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 Feature importance strategy that substantially impacts software development 

effort estimation (SDEE) can help lower the dimensionality of dataset size. 

SDEE models developed to estimate effort, time, and wealth required to 

accomplish a software product on a limited budget are used more frequently 

by project managers as decision-support tool effort estimation algorithms 

trained on a dataset containing essential elements to improve their estimation 

accuracy. Earlier research worked on creating and testing various estimation 

methods to get accurate. On the other hand, ensemble produces superior 

prediction accuracy than single approaches. Therefore, this study aims to 

identify, develop, and deploy an ensemble approach feasible and practical 

for forecasting software development activities with limited time and 

minimum effort. This paper proposed a collaborative system containing a 

multi-level ensemble approach. The first level grabs the optimal features by 

adopting boosting techniques that impact the decided target; this subset 

features forward to the second level developed by a stacked ensemble to 

compute the product development effort concerning lines of code (LOC) and 

actual. The proposed model yields high accuracy and is more accurate than 

distinct models. 
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1. INTRODUCTION 

One of the most significant tasks in the software industry is to develop a quality software product 

with minimal components depending on how accurately it estimates software development effort [1]. The 

challenge is evaluating those metrics early in the project lifecycle when each effort's limits must be 

determined, and there are significant uncertainties about the end product's functionality. It was defined as 

"estimating the effort and time required to develop a software product. The accuracy of its effort estimates 

primarily determines the success of any software product. Kumar et al. [2] demonstrates that the reasons for a 

software product failure are idealistic or inarticulate project goals, erroneous resource estimates, and inability 

to handle product difficulty. Perfect effort estimates are critical for project success. In papers [3]–[5] defines 

a reasonable estimation as providing a clear enough view of the product reality to allow project management 

to make sound decisions about overseeing the product to meet its objectives. 

Software effort estimating (SEE) approaches of various types have been presented [6]. Among the 

suggested techniques, machine learning (ML) based effort estimators such as support vector machines (SVM), 

decision tree function (DTF) networks, and random forest trees (RFTs) have drawn more attention [7]. Making 

https://creativecommons.org/licenses/by-sa/4.0/
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no or few assumptions about the function being modelled and the training data is the driving force behind 

deploying such techniques. Such methods are preferred since they don't or lightly assume things about the 

modelled function and the training data. For instance, Rao and Rao [8] demonstrated that ensemble techniques 

outperform single classification models in SEE because the voting classifier in the ensemble model reduces any 

residual effect related to feature insignificance and redundancy. To mitigate this, higher weights are given to 

specific classifiers that excel on the tested datasets. The prediction performance is undoubtedly improved by the 

robustness of irrelevant and redundant features. In its simplest form of averaging, the voting model assures the 

reduction of noise property, which improves the overall prediction performance. 

This paper proposes a multilevel ensemble (MLE) learning module for the software development 

effort estimation method. The proposed MLE system incorporates adaptive boost gradient tree boost in the 

first level and uses seven individual classifiers in the second, including the proposed stacked ensemble. The 

research sequel states that the base classifiers have been chosen following thorough simulation validation. 

Some of these classifiers, including the RF and SVM models, are considered in the literature [8]. The basis 

classifiers' diverse classification abilities also allow them to distinguish between various statistical properties 

of the underlying data, which adds value to the proposed ensemble learning approach. 

The proposed ensemble model needs effective feature selection models to perform better overall. 

The enhancement's final effects will determine how well the redundant and unnecessary features in software 

product datasets are handled. This research aims to show how feature selection improves effort estimation 

performance and suggest a multilevel ensemble learning technique that is resistant to data imbalance and 

feature redundancy. The proposed multilevel ensemble technique has additionally demonstrated enhanced 

resistance to redundant and irrelevant characteristics, substantially contributing to this research. This research 

aims to show how feature importance improves effort estimation and suggests a multilevel ensemble learning 

technique resistant to feature redundancy and data imbalance. Another significant contribution credited to 

this research is the improved robustness of the suggested MLE to redundant and irrelevant information. 

This paper has contained two innovative discoveries. Section 2 describes the literature-related 

research on the estimation methods for software development effort estimation. The ML models neural 

networks (NN 30-30), linear regression (LR), k-nearest neighbor (K-NN), SVM radial basis function (SVM 

RBF), naive bayes (NB), SVM polynomial (SVM poly), have to consider combining some of the best 

features of the suggested method are discussed with experimental setup in section 3, proposed multilevel 

ensemble learning model and summarizes the results of the studies and demonstrates the experimental design 

in section 4. The research is concluded in section 5, along with its future scope. 

 

 

2. RELATED WORK 

This section describes a summary of ML strategies offered after a study of general effort estimation 

algorithms, concludes with a review of various classification methods and methodologies, as well as a 

comparison of ways that can be used to estimate software development effort. 

 

2.1.  Single classifier for software development effort estimation 

Quality development has evolved into a critical activity for professional companies. Indeed, developed 

software's prominence, cost, and suitability are frequently decisive elements in an organization's success. The 

complete analysis of ML techniques used for effort estimation was carried out by [9]. According to researchers’ 

analyzed work, the researchers mainly focused on customizing specific algorithms, particularly artificial neural 

networks, case-based reasoning models, and decision trees, for the most outstanding performance. The 

machine's precision with mean magnitude relative errors (MMRE) ranging from 35 to 55%, percentage close 

error deviations (PRED(25)) of 47 to 75%, and median magnitude relative errors (MdMRE) of 30 to 55%, 

learning models were of an acceptable level and outperformed statistical ones. According to the researchers, ML 

algorithms may produce disparate findings due to outliers, missing variables, and the chance of over fitting 

problems. To estimate the early stages of the software life cycle initiatives, LR, and NN [10]. Shahpar et al. [11] 

investigated several data sets and obtained encouraging findings for software development effort assessment. 

When estimating software maintenance effort using particle swarm optimization, Singh et al. [12] proposed a 

successful swarm intelligence-based method. Regardless of the approach used to develop ML, valuable 

recommendations for effort and duration estimation at early project stages can be retrieved. Because ML is 

sensitive to noise in data sets, models should not rely on unique algorithms but should be employed in tandem, 

which improves prediction accuracy [13]. Boosting, bagging, and complex random sampling techniques [14] 

were proposed by researchers, generally for the same sort of ML algorithms. However, if used excessively, 

ensemble methods can cause significant performance overhead [15]. As a result, for developing ML effort and 

duration models, a limited selection of algorithms and a simple ensemble method, such as averaging of acquired 

estimates, should be employed. 
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2.2.  Evolutionary strategy 

A hybrid method to estimate work using the use case point methodology has been put out by [16]. 

Numerous observations were made based on college student projects and industrial projects. The authors of 

this paper gave the environmental elements of the UCP approach significant weight. The researchers used 

feed-forward algorithms like radial basis feed forward neural (RBFNN) to predict the effort and productivity 

feed-forward algorithm. This project concluded that the UCP method's environmental considerations are 

ideal for software system productivity forecasting. 

More recently, [17]–[19] examined the application of learning machine ensembles for SEE. 

Ensembles of learning machines are groups of learners trained to complete the same job and are put together 

to enhance prediction performance [8]. It is generally accepted that learners should act differently when 

combined to obtain more accurate predictions. Otherwise, the total forecast won't be more accurate than the 

individual guesses. Therefore, several ensemble learning strategies can be viewed as various ways to create 

variation among the base learners. The authors tried to estimate effort with a low failure ratio and cost. 

None of the publications compares the outcomes of other easily accessible methods for ensemble 

learning from the ML literature and the issues raised above. Reseachers in [20], [21] provide data from a few 

ensemble approaches. However, the research does not statistically compare these methods and single 

learners. Different ensemble approaches can be more or less suitable for SEE and should be included in the 

comparisons. The papers also need to examine how the results were obtained. 

 

2.3.  Other approaches 

According to particular research in the literature, the properties of the data set substantially impact 

how well various models perform. However, as previously indicated, existing research on ensemble models 

suggests that they perform better than distinct models even when numerous different data sets are employed. 

The results of the research methods, as presented in Table 1 (in Appendix) [18], [22]-[40] demonstrated that 

the optimal and significantly improved SDEE estimate performance was obtained by combining their two 

strategies. According to their projections, hybrid approaches may produce satisfactory results for varying 

sizes. 

 

 

3. RESEARCH METHODOLOGY 

This proposed research includes MLE approach to grab the optimal features as a precise step in the 

first level approach for choosing SDEE models to calculate effort in level 2. Figure 1 shows the overall 

feature selection process and software development effort estimation. The suggested method efficiently 

assigns ranks for features while simultaneously dealing with the imbalanced data problem in a software quality 

dataset to avoid bias problems. The following feature selection phases are defined to meet the objective. 
 

 

 
 

Figure 1. Prediction of SDEE using proposed MLE 

 

 

3.1.  Feature subset selection 

A compelling feature selection system requires finding the primitive features that will be used to 

train the models [41]. The relevance or correlation between the characteristic and the class label serves as the 
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selection process's core guiding principle and is frequently applied to classification problems. Relevance 

measurements can be used to assess the significance of qualities like dimensionality reduction with five 

cross-fold validations. The model seeks to identify the best feature subset 𝑓 (|𝑓|) = 𝑘 that maximises 

classification accuracy for a given dataset D=(𝑎𝑖, 𝑏𝑖), using a feature set and class label b. To this, we 

proposed an adaptive boosting [42] and gradient tree boosting [43] ensemble model that takes into account 

the base ensemble classifiers trained using classification and AUC accuracy of each feature and increased to 

three permutations produced by feature selection is known as ensemble feature selection aims to limit the 

impact of high dimensions on learning algorithms while conducting classifier accuracy and developing 

successful ensemble learning systems for classification difficulties. 

The general process of ensemble feature selection is shown in Figure 1. The fundamental concept is 

to use loss (Ψ) of accuracy as shown in (1) of individual feature weight based on the feature subset is divided 

randomly and diversity across the chosen feature subsets is ensured, and finally the mean of all loss of all 

classification methods has been computed based on (2) to perform consistently and how effectively each 

single feature separates the given dataset D=(𝑎𝑖, 𝑏𝑖) to all 15 features they can distinguish between examples 

of proposed classifier models. 
 

Ψ𝑎𝑖

Mi = 𝑎𝑏 (𝑚𝑗 . 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐷) − 𝑚𝑗  . 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐷 − 𝑎𝑖)) (1) 
 

In (1) Ψ represents loss of boosting model on each attribute 𝑎𝑖 and 𝑚𝑗  . 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐷) denotes 

accuracy measure of boosting model mi. 
 

𝑚𝑒𝑎𝑛𝑙𝑜𝑠𝑠
𝑎𝑖 =  ∑ 𝑙𝑠𝑎𝑖

mi𝑁
𝑓=1  (2) 

 

The proposed approach has two ensemble methods, in this approach both ensembles choose the 

correct class label, resulting in the correct conclusion have assigned a class label to each unique occurrence 

of the dataset, and the final class label is selected by a frequently occurrence in both methods as optimal. To 

support the first phase, the following algorithms 1 and 2 are taken. 
 

Algorithm 1. Pseudo code of Ada-Boost for feature selection 
Input:  

          Training Dataset 𝐷= {𝑎𝑖 , bi}1
n where 𝑎𝑖  ∈  𝑅𝑝 𝑎𝑛𝑑 𝑏𝑖 ∈ {−1, +1}   

            Set of 𝛼  features 𝐹𝑒 =  {𝑎1, 𝑎2, … , 𝑎𝛼}    
Output:  

            Optimal features based on ranks 𝑅 = (𝐷, {𝑟𝑎1
, 𝑟𝑎2

… 𝑟𝑎𝛼
})   

Begin : 

1: Initialize weights 𝑤1,𝑖 =
1

2𝑚
,

1

2𝑙
 for  𝑏𝑖 = 0,1 respectively, for 𝑘 =  1,2, . . , 𝐾 

2: Normalize weights 𝑤𝑘,𝑖 =
𝑤𝑘,𝑖 

∑ 𝑤𝑘,𝑗 

𝑛 

𝑗=1

  

3: Each feature j train a base classifier ℎ𝑗  which is classified to using a distinct 

feature. 

4: Calculate error 𝑤𝑘     𝜖𝑘 =  ∑ 𝑤𝑖  𝑖 |ℎ𝑗(𝑎𝑖) −  𝑏𝑖| 

5: opt the classifier ℎ𝑗 , with the lowest error 𝜖𝑘 

6: revise weights 𝑤𝑘+1,𝑖 =  𝑤𝑘,𝑖  𝛽𝑘
1−𝑥𝑖 

7: Repeat until weights upto get final ℎ(𝑥) =  {
1 ∑ 𝛼𝑘

𝐾
𝑘=1 ℎ𝑘(𝑎) ≥

1

2
∑ 𝛼𝑘

𝐾
𝑘=1  

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     
    

                                 where 𝛼𝑘 = log
1

𝛽𝑘
  

8: end for 

          The resulting model outputs are used as the final forecast for test cases. 

          Note: Ranking assigned from 1 to 10. 

End 

 

Algorithm 2. Pseudo code of gradient boost feature selection 
Input:  

          Training Set 𝐷== {𝑎𝑖 , bi}1
n   where 𝑎𝑖  ∈  𝑅𝑝 and 𝑏𝑖 ∈ {0,1}   

          Set of 𝛼  features 𝐹𝑒 =  {𝑎1, 𝑎2, … , 𝑎𝛼}    
Output:  

              To assign rankings of features 𝑅 = (𝐷, {𝑟𝑎1
, 𝑟𝑎2

… 𝑟𝑎𝛼
})   

Begin : 

1: {ℎ1, ℎ2, … , ℎ𝑚, }   ⇽ 𝑡𝑟𝑎𝑖𝑛 𝐺𝐵𝑇  
2: Î ⇽ [0, … , 0] 

3: for each  ℎ𝑚 𝑖𝑛 {ℎ1, ℎ2, … , ℎ𝑚, }  𝑑𝑜 
4: for j = 1 to d  do 

5: Î 𝑗 =  Î 𝑗 + 
1

𝑀
 . 𝐼𝑗(ℎ𝑚)  
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6: Î ⇽  
Î

∑ Î 𝑗
𝑀
𝐽=1

  

7: 𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑛 𝑑𝑜 

8:  𝑎𝑖,𝑗  ⇽  [Î 𝑗𝑎𝑖,𝑗] Î 𝑗 ≥𝑡ℎ where threshold 𝑡ℎ ∈ (0, 1) 

9: Return {(𝑎1(𝑖), 𝑏𝑖), 𝑖 = 1,2, … 𝑛 } 
10: The dataset 𝐷 is returned preserving only the selected features 

          The resulting model outputs features importance according to weights. 

          Note: Ranking assigned from 1 to 10. 

End 
 

To reach the proposed approach, this research used the COCOMO-81 dataset, as shown in Table 2, 

which accomplishes the selection of weighted features by rating their classification accuracy and AUC value 

in an initial model that includes all predictors. The gradient tree boost model uses a greedy optimisation 

strategy to identify the top-performing subset of elements based on the proposed Ada-Boost [35]. The dataset 

in Table 2 contains 17 features from 𝑭𝟏 to 𝑭𝟏𝟓 to as contributing, and the dependent as "LOC," in 𝑭𝟏𝟔 and 

𝑭𝟏𝟕 as another target was "actual cost". 
 

 

Table 2. Dataset information for COCOMO-81 
Feature. 

No. 
Description of feature Code Value 

GT Boost Ada-Boost 
Mean Std Mean Std 

𝐹1 

F
ea

tu
re

s 
p
ar

ti
ci

p
at

ed
 

Required software reliability rely 

N
u

m
er

ic
 

0.01131 0.002986 0.00267857 0.00087617 

𝐹2 Data base size data 0.027381 0.002393 0.100645 0.0172055 

𝐹3 Process complexity cplx 0.001091 0.000982 0.0168651 0.00505271 

𝐹4 Time constraint for cpu modern time 0.009921 0.00271 0.126438 0.0119631 

𝐹5 Main memory constraint stor 0.00377 0.001964 0.0274802 0.0165147 

𝐹6 Machine volatility virt 0.000794 0.00014 0.00124008 0.00059936 

𝐹7 Turnaround time turn 0.003373 0.000612 0.00763889 0.00092 

𝐹8 Analysts capability acap 0.001687 0.001148 0.003125 0.00107994 

𝐹9 Application experience aexp 0.028373 0.00231 0.0198413 0.00546806 

𝐹10 Programmers capability pcap 0.002679 0.000643 0.00128968 0.00101171 

𝐹11 Virtual machine experience vexp -9.92E-05 0.00014 1.98E-04 0.0001403 

𝐹12 Language experience lexp 0.000198 0.00014 0.0014881 0.00084179 

𝐹13 Programming practices modp 0.000595 0.000643 0.018502 0.00633835 

𝐹14 Use of software tools tool 0.001984 0.000982 0.00138889 0.0002806 

𝐹15 Schedule constraint sced 0.000496 0.000506 0.00530754 0.00401939 

𝐹16 Target Lines of code LOC     

𝐹17 Actual cost Actual     

 

 

From the above, collected sufficient number of features based on their ranks with respect to two targets. 

Then these sets of data forwarded to seven classifiers and calculate the loss Ψ of each one as shown in (3): 
 

Ψ Mi

Mn =  ab (Mn. acc(Tr)) (3) 

 

Where 𝑚𝑒𝑎𝑛𝑙𝑜𝑠𝑠
𝑎𝑖  calculates mean loss of each permutation to three permutations for all individual classifiers. 

When working on a specific learning set, the stacked model can be thought of as a method of calculating all 

base classifier losses ∑  ΨN
i=1  and then correcting prediction residuals using the level 1 model. The mean of 

all accuracy losses is derived using (5), which stands for the mean of all accuracy losses. 
 

MeanΨ

Mn = ∑ ΨMi

MnN
j=1  (4) 

 

In (4), ΨMi

Mn  represents the loss of classifier Mn on selected feature 𝑓𝑖   and Mn. acc(Tr) denotes 

accuracy measure of classifierMn. In (4), Meanφ
Mn  represents mean loss upon ranked features Mi from all 

classifiers. The overall accuracy is produced in the order that optimal features are selected based on the 

ranking. The ensemble classifier was used to choose and consider the top features for inclusion in the 

classification model based on the output of the ranked features that were analyzed. 

 

3.2.  Experimental setup and simulation 

The proposed research was executed on a system which contains Intel(R) i5 – 6200 CPU 3.40 GHz, 

8 GB (RAM), and a 64-bit latest Windows-10 (OS) GUI interface. Python Anaconda is an open-source 

programming language, and Spyder IDE is used for the simulation. Table 3, all the classifiers' parameters are 

selected using a trial-error method. 
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Table 3. Parameter setup 
Base models Parameter setup 

KNN {Number of neighbours (k): 5} 
Naïve bayes {No hyperparameters to tune } 

SVM poly {C (regularization parameter): 1.0}; {kernel: polynomial};{degree of polynomial kernel: 3} 

SVM RBF {C (regularization parameter): 1.0}; {kernel: RBF} 
NN 30-30 {Neurons per layer: 30}; {activation function: relu for hidden} 

{layers, softmax for output layer}; {learning rate: 0.001}; {training duration: 100 epochs} 

LR {Regularization type: l2 (ridge)}; {regularization parameter (c): 1.0} 
{training duration: 100 epochs} 

Proposed stacked ensemble model {Base models: nn 3030 classifier, SVM RBF, NB, SVM poly, LR 

 Meta learner: logistic regression} 
{Number of base models: 6} 

{Hyperparameters for base models and meta learner tuned during stacking} 

 

 

4. RESULT ANALYSIS 

As stated in the first phase results in Table 2, using two boosting models, optimal features were 

identified, and ranks were assigned. Those two models gave good recognition to the elements in standard, 

prepared an optimal dataset with the optimal ranked features, and then calculated mean loss and rank.  

Figure 2 shows an analysis of the optimal dataset with ten features assigned positions for each element by 

applying GT Boosting classification accuracy (CA) and AUC score. Figure 3 represents classifier accuracy 

and AUC of the Ada-Boost classifier of optimal features. Calculated ranks for top ten features with the 

support of Ada-Boost classifier. Here, we can observe the positions for the top ten out of fifteen parameters 

based on their scores. 
 
 

 
 

Figure 2. Gradient tree boosting classifier feature ranking 
 

 

 
 

Figure 3. Ada-Boosting classifier feature ranking 
 
 

According to algorithms 1 and 2, calculate CA and AUC scores each boosting algorithm assigns 

ranks as shown in Table 4. Positions are given to all fifteen features such as 𝑭𝒓𝒆𝒍𝒚, 𝑭𝒅𝒂𝒕𝒂, 𝑭𝒄𝒑𝒍𝒙, 

𝑭𝒕𝒊𝒎𝒆, 𝑭𝒔𝒕𝒐𝒓, 𝑭𝒗𝒊𝒓𝒕, 𝑭𝒕𝒖𝒓𝒏, 𝑭𝒂𝒄𝒂𝒑, 𝑭𝒂𝒆𝒙𝒑, 𝑭𝒑𝒄𝒂𝒑, 𝑭𝒗𝒆𝒙𝒑, 𝑭𝒍𝒆𝒙𝒑, 𝑭𝒎𝒐𝒅𝒑, 𝑭𝒕𝒐𝒐𝒍, 𝑭𝒔𝒄𝒆𝒅. Out of fifteen features GT 

Boosting CA is very low for 𝑭𝒗𝒊𝒓𝒕, 𝑭𝒗𝒆𝒙𝒑, 𝑭𝒍𝒆𝒙𝒑, 𝑭𝒎𝒐𝒅𝒑, 𝑭𝒔𝒄𝒆𝒅 features, and Ada-Boost CA is very low 

𝑭𝒗𝒊𝒓𝒕, 𝑭𝒑𝒄𝒂𝒑, 𝑭𝒗𝒆𝒙𝒑, 𝑭𝒍𝒆𝒙𝒑, 𝑭𝒕𝒐𝒐𝒍. So, which features are commonly identified and get low accuracies for both 
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algorithms are removed from the original dataset and a new subset of features with twelve features and this 

subset of features dataset forward to next level ensemble approach. 
 
 

Table 4. Rankings of features for predicting boosting classifiers 
 Optimal features based on their ranks 

 

Adaptive boost classifier GT boost classifier 

[𝐹1, 𝐹8, 𝐹15, 𝐹7, 𝐹3, 𝐹13, 𝐹9, 𝐹5, 𝐹2, 𝐹4] 

required software reliability (rely), analysts capability 
(acap), schedule constraint (sced), turnaround time (turn), 

process complexity (cplx), programming practices (modp), 

application experience (aexp), data base size (data), main 
memory constraint (stor), time constraint for cpu modern 

(time). 

[𝐹3, 𝐹8, 𝐹14, 𝐹10, 𝐹7, 𝐹5, 𝐹9, 𝐹4, 𝐹1, 𝐹2] 

process complexity (cplx), analysts capability (acap), 
programmers capability (pcap), use of software tools 

(tool), turnaround time (turn), main memory 

constraint (stor), application experience (aexp), 
required software reliability (rely), data base size 

(data), time constraint for cpu modern (time). 

New optimal subset features total 12  [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹7, 𝐹8, 𝐹9, 𝐹10, 𝐹13, 𝐹14, 𝐹15] 

 

 

4.1.  Discussion on level 1 results 

As per MLE proposed model the first level conducting experiments for the original dataset and the 

performance metrics of all six classifiers (NN 30-30, NB, SVM RBF, SVM poly, K-NN, and LR) concerning 

the LOC and actual cost as targets reside in the original dataset, based on the experiments calculate the CA, 

AUC, F1, precision and recall to all classifiers and outcomes showed in Table 5 for each model. All models 

have shown relatively good performance in predicting the performance metrics. NB scored 97%, and K-NN 

scored 99%, indeed a better performance compared to all other models, as the process's objective was to 

predict the actual effort and LOC in the target dataset for developing the SDEE. SVM poly stands good in 

CA with 95% precision and a low error rate, and the NN 30-30 classifier stands at an accuracy of 54% on 

other models to predict targets.  
 
 

Table 5. Classifiers performance was observed with 15 features 

S.NO Base model 
Performance measures with 15 features 

AUC CA F1-score Precision Recall 

1. NN 30-30 classifier 0.831 0.476 0.438 0.545 0.476 
2. NB 0.973 0.667 0.694 0.846 0.667 

3. SVM RBF 0.541 0.825 0.833 0.851 0.825 

4. K-NN (EQUL) 0.993 0.873 0.870 0.883 0.873 
5. SVM poly 0.651 0.937 0.939 0.955 0.937 

6. LR 0.906 0.873 0.873 0.908 0.873 

 
 

The ROC-AUC curve in Figure 4 shows the relationship between the true positive rate (TPR), which 

measures the model sensitivity and the false positive rate (FPR) which measures model specificity for the 

original dataset, which participates in fifteen features and finds the targets as LOC and actual cost, both are 

proportional. 

According to the ROC curve, NB performs better than the remaining individual classifiers, all 

indicating respective colours, as shown in Figure 4. A lift curve analysis helps evaluate the performance of 

different models, especially in classification tasks. Figure 5 shows the K-NN model achieves an 

exceptionally high AUC of 4.65 at a probability threshold of 0.0, indicating that it can make highly accurate 

predictions when selecting the nearest neighbors. The SVM model with a polynomial kernel has a lower 

AUC of 0.508 at a probability threshold 0.168. This suggests that it may not perform as well. 

 

4.2.  Discussion on stacking ensemble learning approach at level 2 

Based on the research proposal in the second level, we used an effective ensemble learning 

algorithm that learns how to combine predictions from two or more base ML techniques, the stacked 

ensemble. It is used to train models and make predictions, and the advantage of stacking is that it can 

combine the abilities of six high-performing models on a classification and regression difficulties task to 

provide forecasts that perform better than any one model in the ensemble [44]. Using this method, the 

performances of multiple models are integrated to create a single, effectual output. This method uses level 1 

as a base model fitting to the training data and whose predictions are generated and level 2 as a meta-model 

that learns how to best combine the base models' predictions. The results of the fundamental learners' 

developing features can be integrated using a weighted average. It grants the model dominance in prediction 

performance as well as reliability. Also, the high-impact features selected by RF and GTB can be seen in 

Table 4, with the optimal subset of features a new featured dataset prepared separately and given as input to 
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all classifiers, including proposed stacked ensemble and conduct experiments. For this experiment, actual 

cost and LOC are the target variables (both are proportional) to find the performance of the proposed model, 

including all the model's accuracies, as shown in Table 6. The model performance evaluation used the same 

metrics followed by level 1. The evaluation mechanism used in this study focuses on assessing the 

performance of the new optimal feature dataset in predicting the development effort. 
 

 

 
 

Figure 4. Performance of all models on fifteen features 
 

 

 
 

Figure 5. Lift curve of all models on original dataset 
 
 

Table 6. Performance of ensemble model in comparison to that of classifiers for optimal features 

S.No Base model 
Performance measures with 12 features 

AUC CA F1-score Precision Recall 

1. NN 30-30 classifier 0.841 0.492 0.481 0.580 0.492 

2. Navie bayes 0.977 0.667 0.692 0.781 0.667 

3. SVM RBF 0.606 0.810 0.812 0.833 0.810 
4. K-NN (EQUL) 0.983 0.873 0.870 0.883 0.873 

5. SVM poly 0.965 0.921 0.925 0.947 0.921 

6. LR 0.851 0.794 0.791 0.807 0.794 
7. Stacked ensemble 0.989 0.990 0.990 0.991 0.996 

 

 

After an experimental study with a prosed model conducting experiments with twelve features, all 

classifiers have shown good performance compared with level 1 results in predicting the performance 

metrics. The outcome of our research proposal stacked ensemble scored 99%, and K-NN scored 98%, indeed 

a better performance compared to all other models, as the objective of the process was to predict the actual 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 1090-1102 

1098 

effort and LOC in the target dataset for developing the SDEE. The proposed stacked ensemble stands at 99% 

in CA, 99% precision and less error to predict the target. 

The ROC-AUC curve in Figure 6 shows the relationship between TPR, which measures the model 

sensitivity, and FPR, which measures model specificity for the optimal feature subset of the dataset which 

participates in twelve features and finds the targets as LOC and actual cost, (both are proportional). 

According to the ROC curve, the proposed stacked ensemble reached 1 to perform all-time better than all 

remaining individual classifiers, all indicating respective colours, as shown in Figure 6. 

 

 

 
 

Figure 6. Performance of all models on optimal feature subset dataset 

 

 

The probability of the threshold of the proposed stacked ensemble classifier for the optimal feature 

subset dataset (12 features) was also calculated to find the error in each effort category. Figure 7 shows the lift 

curve analysis for each model, including the stacked ensemble concerning LOC and Actual as targets. The 

proposed model achieves an exceptionally high AUC of 2.783 at a probability threshold of 0.025, indicating that 

it can make highly accurate predictions compared to other individual models. The proposed model has a lower 

high AUC at a probability threshold 0.0258. This suggests that our proposed model performs well, indicating 

that it can make highly accurate predictions comparatively with the state-of-the-art models. 

 

 

 
 

Figure 7. Lift curve of all models on optimal feature subset dataset 
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Compared to the feature ranking technique, the accuracy obtained by stacked ensemble learning for 

all classifiers as shown in Table 6 has been impossibly promising. This is partly due to the stacked ensemble-

learning algorithm's dedicated targeting of the top features based on ranking. Compared to the ideal dataset, 

Figure 8 displays the classification accuracy and AUC values for the base learners and the proposed stacked 

ensemble approach. The proposed stacking ensemble produced the all-time highest accuracy in predicting 

SDEE and proves this research study's objective. 
 
 

 
 

Figure 8. Model analysis of proposed model on optimal feature subset dataset 

 

 

5. CONCLUSION 

This research examined ways to estimate the software development effort with minimum time. We 

noticed that using a few outstanding features yields a considerably greater AUC than the alternative. In 

addition, NB and K-NN outperformed comparative with traditional techniques like NN 30-30, SVMs (poly, 

RBF), and LR on the COCOMO dataset, and we proved that they usually incorporate more essential features 

in achieving an acceptable level of accuracy and indicating that giving features weights may improve SDEE 

when employing individual classifiers. For this, we propose a multi-level ensemble model to predict 

outstanding features based on priority to estimate development effort by adopting a stacked ensemble with a 

group of six well-designed learners, which outperformed and higher AUC measurements over the more 

traditional techniques like NN 30-30, SVMs (poly, RBF), NB, K-NN, and LR. Based on the No Free Lunch 

theorem, according to “No Free Lunch hypothesis” No-one ML classifier model is the best on every 

situation, so when taking into account different ensembles, our work has revealed that it is improbable that 

there is a model that is always the best. The software product manager should ideally test several models 

while employing a guiding framework considering all the goals and projects they access. It makes it possible 

to pinpoint the model to deliver the behaviour that best suits the manager's requirements. In future, we plan to 

use further feature selection approaches to support our claim that many features in publicly available 

software product datasets are unnecessary or redundant. Investigating additional ensemble learners to 

contrast our system will also be part of future work. 

 

 

APPENDIX 

 

Table 1. Research on software effort estimation by adopting various appraochs 
S.No Techniques used Data-set used Problem name State of art Metrics used for study Ref. 

1. RSA USP05-FT 

USP05-RQ 

Feature reduction FFNN 

NB 
− MMRE 

− RMSE 

− MAE 

[22] 

2. DTF ISBSG 
Desharnais 

SEE DT 
MLR 

− MRE 

− MMRE 

− MdMRE 

− PRED 

[23] 

3. COCOMO NASA 93 SDEE NB 

LR 

RF 

− AUC 

− CA 

− Precision 

− Recall 

[24] 

4. ANN COCOMO II Minimize 

predetermined error 

- − MMRE 

− MSE 

[25] 
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Table 1. Research on software effort estimation by adopting various appraochs (continued) 
S.No Techniques used Data-set used Problem name State of art Metrics used for study Ref. 

5. GLM ISBSG SEE SVM 
MLP 

 

− MAE 

− RMSE 

− MMER, etc 

[26] 

6. RF ISBSG 

COCOMO 

SEE - − PRED 

− MRE 

− MMRE 

− PRED 

[18] 

7. GA, PSO, FL, ACO, ABC - Predict reliability - - [27] 

8. SEER-SEM COCOMO FPA - − MMRE 

− PRED 

[28] 

9. OLS 

SWR 

RR 

COCOMO 

MAXWELL 

CHINA 

Regression based 

effort estimation 

ML − MAE 

− BMMRE 

[29] 

10. ABEO-KN Promise 

Repository 

datasets 

Ranking of 

estimation methods 

Analog based 

methods 
− MMRE 

− MAR 

− MdAR 

− SD 

− RSD 

− LSD 

[30] 

11. ASEE Desharnais 

ISBSG 
Albrecht 

COCOMO 

Kemerer 

SDEE Analog based 

SDEE 
− MMRE 

− PRED 

− MdMRE 

− MRE 

[31] 

12. ANN COCOMO Estimating effort - − MMRE 

− PRED 

− RMSE 

[32] 

13. Classical analogy 
Ensemble 

ISBSG SEE Fuzzy analogy 
models 

− MAE 

− LSD 

− MBRE 

− MIBRE 

[33] 

14. GP, MOGP Desharnais, 

Finnish 

Miyazaki 

Accuracy - − MMRE 

− PRED 

− MdEMRE 

[34] 

15. Multi layered feed forward 

neural network 
(MLFFANN) 

COCOMOII Prediction of 

software effort 

- − MSE 

− MMRE 

[35] 

16. Fuzzy logic - SCE Bailey Basili, 

Dotly, Halstead 
− MRE,MF 

− MMRE 

[36] 

17. ABE ISBSG Predict SEE CART 
MLR 

CNN 

− MRE 

− MMRE 

− PRED 

[37] 

18. Ada Boost Desharnais 

MAXWELL 

LOC, 

actual cost 

K-NN 

SVM 
− Loss 

− Accuracy 

[38] 

19. ML 

CBR 

Infoway 

Diyatech 
Tsoft 

SDE - − BRE 

− MRE 

[39] 

20. Metaheuristic optimization NASA  GA, PSO, FA − MAE 

− MMRE 

− VAF 

[40] 
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