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 Power-electronic systems with voltage boosts use buck-boost converters. 

These converters suppress current and invert voltage to improve voltage 

swing. Power-electronic systems with voltage boosts use buck-boost 

converters that suppress current and invert voltage to improve voltage 

swings. Researchers propose many converter models, but their total 

harmonic distortion (THD) limits their scalability. Harmonics from 

additional current components increase THD. The model filters excessive 

currents using inductor-based storage, capacitive filters, and resistive 

circuits. However, these models are unstable, reducing their performance in 

large converter circuits. This text proposes a novel convolutional neural 

network (CNN) with a hybrid bioinspired model based on genetic algorithm 

(GA) and particle swarm optimization (PSO) to overcome this limitation. 

Estimating internal buck and boost parameters efficiently reduces reverse 

currents. These parameters include inductor current ripple, recommended 

inductance, internal switch current limit, and switching frequency. The 

model finds low-power, high-efficiency buck-boost configurations based on 

these values. Incremental learning operations tuned the GA model, which 

was applied to many buck-boost configurations. The proposed model had a 

5.9% lower delay, 16.2% lower harmonics, and 4.6% better power efficiency 

than state-of-the-art buck-boost models. 
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1. INTRODUCTION 

Design of low error and high-power efficiency buck-boost converters is a multidomain task, that 

involves the selection of transistor switching parameters, capacitor configurations, inductance values, and 

diode configurations. For a typical buck-boost converter with inverting buck-boost stage, the maximum duty 

cycle (D) is estimated via (1), wherein voltages at input, output and forward rectifier nodes are used. 

 

𝐷 =
−𝑉𝑜𝑢𝑡+𝑉𝑓

−𝑉𝑜𝑢𝑡+𝑉𝑓+𝑉𝑖𝑛
 (1) 

 

Where 𝑉𝑜𝑢𝑡 , 𝑉𝑖𝑛 and 𝑉𝑓 represents output voltage, input voltage, and forward voltage drop of the rectifier 

diode [1]. Thus, by varying the duty cycle, output voltage values can be modified, and boosted. This boost is due 

to a reduction in current values, which causes harmonic injection in the circuit. Fossil fuels, such as natural gas 

and coal, are currently the primary source of energy for nearly all human activity, particularly in the form of heat 

and power. In addition to being limited and non-renewable, these energy sources harm the environment, most 

https://creativecommons.org/licenses/by-sa/4.0/
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notably the climate, which is a major concern. As a result, it's critical to rethink how we use energy and look into 

alternative sources. Consequently, a buck-boost converter is used to sustain voltage levels. Windmills were 

modelled using permanent magnet synchronous generator (PMSG) and a buck-boost converter to control the 

electric pressure. Concept of a wind energy conversion unit with a boost converter and cascaded H-bridge 

multilevel inverter (CHB-MLI), which has a single DC input, this unit keeps the DC link voltage constant despite 

changes in wind pressure. The DC-DC output voltage is also maintained using a buck-boost converters. For grid-

connected systems, managing the variable electric tension at the DC–DC link is critical. To reduce these 

harmonics, a wide variety of models are proposed by [2], and each of them have their own characteristics. These 

characteristics are reviewed in the section 2, wherein various nuances, advantages, limitations, and future 

research scopes of these models are discussed. Based on this discussion, it was observed that stability of these 

models is limited, due to which their performance is reduced when applied to large-scale converter circuits. To 

overcome this limitation, section 3 proposes design of the proposed buck-boost converter via bioinspired 

parameter tuning of circuit elements for reduced harmonics. Performance of this model is evaluated in section 4, 

and is compared with various state-of-the-art methods in terms of delay level, harmonic level, and power 

efficiency levels. Based on this evaluation, researchers can identify various characteristics of the proposed model, 

and identify its utility for their applications. Finally, this text concludes in section 5 with some interesting 

observations about the proposed model, and recommends various methods to further improve its performance. 

 

 

2. LITERATURE REVIEW 

A large number of buck-boost optimization models are proposed by researchers. For instance, work in 

[2]–[4] proposes particle swarm optimization (PSO) for PI based buck-boost converter, non-dominated sorting 

genetic algorithm for building a portable, highly efficient, and better performance converter, and a generalized 

optimized type-III controller by K factor method are discussed. These models assist in improving converter 

design by estimating multiple input and output configurations before the deployment of actual converter 

components. Extensions to these models are discussed in [5], [6] wherein novel modulation method for a four-

switch buck-boost converter with reduced freewheeling current, and the use of lévy flight distribution and 

simulated annealing algorithms (LFDSA) for improving converter efficiency are proposed by researchers. These 

models also utilize stochastic processes for improving overall converter efficiency under different input and 

output conditions. An application of these configurations is discussed in [7], wherein electrolytic and 

capacitorless for parallel buck-boost converter is discussed, wherein researchers have incorporated parallel 

processing for improving the response time of buck and boost stages. This model is further extended in [8]–[10], 

wherein different bioinspired models, power factor correction (PFC) circuits, and hybrid buck-boost converter 

topologies are discussed. These models assist in augmenting buck-boost parameters in order to improve 

controller performance levels. Other methods that utilize model predictive control (MPC) [11], signal 

compensation and inner-outer convex combination for optimal control [12], and MPC with smooth mode 

transitions [13] are proposed by researchers. where researchers have showcased non auxiliary buck boost, 

adaptive tabu search, and artificial fish-swarm algorithm (AFSA) for optimization of converter performance. 

These models are further extended via use of maximum power point tracking (MPPT) [14], fuzzy proportional, 

integral derivative (PID) controller [15], complementary switching enabled cascaded boost-buck-boost (BS-BB) 

[16], and UPC strategy [17], which assists in low-power, and high-efficiency converter design with effective real-

time control operations. But these models are highly stochastic, and cannot be applied to dynamic systems. To 

overcome these limitations, work in [18], [19] propose use of quadratic buck–boost converter, and high-gain 

buck-boost converter for better total harmonic distortion (THD) response, which makes it useful for real-time 

operations. Similar models are discussed in [20], [21], that aim at power converters, integrated high-quality 

rectifier regulator, and genetic algorithm (GA) with MLI and in [22]–[25] which aims at reducing harmonics 

from outputs, thereby improving conversion efficiency levels. Extensions to these models are discussed in  

[26]–[31] which propose use of switched reluctance motor (SRM), neutral point clamped (NPC), dynamic 

voltage restorer (DVR) topologies, high brightness light emitting diode (HB-LED), and non-isolated buck-boost 

dc/dc converters. Based on these methods, it can be observed that very few general-purpose optimization models 

are available for buck-boost converter performance improvement. Based on this observation, a novel buck and 

boost converter optimization model via bioinspired parameter tuning of circuit elements for reduced harmonics is 

proposed in the next section of this text. The model is evaluated on different input voltage ratings, and compared 

with various state-of-the art methods for estimating its performance under different circuit deployments. 

 

 

3. PROPOSED METHOD 

From the literature survey, it was observed that optimization of buck-boost converter requires 

efficient selection of internal components, or requires specialized circuitry for each type of optimization. 
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Component selection methods are capable of resolving context-sensitive issues, thus cannot be applied to 

general purpose buck-boost circuits. A very of these approaches consider modification of internal buck-boost 

component ratings based on input and output parameter swings. Based on these observations, this section 

proposes design of an efficient buck-boost converter via bioinspired parameter tuning of circuit elements for 

reduced harmonics. Overall flow of the proposed model is depicted in Figure 1, wherein connection of the 

GA model with buck-boost converter along with its feedback mechanism is depicted. This model is further 

tuned via use of a PSO model, which assists in improving mutation and crossover processes. The model 

initializes GA parameters, and sets up the circuit constraints. These include maximum input voltage swing, 

maximum output voltage swing, range of capacitor, range of inductor, and range of resistor. The values are 

processed via use of mutation and crossover processes, which assist in obtaining final buck-boost parameters. 

Selected parameters by the GA model are optimized via a convolutional neural network (CNN) classification 

process, which assists in improving temporal performance in terms of THD, delay and output power 

efficiency. These parameters are further optimized via an incremental learning process, and given to the 

underlying buck-boost circuitry for final deployment. The GA process can be described via the following 

steps: 

a. Initialize GA parameters which include, 

− Number of iterations (𝑁𝑖), 

− Number of solutions (𝑁𝑠), 

− Learning rate (𝐿𝑟), 

− Maximum rating of circuit components (𝑀𝑎𝑥𝑣𝑎𝑙), 

− Minimum rating of circuit components (𝑀𝑖𝑛𝑣𝑎𝑙), 

− Maximum range of input voltage swing (𝑀𝑎𝑥(𝑉𝑖𝑛)), 

− Minimum range of input voltage swing (𝑀𝑖𝑛(𝑉𝑖𝑛)), 

Initially mark all solutions as ‘to be mutated’. 

b. For each iteration in 1 to 𝑁𝑖 

− Fix the input parameters for this iteration via (2): 

 

Vin = Stoch(Min(Vin), Max(Vin)) (2) 

 

Where Stoch represents a stochastic value, which is generated using a gold code pseudo random number 

generator (GPRNG). 

− Based on this input value, for each solution in 1 to 𝑁𝑠 

If the solution is marked as ‘not to be mutated’, then go to the next solution 

Else, generate a new solution via the following process, 

c. Generate component ratings via (3): 

 

𝑅𝑎𝑡𝑖𝑛𝑔𝑐 = 𝑆𝑡𝑜𝑐ℎ[𝑀𝑖𝑛𝑣𝑎𝑙𝑐
, 𝑀𝑎𝑥𝑣𝑎𝑙𝑐

] (3) 

 

− This rating is evaluated for internal resistor, capacitor and inductor values, and deployed for the buck-

boost circuit 

− Based on these values, current and voltage levels of the circuit are evaluated, and its fitness function is 

estimated via (4): 

 

𝑓 =

√∑ [
𝐼𝑜𝑢𝑡𝑖
𝐼𝑜𝑢𝑡1

]

2
𝑁
𝑖=2 +√∑ [

𝑉𝑜𝑢𝑡𝑖
𝑉𝑜𝑢𝑡1

]

2
𝑁
𝑖=2

2
 (4) 

 

Where N represents number of iterations, while Iouti, Vouti represents output harmonic current and voltage 

levels for the i^th harmonic. This process is repeated for all solutions, and a fitness threshold is evaluated 

via (5): 

 

𝑓𝑡ℎ =
∑ 𝑓𝑖∗𝐿𝑟

𝑁𝑠
𝑖=1

𝑁𝑠
 (5) 

 

− Solutions with fitness more than 𝑓𝑡ℎ are marked as ‘to be mutated’, while others are marked as ‘not to be 

mutated’ 

− If more than 50% of solutions are marked as ‘to be mutated’, then repeat this iteration, else go to next 

iteration. 
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− At the end of this iteration, select the solution with minimum fitness, and tabulate its ratings as per  

Table 1 mentioned as example. 

− Repeat this process for 𝑁𝑖 iterations, and select solution with minimum fitness as the final parameter set 

for the given buck boost configuration. 

 

 

 
 

Figure 1. Overall flow of proposed GA model with CNN and incremental learning operations 

 

 

Table 1. Iteration level parameter setting for optimized solutions 
Input voltage (Volts) Parameter ratings (ohms) THD levels Fitness value 

40 10 5 4 
45 20 6 4.5 

 

 

These parameters are selected and deployed for the given buck-boost circuit, and its THD values are 

observed. If these THD levels are above a certain threshold, then the GA process is repeated again till 

required THD levels are obtained. The THD levels along with respective input voltage ranges can be used for 

any buck-boost converter for reduced harmonics. When this condition occurs, then a PSO model is activated, 

which assists in continuous tuning of GA learning rate. The PSO model works via the following process, 

a. Initialize PSO parameters, 

- Number of iterations (𝑁𝑖) 

- Number of particles (𝑁𝑝) 

- Cognitive learning rate (𝐿𝑐) 

b. Social learning rate (𝐿𝑠) initialize PSO particles via the following process, 

- Generate random values for learning rate via (6): 

 

𝐿𝑟𝑖
= 𝑆𝑇𝑂𝐶𝐻(0, 1) (6) 

 

Where 𝑆𝑇𝑂𝐶𝐻 represents a markovian stochastic process, and uses gold code random number generation for 

evaluating the learning rate values. 

- For each value of 𝐿𝑟 evaluate fitness value via the GA process, and mark this value as current particle 

velocity 
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- Mark best fitness of each iteration as 𝑃(𝐵𝑒𝑠𝑡), and mark the minimum fitness as 𝐺(𝐵𝑒𝑠𝑡) 

c. For each iteration in 1 to 𝑁𝑖 perform the following, 

- Evaluate new particle velocity via (7) as (7), 

 

𝑁𝑒𝑤(𝑉) = 𝐶(𝑉) ∗ 𝑟 + 𝐿𝑐[𝐶(𝑉) − 𝑃𝐵𝑒𝑠𝑡] + 𝐿𝑠[𝐶(𝑉) − 𝐺𝐵𝑒𝑠𝑡] (7) 

 

Where r and C(V) represents a random number, and current velocity of the particles. 

- Based on this value of velocity, modify the value of 𝐿𝑟 

- Select the particle with minimum fitness as 𝐺𝐵𝑒𝑠𝑡, and modify 𝑃𝐵𝑒𝑠𝑡 as per (8): 

 

𝑃𝐵𝑒𝑠𝑡 = 𝑂𝑙𝑑(𝑉) 𝑖𝑓 𝑓𝑖 > 𝑁𝑒𝑤(𝑓𝑖), 𝑒𝑙𝑠𝑒 

 

𝑃𝐵𝑒𝑠𝑡 = 𝑁𝑒𝑤(𝑉) (8) 

 

d. Repeat this process for all iterations, and identify solution with minimum fitness, and use its learning rate 

for training the GA model. 

e. Based on this process retrain the GA, and identify circuit component ratings. The selected ratings are 

given to a CNN model, that takes these ratings as input, and generates THD, power efficiency and delay 

as outputs. These outputs are compared with their respective thresholds, which assists in identification of 

retuning operations. The model is depicted in Figure 2 where, input features are extracted via a set of 

convolutional features via (9): 

 

𝐶𝑜𝑛𝑣𝑜𝑢𝑡𝑖
= ∑ 𝑓(𝑖 − 𝑎) ∗ 𝑅𝑒𝐿𝑈 (

𝑚

2
+ 𝑎)

𝑚

2

𝑎=−
𝑚

2

 (9) 

 

Where 𝑓 represents ratings selected by the GA layer, while 𝑅𝑒𝐿𝑈 represents a rectilinear unit, which is used 

for activation of convolutional features. 

 

 

 
 

Figure 2. Design of the 1D CNN for retuning the GA model to achieve better performance 

 

 

While extraction of features, the model uses parameters m, a, which represents window size and 

padding sizes, that are modified as per size of the convolutional layers. A dropout layer is used after these 

convolutional features, helping to exclude 10% of the features with lower variance values. As a result, it is 

noticed that the output features from these layers have reduced variance, which helps the final classification 

layer classify input signals into one of N classes. An activation function based on Soft Max is used for this, 

repeatedly using weights and bias levels via (10): 

 

𝑐𝑜𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓𝑖 ∗ 𝑤𝑖
𝑁𝑓

𝑖=1
+ 𝑏)  (10) 

 

Where cout indicates the output THD levels, while wi and b represents convolutional weights and biases, that 

are tuned via a hyperparameter tuning process. Similar models are designed for estimation of delay and 

power efficiency classes, and are given to an incremental learning layer. This layer evaluates a correlation 

function between current classified output metrics, and target metrics via (11): 

 

𝐶𝑜𝑟𝑟𝑗 =
∑ 𝐹𝐶𝑁𝑁𝑖

−𝐹𝑇𝑎𝑟𝑔𝑒𝑡𝑖

𝑁𝑓𝑇𝑒𝑠𝑡
𝑖=1

√∑ (𝐹𝐶𝑁𝑁𝑖
−𝐹𝑇𝑎𝑟𝑔𝑒𝑡𝑖

𝑁𝑓𝑇𝑒𝑠𝑡
𝑖=1

)2

  (11) 

 

Where N (fTest)∈(THD, power efficiency, delay), while FCNN and FTarget represents output parameters by the 

CNN model and target output parameters respectively. If Corrj>0.999, then there is no need to retrain the GA, 

otherwise the model is retrained, and new parameters are estimated for performance optimization purposes. 

The finalized ratings, are used by buck boost converters to improve their efficiency. Performance of this 
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model on different converters in terms of output delays, resulting harmonics, and power efficiency are 

discussed in the next section of this text. 

 

 

4. RESULT ANALYSIS AND COMPARISON 

The proposed bioinspired model is applicable for a wide variety of buck-boost converters, and can 

be deployed under multiple scenarios. The reason for this efficiency improvement is use of GA for estimation 

of optimum metrics that can be applied to the underlying buck-boost configuration for power efficiency 

optimizations. To evaluate performance of the proposed model, it was tested under different buck-boost input 

voltage configurations and circuit configurations. The circuits used for this evaluation can be observed from 

Figures 3(a) and 3(b) wherein general-purpose buck-boost controller is simulated, and its output efficiency 

metrics are evaluated. The evaluation is done on single buck-boost converter, and parallel buck boost 

converters, which assists in identification of model performance under different circuit types. These 

efficiency metrics include THD, efficiency of conversion (EC), and correction response time (CRT). These 

values were evaluated for PSO [2], and LFD SA [6] optimization models. The simulation was evaluated for 

different input voltages that range between 40 to 150 V, while output between 220 to 440 V was obtained, 

and values of THD, CE and CRT were estimated. The conversion efficiency was evaluated using as (12): 
 

𝐶𝐸 =

𝐼𝑛𝑟𝑒𝑞

𝐼𝑛𝑎𝑐𝑡
+

𝑂𝑢𝑡𝑟𝑒𝑞

𝑂𝑢𝑡𝑎𝑐𝑡

2
 (12) 

 

Where Inreq represents required input current and voltage, Inact represents actual input current and voltage, 

Outreq represents required output voltage and current, while Outact represents actual output voltage and current. 

There are situations in which the quantity of energy needed by the load is so low that it may be 

transmitted in a period of time that is less than the whole commutation period. In Figure 3(c), the amount of 

current flowing through the inductor drops to zero for a portion of the allotted time. The sole difference 

between this basic idea and the one explained before is that, at the conclusion of each commutation cycle, the 

inductor is totally de-. The output voltage equation is strongly impacted by the differential, despite the fact 

that it is rather little, which makes it useful for high-efficiency deployments. Based on this, performance of 

the model is evaluated in the next sub-sections of this text. 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 3. Buck-boost converter design and operation for evaluation (a) buck-boost converter used for 

evaluation, (b) parallel buck-boost converter used for evaluation, and (c) output of the circuit under different 

input variation levels 
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4.1.  Efficiency estimation for single buck-boost converter 

To estimate efficiency of single buck boost converter as depicted in Figure 3(a), both input and 

output current and voltage levels are used, which assists in estimating true performance of the underlying 

model. Based on these parameters, THD levels w.r.t. input voltage was evaluated, and can be observed from 

Table 2, it can be shown from this assessment and Figure 4 that the suggested model has a THD that is 34.6% 

lower when compared with PSO [2], and that it has a THD that is 20.5% lower when compared with LFD SA 

[6]. This enables it to be used in a broad range of different settings and applications. This is as a result of the 

use of bioinspired models, which aid in the gradual adjustment of the model for a variety of application 

scenarios. This is due to use of GA, and due to incorporation of voltage and current harmonic levels during 

estimation of internal component ratings. Similarly, results of average EC for different input voltages can be 

observed from Table 3. 

From this evaluation and Figure 5, it is observed that the proposed model has 4.5% better EC when 

compared with PSO [2], and 5.3% better EC when compared with LFD SAB [6], thereby indicating its 

superior performance. This is because the ideal capacitor and indicator ratings were chosen, which 

contributes to the improvement of the overall efficiency of the process of increasing the input voltage levels. 

This finding also suggests that the suggested approach is applicable to a broad range of real-time 

deployments, all of which call for low THD values. In conclusion, the following are the observations that can 

be made from Table 4. As a result of this assessment, it was found that the suggested model had a quicker 

response efficiency performance than PSO [2] by 10.2% and LFD SA [6] by 25.3%. This indicated that the 

proposed model had a faster response efficiency performance. This is because the use of a bio-inspired model 

results in a reduced THD, which aids in the optimal selection of the component ratings for the internal 

circuitry under real-time scenarios. 
 

 

Table 2. THD values of different input voltage ratings for single buck boost converter 
Vin (V) THD PSO [2] THD LFD SA [6] THD BS BB [16] THD proposed 

40 6.92 6.03 5.21 2.16 

45 6.83 5.69 5.04 2.09 
50 6.73 5.49 4.92 2.04 

55 6.63 5.43 4.85 2.01 

60 6.54 5.39 4.80 1.99 
65 6.45 5.33 4.74 1.97 

70 6.35 5.30 4.69 1.94 

75 6.25 5.16 4.59 1.91 
80 6.15 4.97 4.48 1.86 

85 6.06 4.86 4.39 1.82 

90 5.97 4.75 4.31 1.78 
95 5.87 4.63 4.22 1.75 

100 5.77 4.51 4.14 1.72 

105 5.67 4.40 4.05 1.68 
110 5.58 4.29 3.97 1.64 

115 5.49 4.17 3.89 1.61 

120 5.39 4.06 3.80 1.57 
125 5.29 3.94 3.71 1.54 

130 5.19 3.83 3.63 1.51 

135 5.10 3.71 3.54 1.47 
140 5.01 3.59 3.46 1.43 

150 4.91 3.48 3.37 1.39 

 

 

 
 

Figure 4. THD values of different input voltage ratings for single buck boost converter 
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Table 3. Average EC values for different input voltage ratings 
Vin (V) EC (%) PSO [2] EC (%) LFD SA [6] EC (%) BS BB [16] EC (%) proposed 

40 92.81 92.45 91.31 97.79 
45 92.74 92.38 91.24 97.72 

50 92.70 92.31 91.19 97.67 

55 92.67 92.24 91.14 97.62 
60 92.62 92.17 91.08 97.55 

65 92.57 92.10 91.02 97.49 

70 92.52 92.03 90.96 97.43 
75 92.47 91.97 90.91 97.37 

80 92.42 91.90 90.85 97.30 

85 92.38 91.83 90.79 97.25 
90 92.33 91.77 90.74 97.19 

95 92.28 91.70 90.68 97.12 

100 92.23 91.62 90.62 97.06 
105 92.19 91.56 90.56 97.00 

110 92.14 91.49 90.51 96.94 

115 92.09 91.42 90.45 96.88 
120 92.04 91.36 90.39 96.81 

125 92.00 91.29 90.34 96.75 

130 91.95 91.21 90.28 96.70 
135 91.90 91.15 90.22 96.63 

140 91.85 91.08 90.16 96.57 

150 91.80 91.01 90.10 96.51 

 

 

 
 

Figure 5. Average EC values for different input voltage ratings 
 
 

Table 4. Average computational delay values for different input voltage ratings 
Vin (V) D (ms) PSO [2] D (ms) LFD SA [6] D (ms) BS BB [16] D (ms) proposed 

40 0.53 1.20 0.65 0.42 

45 0.55 1.22 0.71 0.43 

50 0.58 1.26 0.74 0.45 

55 0.60 1.30 0.76 0.46 

60 0.60 1.33 0.77 0.47 
65 0.62 1.37 0.80 0.49 

70 0.64 1.40 0.82 0.50 

75 0.66 1.43 0.84 0.51 
80 0.68 1.47 0.86 0.52 

85 0.70 1.50 0.88 0.53 

90 0.71 1.53 0.90 0.55 
95 0.73 1.57 0.92 0.56 

100 0.75 1.60 0.94 0.57 

105 0.77 1.63 0.96 0.59 
110 0.79 1.67 0.99 0.60 

115 0.80 1.70 1.00 0.61 
120 0.82 1.73 1.02 0.62 

125 0.84 1.77 1.05 0.64 

130 0.86 1.80 1.07 0.65 
135 0.88 1.83 1.09 0.66 

140 0.90 1.87 1.11 0.67 

150 0.91 1.90 1.13 0.68 

85

90

95

100

40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 150

E
C

 P
er

ce
n

ta
g

e

Vin (Volts)

Average EC values for different input voltage ratings

EC (%) PSO [2] EC (%) LFD SA [6]
EC (%) BS BB [16] EC (%) proposed



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Design of an efficient convolutional buck-boost converter for hybrid bioinspired … (Chandini Mutta) 

2713 

4.2.  Efficiency estimation for parallel buck-boost converter 

To estimate efficiency of parallel buck boost converter as depicted in Figure 3(b), both input and 

output current and voltage levels are used, which assists in estimating true performance of the underlying 

model. Based on these parameters, THD levels w.r.t. input voltage was evaluated, and can be observed from 

Table 5. From this evaluation and Figure 6, it is observed that the proposed model has 46.2% lower THD 

when compared with PSO [2], and 31.3% lower THD when compared with LFD SA [6], thus making it 

useful for a wide variety of applications. This is due to use of GA and PSO, and due to incorporation of 

voltage and current harmonic levels during estimation of internal component ratings. Similarly, results of 

average EC for different input voltages can be observed from Table 6. 

From this evaluation and Figure 7, it is observed that the proposed model has 2.8% better EC when 

compared with PSO [2], and 6.5% better EC when compared with LFD SA [6], thereby indicating its 

superior performance. This is because the ideal capacitor and indicator ratings were chosen, which 

contributes to the improvement of the overall efficiency of the process of increasing the input voltage levels. 

This finding also suggests that the suggested approach is applicable to a broad range of real-time 

deployments, all of which call for low THD values. In conclusion, the following are the findings that can be 

obtained from Table 7 about the average computational latency for various input voltage levels. 

 

 

Table 5. THD values of different input voltage ratings for parallel buck boost converter 
Vin (V) THD PSO [2] THD LFD SA [6] THD BS BB [16] THD proposed 

44 9.17 7.81 6.24 2.36 

50 9.04 7.45 6.06 2.29 

55 8.91 7.28 5.95 2.25 
61 8.78 7.21 5.87 2.22 

66 8.66 7.15 5.81 2.20 

72 8.53 7.09 5.74 2.17 
77 8.40 6.97 5.65 2.14 

83 8.27 6.75 5.52 2.09 

88 8.14 6.55 5.40 2.04 
94 8.02 6.41 5.30 2.00 

99 7.89 6.25 5.19 1.96 

105 7.76 6.09 5.09 1.93 
110 7.63 5.94 4.99 1.89 

116 7.50 5.79 4.88 1.84 

121 7.38 5.64 4.78 1.81 
127 7.25 5.49 4.68 1.77 

132 7.12 5.33 4.57 1.73 

138 6.99 5.18 4.47 1.69 
143 6.86 5.03 4.37 1.66 

149 6.74 4.87 4.26 1.61 

154 6.61 4.71 4.16 1.57 
165 6.49 4.56 4.05 1.52 

 

 

 
 

Figure 6. THD values of different input voltage ratings for parallel buck boost converter 

 

 

 

0

2

4

6

8

10

44 50 55 61 66 72 77 83 88 94 99 105 110 116 121 127 132 138 143 149 154 165T
o
ta

l 
H

a
rm

o
n

ic
 D

is
to

rt
io

n

Vin (Volts)

THD values of different input voltage ratings for parallel buck boost 

converter

THD PSO [2] THD LFD SA [6]

THD BS BB [16] THD proposed



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 12, No. 5, October 2023: 2705-2716 

2714 

Table 6. Average EC values of different input voltage ratings for parallel buck boost converter 
Vin (V) EC (%) PSO [2] EC (%) LFD SA [6] EC (%) BS BB [16] EC (%) Proposed 

44 95.15 94.78 92.96 98.25 
50 95.10 94.71 92.90 98.19 

55 95.06 94.64 92.85 98.14 

61 95.02 94.57 92.80 98.08 
66 94.97 94.50 92.74 98.01 

72 94.92 94.43 92.68 97.95 

77 94.87 94.36 92.62 97.89 
83 94.82 94.29 92.56 97.82 

88 94.77 94.22 92.50 97.76 

94 94.72 94.15 92.45 97.71 
99 94.67 94.09 92.39 97.64 

105 94.62 94.01 92.33 97.58 

110 94.57 93.94 92.27 97.52 
116 94.53 93.87 92.21 97.46 

121 94.48 93.80 92.15 97.40 

127 94.43 93.73 92.09 97.33 
132 94.38 93.67 92.04 97.27 

138 94.33 93.59 91.98 97.21 

143 94.28 93.52 91.92 97.15 
149 94.23 93.45 91.86 97.09 

154 94.18 93.38 91.80 97.03 

165 94.13 93.31 91.75 96.97 

 

 

 
 

Figure 7. Average EC values of different input voltage ratings for parallel buck boost converter 
 

 

Table 7. Average computational delay values of different input voltage ratings for parallel buck boost converter 
Vin (V) D (ms) PSO [2] D (ms) LFD SA [6] D (ms) BS BB [24] D (ms) proposed 

44 0.55 1.24 0.72 0.43 

50 0.58 1.27 0.74 0.44 

55 0.61 1.31 0.77 0.46 
61 0.62 1.35 0.79 0.47 

66 0.63 1.38 0.80 0.48 

72 0.65 1.42 0.83 0.50 
77 0.67 1.45 0.85 0.51 

83 0.69 1.49 0.87 0.52 

110 0.78 1.66 0.97 0.58 
116 0.80 1.69 1.00 0.60 

121 0.82 1.73 1.02 0.61 

127 0.83 1.76 1.04 0.62 
132 0.85 1.79 1.05 0.63 

154 0.93 1.93 1.14 0.68 

165 0.94 1.97 1.16 0.69 

 
 

From this evaluation and Figure 8, it was observed that the proposed model was 23.1% faster than 

PSO [2], and 39.1% faster than LFD SA [6], thereby indicating its faster response efficiency performance. 

This is due to the low THD obtained via use of bioinspired model, that assists in optimum selection of 

internal component ratings. Due to this improvement, the proposed model is capable of being deployed for a 

wide variety of real-time applications. The model is currently evaluated on a single type of buck-boost 
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converter, but can be used for multiple buck-boost circuits without any reconfigurations. This indicates its 

high scalability performance under different circuit combinations. 
 

 

  
 

Figure 8. Average computational delay 

 

 

5. CONCLUSION AND FUTURE WORK 

The proposed bioinspired model uses maximum and minimum input ratings in order to estimate 

optimum values of internal buck boost circuit components. These values assist in reducing voltage and current 

THD, which improves overall circuit performance. Due to use of GA and PSO, a large number of stochastic 

values are generated for each input type, which are useful for analysing circuit performance under different 

input conditions. Based on this model, a standard buck-boost circuit was simulated, and it was observed that the 

proposed model had 34.6% lower THD when compared with PSO, and 20.5% lower THD when compared with 

LFD SA, thus making it useful for a wide variety of applications. Similar performance improvement was 

observed for EC, and response delay metrics. It was observed that the proposed model has 4.5% better EC when 

compared with PSO, and 5.3% better EC when compared with LFD SA, while, the proposed model was 10.2% 

faster than PSO, and 25.3% faster than LFD SA, thereby indicating its faster response efficiency performance. 

Due to these advantages, the proposed model is useful for a wide variety of buck-boost circuits. But the 

performance of the model was not valudated on other circuit, thus in future, researchers can validate 

performance of this bioinspired model on a variety of other buck boost circuits, which will assist in estimating 

its scalability for different applications. Moreover, researchers can also implement the model using deep 

learning techniques like CNNs, and Q-Learning for improving conversion performance, which was not done in 

this work, but it might increase overall response delays. Thus, researchers must identify redundancies in these 

models, which was not done, thus before deploying them for different buck-boost converter circuits. 
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