

failed tasks. However, employing an unspecified or fixed number of

resources can lead to the depletion of network resources and the overall

failure of the network. Replication plays a pivotal role in enhancing data

availability in distributed systems. By storing data in multiple locations,

users can still access it even if some copies are unavailable due to site

failure. Many replication-based algorithms utilize a predetermined number

of iterations per function, which may consume excessive network resources,

even if the ongoing task does not require such abundant resources. This

paper proposes task replication as a viable mechanism for an efficient and

fault-tolerant scheduling system. We introduce an algorithm that

dynamically selects the optimal and minimal number of replicas based on

the network's failure history. This approach aims to minimize the failure rate

during task execution.

Keywords:

Cloud computing

Distributed systems

Fault tolerant

Grid computing

Replication

This is an open access article under the CC BY-SA license.

Corresponding Author:

Mahdi S. Almhanna

Department of Information Networks, College of Information Technology, University of Babylon

Babylon, Iraq

Email: mahdi.almhanna@uobabylon.edu.iq

1. INTRODUCTION

The utilization of computing enables organizations to integrate geographically dispersed resources

from different administrative regions into a unified system. This consolidation facilitates the resolution of

large-scale problems across scientific, human, and social domains [1]–[5]. These resources encompass

diverse components such as computers, storage, peripherals, and applications. A middleware layer must be

implemented to deliver essential services to users due to the heterogeneous and dynamically changing nature

of network resources.

Network computing environments are prone to various failures and outages, primarily attributed to

the abnormal characteristics of the network infrastructure. Failures can manifest in different forms [6], [7],

including computer failures, connection issues, network bottlenecks, excessive power consumption, software

malfunctions due to workload, potential software deletions, and other factors stemming from the diversity of

networks and applications. Ensuring fault tolerance is crucial for maintaining continuous network operation

and delivering reliable services.

In essence, reliable applications within the network should be capable of automatically mitigating

failures with minimal losses, without significantly compromising performance and quality of service (QoS)

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Customizing the minimum number of replicas for achieving fault tolerance in … (Mahdi S. Almhanna)

397

[8], [9]. Put simply, the network should possess the ability to minimize and overcome failures, allowing

uninterrupted functionality. Fault tolerance in the network empowers it to continue operating even in the

presence of significant mistakes or failures, without disrupting overall functionality.

Also, handling failure may be through scheduling strategies in resource scheduling. If it is prior to

scheduling resources, it is called proactive orientation, otherwise, it is called post-active [10], [11]. This

approach is easier in terms of implementation than the previous one (proactive) because it uses job

monitoring techniques, while the other method works through probabilities and this requires more

information about network resources. If the method used is proactive, such as replication, then all decisions

made to handle failure must be made before the task is started, thus reducing the probability of failure and

increasing productivity. Table 1 illustrated some examples of fault tolerance.

Table 1. Examples of fault tolerance
System Fault Tolerance method

Storage server Storage device Mirroring technique
Networking Network card Replica (backup) card

Computer systems Power Ups

Distributed system Overloading Migration

Program languages Ambiguity data Exception handling

In grids, all proposed mechanisms that deal with the fault-tolerant are divided into three

categories [12]. The first category is called task replication [9], [13]. In this category, the same task is repeated

to implement it on many independent resources to protect the task from one failure point. The second is called

checkpoint redundancy [14]. The status of the running function is saved to stabilize stable. This condition can

be used later if any error occurs to persistent storage at different points instead of re-execution, in other words,

the implementation is resumed starting from the last stored point and not from the beginning. The last is called

adaptive. Both checkpoint and symmetrical copies are used to achieve the task. The adaptive approach greatly

improves the performance of the distributed system. It achieves throughput and fault tolerance with optimal

parameters. The first category has been considered in this paper, to establish an error-resistant proactive

scheduling system and specify the minimum number of replicas needed for each task.

- Related work

Detecting faults and predicting them before they occur is a primary goal during system design such as

preventing or avoiding the error that causes the deadlock problem as well as recovery strategies. These strategies

are implemented through replication strategy or through some improvement or both. Failure at one source is more

likely than failure at multiple sources simultaneously. Therefore, re-implementing jobs from the beginning can be

avoided using the replication. Thus, there is no waste of effort or time in the process progression, since a failure in

one of these sources does not lead to a network breakdown and it can continue to provide services.

During the development of work on the implementation of the task, the system stores all the

information and data for the task at that point in the work, and the system continues to make a backup for all

the cases of the task at each new development and within a specific strategy. This point is called checkpoint.

If the work fails somewhere, the system will work on retrieving the stored information and resume work from

that point and not from the beginning, which saves effort and time. The main problem here is the possibility

of repeating by mistake, repeatedly or continuously, which causes a bigger problem. In this research, the

replication mechanism will be used by limiting the number of resources that will be exploited in replicas to

the lowest possible extent in order to take advantage of time and reduce system expenses.

Abawajy [15] suggested a distributing algorithm for scheduling that combines both scheduling and

repetition functionality. The idea behind this algorithm is to divide the network into a group of small

networks so that each small network consists of a group of sites and each website has a scheduler for that

site. Each scheduling manager, in turn, backs up another manager's scheduling. This algorithm supports each

user with a fixed specific number of replicas.

Srinivasa et al. [16] with each gesture within the network propose a middleware to replicate, there is

a copy of the task in each node, and through the TCP/IP protocol the communication between these nodes

takes place. Jiang and Zhou [17] suggested a fault-tolerant algorithm for scheduling jobs by matching the

resource's trust level and the user's security, the number of copies will be determined according to the

security level of the network, which is variable. Chtepen et al. [18] introduced a heuristic schedule that relies

on replicating functions and rearranging unsuccessful tasks using real-time network state information rather

than relying on scheduled job data.

- The aim of the proposed work

The network resources are dynamic and heterogeneous, which means the possibility of failures in

the network environment is high, thus more time is required to carry out these functions [19], which causes

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 396-404

398

the network's failure. The fact that system will consume more time to search for other resources suitable for

carrying out these tasks in the event of the failure of the available resources. Most of the algorithms that

depend on symmetrical copies use a fixed number of identical versions [20]. This means excessive use of

resources for the same task, causing the network to be busy with the minimum number of tasks to be

performed. In this work, we suggested an algorithm, to determine the number of replicas that are not fixed for

all jobs offered but are variable according to the type of tasks to be performed.

2. METHOD

2.1. Backup resources selection

The backup resources will be selected upon indicating the replicas needed for the jobs.

Consequently, even if one resource fails, the network can still complete the job by utilizing a surrogate

resource. The selection of these resources in the research paper under consideration is based on factors such

as response time and resource load. The resource information server (RIS) is responsible for storing the

historical data of resource loads, which is defined as (1):

𝐿𝐻𝑗 =
𝑇𝐶

𝑆𝑗
 (1)

where 𝐿𝐻 is load history, 𝑇𝐶 is the instructions acts completed by resource j, and 𝑆𝑗 is the rapidity of the

resource j measured in seconds for a million instruction operations.

2.2. Grid scheduling system

Architectural engineering for the grid scheduler (GS) assumes a group of units that include: the user

interface enables users to send their tasks to the network, then the tasks received from users are directed to

the available network resources [21]–[25], one of these resources is called the RIS which collects information

about the ability of other resources such as the size of the memory and information about the central

processing unit. Through this information, the appropriate decision is taken about the scheduling by GS. GS

also provides another reliable service about the fault-tolerant structure through the adoption of another

component called the fault handler (FH) and during it, cases of failure that may occur in the system are

handled. As shown in Figure 1, the assumed scheduling of resources spread in many different geographical

regions is managed by a central management unit. It is well known that the behavior of resources towards

failure is different between one resource and another, therefore there must be a processor with the ability to

deal with errors in the event of occurrence. If the result is outside the expectations, this means that the failure

has happened, so, the information is stored about this failure in resource services (RIS) to benefit from it

when implementing the next task.

Figure 1. Proposed system architecture

2.3. Proposed system

By applying proactive scheduling, the proposed system tries to avoid failures. Also, assuming such

failure, the system will reduce the effect of this failure. This is done by creating many replicas on a different

set of resources and implementing them at the same time. Therefore, if one of the resources fails, this will not

affect the implementation of the tasks in the rest of the other resources and remain in the event of continuous

implementation without delay. Upon the completion of the implementation of any replica, all other versions

are terminated, and the network resources are edited from it. The minimum number of replicas needed for

each task to be completed is determined by the system depending on the knowledge of the inclination of

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Customizing the minimum number of replicas for achieving fault tolerance in … (Mahdi S. Almhanna)

399

those resources to fail. As a result, this will enable the system to reduce the effects of failure on the network.

After that, the system is based on choosing a good group of resources for the purpose of carrying out the task

on it by relying on the time of response to these sources, which is the sum of the necessary transferring time

for the task from the scheduler to the source, the time of waiting in the queue, the time of implementation and

the time to transfer the result from the source to the scheduler.

The job scheduling process involves selecting a job from the job queue, considering the user service

quality desired. Then, the server of resource information is consulted to obtain a suitable list of resources that

meet the user's QoS criteria [26]. The role of the RIS is to provide a resource list along with their estimated

response times for task completion. Subsequently, the scheduler arranges this list based on the response times

of each server. The highest-ranked server is selected as an essential server for executing the function.

However, there is a possibility that this primary resource may encounter a failure in carrying out the task. To

address this, during the replication phase, the system will elect certain resources from the available roster to

act as duplicates of the task. These resources are known as backup or reserve resources. Improving

performance can be improved in two ways:

a. By carrying out a job on more than one resource at one time, the time to complete the implementation of

the task on the first resource is the time of response. It is not possible to fix the response time fixedly,

maybe a variable according to the loads and requests for this server at the time, as well as on the condition

of the network and the capacity of the server, thus implementing the task on multiple resources that may

improve the regime's response time.

b. The implementation of repeated functions can help deal with failure. It is sufficient to complete the

implementation of a single replica to finish the task implementation, therefore the effect of failure can be

reduced which may occur if the implementation is on only one replica.

The process of determining the number of replicas is very important, because the increase in the

number may reduce the failure to end the task significantly, but at the same time, it will cause consumption

of the system resources and the increase in response time (more time for response). On the other hand, if the

number of replicas is inappropriate, this may cause the task not to implement. Therefore, must the choice in

the number of identical replicas is proportional to the above both cases so that the possibility of

implementing the task is high and the effect on the stability of the network is less than possible.

2.4. Adaptive job replication

The proposed algorithm determines the optimal number of replicas which is not constant for all the

tasks but fits with the inclination of resources to fail. This proportion is expulsive, the higher the number of

source failures, the greater the need for more replicas, and vice versa, the fewer source failures, the less need

for more replicas. Consequently, the optimal number of replicas can be deduced by relying on the number of

times the failure of the resources, which can be calculated based on the history. This number will be variable

according to the type of job assigned to that resource.

Let's suppose 𝑁𝑓 represents the count of resource failures in executing its assigned tasks and 𝑁𝑠

denotes the count of successful completions by the resource. Whenever the resource fails to accomplish its

mission, the value of 𝑁𝑓 increments by one and the task originally assigned to this resource is reassigned to

another appropriate resource within the network. Conversely, if the resource completes its mission, the value

of 𝑁𝑠 increases by one. Thus, the inclination to fail 𝐹𝑇𝑗 for resources can be represented as (2):

𝐹𝑇𝑗 =
𝑁𝑓

𝑁𝑠+𝑁𝑓
∗ 100% (2)

Thus, the possible success of the mission's implementation for resource 𝑗 can be as (3):

𝐵𝑗 = 1 − 𝐹𝑇𝑗 (3)

Assuming that the resources R1, R2, ..., RN are dedicated to task 𝑗, then the inclination rate for failure

in these resources as in (4):

𝐹𝑇𝑛 =
∑ 𝐹𝑇𝑗𝑁

𝑗=1

𝑁
∗ 100% (4)

The number of replicas of the task, k, was determined to be commensurate with the value of 𝐹𝑇𝑛.

The minimum number of replicas should be at least one, the number of resources available and suitable for

the task should not exceed N. Accordingly, the highest limit of the number of replicas will be N. Thus, the

possible success of the mission's implementation for all resources combined can be as (5):

𝐵𝑛 = 1 − 𝐹𝑇𝑛 (5)

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 396-404

400

2.5. The algorithm

Algorithm 1 named optimal resource allocation and backup strategy algorithm (ORABS) employed

to decide the number of replicas for every submitted task involves a comparison between the values of "Bj"

and "Bn" starting with the first resource on the dedicated list.

If "Bj ≥ Bn" an additional replica is added. The new list "Bt=Bt+Bj",

The algorithm stops if it is "Bt > Bj." The steps of the algorithm as shown:

Algorithm 1 : ORABS.

For each task submitted by the user

{

Receive tasks from the User;

From a Fault handler, request "FT" for all resources

From Resource Information Server, request “LH" for all resources.

Calculate FTj, Bj, FTn, and Bn, for all resources in the grid. such that, if Bj > Bn, then add resource j to the

list otherwise no action.

Send packets to the list of servers in step 5 to calculate the RTT

Choose a list of servers with the highest response time from the Resource Information Server;

Arrange the resources in an upward manner and according to the time of responding to these sources;

Calculate the average of the probability of successful resources

Count the number of replicas of the tasks.

Defines backup resources.

}

3. CASE STUDY

Assume that we have 50 resources R1, R2……...R50. First, calculate the LH using (1) for each

server and neglect the servers that have more than medium. CPU utilization ≤66% and memory utilization

≤62% in [24]. Second, calculate FTj, Bj, FTn, and Bn, for all resources in the grid. Such that, if Bj>Bn, then

add resource j to the list otherwise no action, do the procedure to all the 50 resources (if none of them are

neglected by the first step, otherwise just for those remaining on the list). Third, suppose the number of

resources remaining in the list is 20 resources, R1, R2......... R20, send a ping to all resources in the list and

calculate the RTT. Table 2 represents the ping amount of these 20 servers measured in milliseconds. The total

values of RTT will be 3317 ns for all resources, so the average will be 3317/20=165.85 ms. Forth, excluding all

resources that have more value than average. The result is shown in Table 3.

Table 2. RTT in ms for 20 servers
R,1 R,2 R,3 R,4 R,5 R,6 R,7 R,8 R,9 R,10 R,11 R,12 R,13 R,14 R,15 R,16 R,17 R,18 R,19 R,20

169 168 170 188 180 210 200 190 150 130 135 230 199 290 110 108 102 149 139 100

Table 3. RTT for remaining servers
R,9 R,10 R,11 R,15 R,16 R,17 R,18 R,19 R,20

150 ms 130 ms 135 ms 110 ms 108 ms 102 ms 149 ms 139 ms 100 ms

The tendency to failure is calculated using (2) for all the remaining resources, suppose the tendency to

failure of these resources is as in Table 4. Calculate the success probability of the above resources using (5). The

success probability of the resources is presented in Table 5. Then, calculate the average of the probability of

success for them. The total values probability will be 8.21 for all remaining resources, so the average will be

8.21/9=0.91. Excluding all resources that have less value than average and arranging the table ascending.

Therefore, the sources in Table 6 will represent the resources that we can use for the purpose of replication.

Table 4. FT for 20 servers
R,9 R,10 R,11 R,15 R,16 R,17 R,18 R,19 R,20

10% 5% 7% 4% 15% 20% 9% 5% 4%

Table 5. Success probability of 9 servers
R,9 R,10 R,11 R,15 R,16 R,17 R,18 R,19 R,20

0.9 0.95 0.93 0.96 0.85 0.8 0.91 0.95 0.96

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Customizing the minimum number of replicas for achieving fault tolerance in … (Mahdi S. Almhanna)

401

Table 6. Success probability of 6 servers
R,20 R,15 R,19 R,10 R,11 R,18

0.96 0.96 0.95 0.95 0.93 0.91

It is noted that each of the resources shown in Table 6 represents a high probability of success in

implementing the task. Accordingly, only three resources can be satisfied to represent the resources of the

replication, and the first three are the best of these resources, due to the high possibility of carrying out this

task. The possibility of achieving the task increases in the event of increased resources, but this option is not

good, because it causes resource consumption, network fall, and instability of the network [27]. Figure 2

represents the response time of all resources before any of them are excluded, while Figure 3 represents those

with a higher response time.

Figure 2. Round trip time for all resources

Figure 3. Excluding all resources that have more value than average

4. RESULTS AND DISCUSSION

Independent events refer to occurrences that do not influence each other. When event Q is

considered independent of event K, it means that the probability of event Q happening is unaffected by the

occurrence of event K. If Q and K are independent events in a random experiment, the probability of both

events occurring simultaneously, denoted as P(Q⋂K), can be calculated by multiplying their individual

probabilities, represented as P(Q) and P(K) in (6):

P(Q⋂K) = P(Q) ∗ P(K) (6)

1
6

9

1
6

9
.8

5

1
6

8 1
8

8
1

8
0 2

1
0

2
0

0
1

9
0

1
5

0
1

3
0

1
3

5
2

3
0

0 0

1
9

9

1
6

5
.8

5

2
9

0
1

1
0

1
0

8
1

0
2

1
4

9
1

3
9

1
0

0

R T T A V G

M
IL

LI
SE

C
O

N
D

S

ROUND TRIP TIME

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20

150

127.875130
135

110
108

102

149
139

0

20

40

60

80

100

120

140

160

RTT AVG

M
il

li
se

co
n

d
s

Round trip time

R9

R10

R11

R15

R16

R17

R18

R19

R20

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 396-404

402

In the case of multiple independent events, let's say Q1, Q2, ..., Qn, associated with a random

experiment. The probability of all these events happening simultaneously, represented as

P(Q1⋂Q2⋂Q3⋯⋂Qn), can be calculated by multiplying the individual probabilities of each event.

P(Q1⋂Q2⋂Q3 ⋯ ⋂Qn) = P(Q1) ∗ P(Q2) ∗ P(Q3) ∗ . . .∗ P(Qn) (7)

So, in the case of the first two servers are work, the probability of their failure together is (0.0016)

using (6), since the probability of failure of each of them is equal to 0.04 (probability of success is 0.96 for

each), which means that their failure rate together will be 0.04*0.04=0.0016. If the first 3 servers work

together, the probability that all 3 servers will fail is 0.00008, therefore, their failure rate together will be

0.04*0.04*0.05=0.00008 using (7). From what has been explained above, we note that as the number of

servers increases, this will reduce the probability of failure so that it approaches zero, as the failure rate in the

case of using only two servers was 0.0016, and when adding another server, the failure rate decreased to

0.00008, and 0.000004 if using 4 servers, and 0.00000028, 0.0000000252 if we use five and six servers

respectively. So, Figure 4 represents the failure probability of joint servers, while Figure 5 represents the

probability of their success.

Figure 4. Failure probability of joint servers

Figure 5. Success probability of joint servers

By applying (5) we can deduce the probability of successful execution of the task for all servers.

From Figure 5 it turns out that the best case is to choose only three servers for execution since the probability

of execution on one of them will be very high and close to the confirmed execution of the task. Therefore,

execution with a minimum number of resources, the result is not consuming system resources and ensuring

execution with a high probability of task execution.

S1 S1-2 S1-3 S1-4 S1-5 S1-6

Servers 0.04 0.0016 0.00008 0.000004 0.00000028 2.52E-08

0.04

0.0016 0.00008 0.000004 0.00000028 2.52E-08

0
0.01
0.02
0.03
0.04
0.05

Fa
ilu

re
 p

ro
b

ab
ili

ty

Failure probability of joint servers
Servers

S1 S1-2 S1-3 S1-4 S1-5 S1-6

Servers 0.96 0.99 0.999 1 1 1

0.96

0.99 0.999 1 1 1

0.94
0.96
0.98

1
1.02

P
ro

b
ab

il
it

y
 o

f
su

cc
es

s

Success probability of joint servers

Servers

Servers

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Customizing the minimum number of replicas for achieving fault tolerance in … (Mahdi S. Almhanna)

403

5. CONCLUSION

For the purpose of avoiding errors and re-executing tasks that cause loss of time and effort, most of

the methods used a specific number of resources without taking into account the type and size of the task.

Although the number of sources is large, the choice is ill-considered and the results of the implementation are

highly uncertain. In this paper, we propose a fault-tolerant approach for scheduling functions in cloud/grid

computing. This approach focuses on deliberately selecting a specific number of resources based on their

known response times. By doing so, we achieve excellent performance, minimizing the impact on network

resources, and ensuring uninterrupted performance. This deliberate selection reduces the number of resources

required to execute tasks, thereby maximizing the likelihood of task completion and approaching near

certainty. Executing tasks on carefully chosen resources with known response times yields highly favorable

results. This approach optimizes performance, reduces resource utilization, facilitates seamless task

completion with minimal disruption, and maintains network efficiency. The probability of successfully

executing tasks becomes significantly high and nearing a level close to certainty.

ACKNOWLEDGEMENTS

The University of Babylon and the College of Information Technology deserve our heartfelt

gratitude for their unwavering support of our staff.

REFERENCES
[1] M. Amoon, “Fault tolerance in grids using job replication,” International Journal of Computing, vol. 11, no. 2, pp. 115–121,

2014, doi: 10.47839/ijc.11.2.556.
[2] M. S. Almhanna, “Minimizing replica idle time,” in 2017 Annual Conference on New Trends in Information and Communications

Technology Applications, NTICT 2017, 2017, pp. 128–131. doi: 10.1109/NTICT.2017.7976134.

[3] R. M. Almuttairi, R. Wankar, A. Negi, R. R. Chillarige, and M. S. Almahna, “New replica selection technique for binding replica
sites in data grids,” in EPC-IQ01 2010 - 2010 1st International Conference on Energy, Power and Control, 2010, pp. 187–194.

doi: 10.37917/ijeee.6.2.16.

[4] K. H. Anun and M. S. Almhanna, “Web server load balancing based on number of client connections on docker swarm,” in
Proceedings of 2021 2nd Information Technology to Enhance E-Learning and other Application Conference, IT-ELA 2021, 2021,

pp. 70–75. doi: 10.1109/IT-ELA52201.2021.9773748.

[5] S. A. Abbas and M. S. Almhanna, “Distributed denial of service attacks detection system by machine learning based on
dimensionality reduction,” Journal of Physics: Conference Series, vol. 1804, no. 1, pp. 1–12, 2021, doi: 10.1088/1742-

6596/1804/1/012136.

[6] S. S. Sathya and K. S. Babu, “Survey of fault tolerant techniques for grid,” Computer Science Review, vol. 4, no. 2, pp. 101–120,
2010, doi: 10.1016/j.cosrev.2010.02.001.

[7] Q. Zheng and B. Veeravalli, “On the design of communication-aware fault-tolerant scheduling algorithms for precedence

constrained tasks in grid computing systems with dedicated communication devices,” Journal of Parallel and Distributed
Computing, vol. 69, no. 3, pp. 282–294, 2009, doi: 10.1016/j.jpdc.2008.11.007.

[8] S. P. Thiagarajah, M. Y. Alias, and W. N. Tan, “Qos controlled capacity offload optimization in heterogeneous networks,”

Bulletin of Electrical Engineering and Informatics, vol. 9, no. 6, pp. 2667–2680, 2020, doi: 10.11591/eei.v9i6.2706.
[9] P. Kumari and P. Kaur, “A survey of fault tolerance in cloud computing,” Journal of King Saud University - Computer and

Information Sciences, vol. 33, no. 10, pp. 1159–1176, 2021, doi: 10.1016/j.jksuci.2018.09.021.

[10] F. G. Khan, K. Qureshi, and B. Nazir, “Performance evaluation of fault tolerance techniques in grid computing system,”
Computers & Electrical Engineering, vol. 36, no. 6, pp. 1110–1122, 2010, doi: 10.1016/j.compeleceng.2010.04.004.

[11] L. Yao, X. Wang, Q. Z. Sheng, S. Dustdar, and S. Zhang, “Recommendations on the Internet of Things: Requirements,

Challenges, and Directions,” IEEE Internet Computing, vol. 23, no. 3, pp. 46–54, 2019, doi: 10.1109/MIC.2019.2909607.
[12] A. Litke, K. Tserpes, K. Dolkas, and T. Varvarigou, “A task replication and fair resource management scheme for fault tolerant

grids,” Lecture Notes in Computer Science, vol. 3470, pp. 1022–1031, 2005, doi: 10.1007/11508380_104.

[13] C. Storm, “Fault Tolerance in Distributed Computing,” in Specification and Analytical Evaluation of Heterogeneous Dynamic
Quorum-Based Data Replication Schemes, Wiesbaden: Vieweg+Teubner Verlag, 2012, pp. 13–79. doi: 10.1007/978-3-8348-

2381-6_2.

[14] S. W. Kwak, K. H. You, and J. M. Yang, “Checkpoint management with double modular redundancy based on the probability of task
completion,” Journal of Computer Science and Technology, vol. 27, no. 2, pp. 273–280, 2012, doi: 10.1007/s11390-012-1222-3.

[15] J. H. Abawajy, “Fault-tolerant scheduling policy for grid computing systems,” in 18th International Parallel and Distributed

Processing Symposium, 2004. Proceedings., 2004, pp. 238–244. doi: 10.1109/IPDPS.2004.1303290.
[16] K. G. Srinivasa, G. M. Siddesh, and S. Cherian, “Fault-Tolerant Middleware for Grid Computing,” in 2010 IEEE 12th

International Conference on High Performance Computing and Communications (HPCC), 2010, pp. 635–640. doi:

10.1109/HPCC.2010.60.
[17] C. Jiang and D. H. Zhou, “Fault detection and identification for uncertain linear time-delay systems,” Computers and Chemical

Engineering, vol. 30, no. 2, pp. 228–242, 2005, doi: 10.1016/j.compchemeng.2005.08.012.

[18] M. Chtepen, B. Dhoedt, F. De Turek, P. Demeester, F. H. A. Claeys, and P. A. Vanrolleghem, “Evaluation of replication and
rescheduling heuristics for grid systems with varying resource availability,” in Proceedings of the IASTED International

Conference on Parallel and Distributed Computing and Systems, 2006, pp. 622–627.

[19] M. Amoon, “A fault-tolerant scheduling system for computational grids,” Computers and Electrical Engineering, vol. 38, no. 2,
pp. 399–412, 2012, doi: 10.1016/j.compeleceng.2011.11.004.

[20] S. Song, K. Hwang, and Y. K. Kwok, “Risk-resilient heuristics and genetic algorithms for security-assured grid job scheduling,”

IEEE Transactions on Computers, vol. 55, no. 6, pp. 703–719, 2006, doi: 10.1109/TC.2006.89.
[21] Y. Zhang and N. Lu, “Parameter selection for a centralized thermostatically controlled appliances load controller used for intra-

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 396-404

404

hour load balancing,” IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 2100–2108, 2013, doi: 10.1109/TSG.2013.2258950.

[22] A. Saoud and A. Recioui, “Hybrid algorithm for cloud-fog system based load balancing in smart grids,” Bulletin of Electrical
Engineering and Informatics, vol. 11, no. 1, pp. 477–487, 2022, doi: 10.11591/eei.v11i1.3450.

[23] A. S. Kadhim and M. E. Manaa, “Hybrid load-balancing algorithm for distributed fog computing in internet of things environment,”

Bulletin of Electrical Engineering and Informatics, vol. 11, no. 6, pp. 3462–3470, 2022, doi: 10.11591/eei.v11i6.4127.
[24] L. Tang and H. Chen, "Joint Pricing and Capacity Planning in the IaaS Cloud Market," in IEEE Transactions on Cloud

Computing, vol. 5, no. 1, pp. 57-70, 1 Jan.-March 2017, doi: 10.1109/TCC.2014.2372811.

[25] W. S. W. Awang, M. M. Deris, O. F. Rana, M. Zarina, and A. N. M. Rose, "Affinity Replica Selection in Distributed Systems,"
International Conference on Parallel Computing Technologies PaCT 2019: Parallel Computing Technologies, Springer, Cham,

2019, vol 11657, pp. 385–399, doi: 10.1007/978-3-030-25636-4_30.

[26] Saibharath S., S. Mishra, and C. Hot, "Joint QoS and energy-efficient resource allocation and scheduling in 5G Network Slicing,"
Computer Communications, vol. 202, pp. 110–123, 2023, doi: 10.1016/j.comcom.2023.02.009.

[27] M. S. Almhanna, F. S. Al-Turaihi, and T. A. Murshedi, “Reducing waiting and idle time for a group of jobs in the grid computing,”

Bulletin of Electrical Engineering and Informatics, vol. 12, no. 5, pp. 3115–3123, 2023, doi: 10.11591/eei.v12i5.4729.

BIOGRAPHIES OF AUTHORS

Mahdi S. Almhanna completed his Ph.D. research at Osmania University, India

in December. 2012. He got his master’s degree in computer science from Osmania University,

India in 2008. In 2007 he got a diploma in Arabic-English translation from Osmania

University, Hyderabad, India. He has authored several international conference papers in the

area of grid computing and he taught several subjects such as cloud computing, distributed

systems, networks, and operating systems since February 2012 for undergraduate and

postgraduate students in information and technology, Computer Engineering Colleges. His

current research interest is in the area of data grid architecture, load balancing, and fault

tolerance in distributed systems for grid resources, and replica election. He can be contacted at

email: mahdi.almhanna@uobabylon.edu.iq.

Tariq A. Murshedi received the Ph.D. from Northeastern University, Shenyang,

China. He is also an instructor at Cisco Networking Academy, Babylon University, Iraq. His

research interests include routing protocols in mobile ad hoc networks and wireless networks.

Currently, he is a lecturer in the Department of Information Networks at the University of

Babylon, Babylon, Iraq. He can be contacted at email: tariq_alwan@itnet.uobabylon.edu.iq.

Firas Sabah Al-Turaihi is a lecturer at the University of Babylon, College of

Information Technology, Department of Networks. He received his Ph.D. degree from Brunel

University London, United Kingdom. He received his B.Sc. and M.Sc. degrees in Computer

Science. His research interests cover communication networks. He can be contacted at email:

firassabahalturaihi@uobabylon.edu.iq.

Rafah M. Almuttairi completed her Ph.D. research at the University of

Hyderabad, India in April 2012. She received her master’s degree in computer science from

the University of Baghdad, Iraq in October 2003. In 2007 she got a diploma in Arabic-English

translation from Osmania University, Hyderabad, India. She has authored several international

conference papers in the area of grid computing. During her work in the Ministry of Higher

Education in Iraq, she has taught several subjects such as cloud computing, distributed

systems, networks, operating systems, web-based applications, and interior design using

3DMax and Photoshop since Feb. 2004 for undergraduate and postgraduate students in

Information and Technology, Fine Arts, Computer Engineering Colleges. Her current research

interest is in the area of data grid architecture and fuzzy decision-making for grid resources

and replica election and enhancing intrusion detection systems to search for hidden attack

patterns using hadoop frameworks. She can be contacted at email: Rafah@uobabylon.edu.iq.

https://orcid.org/0000-0002-3144-5358
https://scholar.google.com/citations?hl=en&user=mzwisyUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57195381498
https://orcid.org/0009-0004-7687-8490
https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=2VcpAZIAAAAJ
https://orcid.org/0000-0001-9092-428X
https://scholar.google.com/citations?user=G-tHKqcAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57202247734
https://orcid.org/0000-0003-3851-1458
https://scholar.google.com/citations?user=VmzW6icAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57222160179

