
Bulletin of Electrical Engineering and Informatics

Vol. 13, No. 2, April 2024, pp. 1090~1102

ISSN: 2302-9285, DOI: 10.11591/eei.v13i2.5531  1090

Journal homepage: http://beei.org

Feature importance for software development effort estimation

using multi level ensemble approaches

K. Eswara Rao1, Pandu Ranga Vital Terlapu1, Paidi Annan Naidu1, Tammineni Ravi Kumar1, Bala

Murali Pydi2

1Department of Computer Science and Engineering, Aditya Institute of Technology and Management, Tekkali, India
2Department of Electrical and Electronics Engineering, Aditya Institute of Technology and Management, Tekkali, India

Article Info ABSTRACT

Article history:

Received Dec 12, 2022

Revised Jun 17, 2023

Accepted Oct 5, 2023

 Feature importance strategy that substantially impacts software development

effort estimation (SDEE) can help lower the dimensionality of dataset size.

SDEE models developed to estimate effort, time, and wealth required to

accomplish a software product on a limited budget are used more frequently

by project managers as decision-support tool effort estimation algorithms

trained on a dataset containing essential elements to improve their estimation

accuracy. Earlier research worked on creating and testing various estimation

methods to get accurate. On the other hand, ensemble produces superior

prediction accuracy than single approaches. Therefore, this study aims to

identify, develop, and deploy an ensemble approach feasible and practical

for forecasting software development activities with limited time and

minimum effort. This paper proposed a collaborative system containing a

multi-level ensemble approach. The first level grabs the optimal features by

adopting boosting techniques that impact the decided target; this subset

features forward to the second level developed by a stacked ensemble to

compute the product development effort concerning lines of code (LOC) and

actual. The proposed model yields high accuracy and is more accurate than

distinct models.

Keywords:

Boosting approaches

Ensemble technique

Feature ranking

Machine learning

Software development effort

estimation

Stacked ensemble

This is an open access article under the CC BY-SA license.

Corresponding Author:

K. Eswara Rao

Department of Computer Science and Engineering

Aditya Institute of Technology and Management, Tekkali, Andhra Pradesh, India

Email: eswarkoppala@gmail.com

1. INTRODUCTION

One of the most significant tasks in the software industry is to develop a quality software product

with minimal components depending on how accurately it estimates software development effort [1]. The

challenge is evaluating those metrics early in the project lifecycle when each effort's limits must be

determined, and there are significant uncertainties about the end product's functionality. It was defined as

"estimating the effort and time required to develop a software product. The accuracy of its effort estimates

primarily determines the success of any software product. Kumar et al. [2] demonstrates that the reasons for a

software product failure are idealistic or inarticulate project goals, erroneous resource estimates, and inability

to handle product difficulty. Perfect effort estimates are critical for project success. In papers [3]–[5] defines

a reasonable estimation as providing a clear enough view of the product reality to allow project management

to make sound decisions about overseeing the product to meet its objectives.

Software effort estimating (SEE) approaches of various types have been presented [6]. Among the

suggested techniques, machine learning (ML) based effort estimators such as support vector machines (SVM),

decision tree function (DTF) networks, and random forest trees (RFTs) have drawn more attention [7]. Making

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Feature importance for software development effort estimation using ulti level ensemble … (K. Eswara Rao)

1091

no or few assumptions about the function being modelled and the training data is the driving force behind

deploying such techniques. Such methods are preferred since they don't or lightly assume things about the

modelled function and the training data. For instance, Rao and Rao [8] demonstrated that ensemble techniques

outperform single classification models in SEE because the voting classifier in the ensemble model reduces any

residual effect related to feature insignificance and redundancy. To mitigate this, higher weights are given to

specific classifiers that excel on the tested datasets. The prediction performance is undoubtedly improved by the

robustness of irrelevant and redundant features. In its simplest form of averaging, the voting model assures the

reduction of noise property, which improves the overall prediction performance.

This paper proposes a multilevel ensemble (MLE) learning module for the software development

effort estimation method. The proposed MLE system incorporates adaptive boost gradient tree boost in the

first level and uses seven individual classifiers in the second, including the proposed stacked ensemble. The

research sequel states that the base classifiers have been chosen following thorough simulation validation.

Some of these classifiers, including the RF and SVM models, are considered in the literature [8]. The basis

classifiers' diverse classification abilities also allow them to distinguish between various statistical properties

of the underlying data, which adds value to the proposed ensemble learning approach.

The proposed ensemble model needs effective feature selection models to perform better overall.

The enhancement's final effects will determine how well the redundant and unnecessary features in software

product datasets are handled. This research aims to show how feature selection improves effort estimation

performance and suggest a multilevel ensemble learning technique that is resistant to data imbalance and

feature redundancy. The proposed multilevel ensemble technique has additionally demonstrated enhanced

resistance to redundant and irrelevant characteristics, substantially contributing to this research. This research

aims to show how feature importance improves effort estimation and suggests a multilevel ensemble learning

technique resistant to feature redundancy and data imbalance. Another significant contribution credited to

this research is the improved robustness of the suggested MLE to redundant and irrelevant information.

This paper has contained two innovative discoveries. Section 2 describes the literature-related

research on the estimation methods for software development effort estimation. The ML models neural

networks (NN 30-30), linear regression (LR), k-nearest neighbor (K-NN), SVM radial basis function (SVM

RBF), naive bayes (NB), SVM polynomial (SVM poly), have to consider combining some of the best

features of the suggested method are discussed with experimental setup in section 3, proposed multilevel

ensemble learning model and summarizes the results of the studies and demonstrates the experimental design

in section 4. The research is concluded in section 5, along with its future scope.

2. RELATED WORK

This section describes a summary of ML strategies offered after a study of general effort estimation

algorithms, concludes with a review of various classification methods and methodologies, as well as a

comparison of ways that can be used to estimate software development effort.

2.1. Single classifier for software development effort estimation

Quality development has evolved into a critical activity for professional companies. Indeed, developed

software's prominence, cost, and suitability are frequently decisive elements in an organization's success. The

complete analysis of ML techniques used for effort estimation was carried out by [9]. According to researchers’

analyzed work, the researchers mainly focused on customizing specific algorithms, particularly artificial neural

networks, case-based reasoning models, and decision trees, for the most outstanding performance. The

machine's precision with mean magnitude relative errors (MMRE) ranging from 35 to 55%, percentage close

error deviations (PRED(25)) of 47 to 75%, and median magnitude relative errors (MdMRE) of 30 to 55%,

learning models were of an acceptable level and outperformed statistical ones. According to the researchers, ML

algorithms may produce disparate findings due to outliers, missing variables, and the chance of over fitting

problems. To estimate the early stages of the software life cycle initiatives, LR, and NN [10]. Shahpar et al. [11]

investigated several data sets and obtained encouraging findings for software development effort assessment.

When estimating software maintenance effort using particle swarm optimization, Singh et al. [12] proposed a

successful swarm intelligence-based method. Regardless of the approach used to develop ML, valuable

recommendations for effort and duration estimation at early project stages can be retrieved. Because ML is

sensitive to noise in data sets, models should not rely on unique algorithms but should be employed in tandem,

which improves prediction accuracy [13]. Boosting, bagging, and complex random sampling techniques [14]

were proposed by researchers, generally for the same sort of ML algorithms. However, if used excessively,

ensemble methods can cause significant performance overhead [15]. As a result, for developing ML effort and

duration models, a limited selection of algorithms and a simple ensemble method, such as averaging of acquired

estimates, should be employed.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 1090-1102

1092

2.2. Evolutionary strategy

A hybrid method to estimate work using the use case point methodology has been put out by [16].

Numerous observations were made based on college student projects and industrial projects. The authors of

this paper gave the environmental elements of the UCP approach significant weight. The researchers used

feed-forward algorithms like radial basis feed forward neural (RBFNN) to predict the effort and productivity

feed-forward algorithm. This project concluded that the UCP method's environmental considerations are

ideal for software system productivity forecasting.

More recently, [17]–[19] examined the application of learning machine ensembles for SEE.

Ensembles of learning machines are groups of learners trained to complete the same job and are put together

to enhance prediction performance [8]. It is generally accepted that learners should act differently when

combined to obtain more accurate predictions. Otherwise, the total forecast won't be more accurate than the

individual guesses. Therefore, several ensemble learning strategies can be viewed as various ways to create

variation among the base learners. The authors tried to estimate effort with a low failure ratio and cost.

None of the publications compares the outcomes of other easily accessible methods for ensemble

learning from the ML literature and the issues raised above. Reseachers in [20], [21] provide data from a few

ensemble approaches. However, the research does not statistically compare these methods and single

learners. Different ensemble approaches can be more or less suitable for SEE and should be included in the

comparisons. The papers also need to examine how the results were obtained.

2.3. Other approaches

According to particular research in the literature, the properties of the data set substantially impact

how well various models perform. However, as previously indicated, existing research on ensemble models

suggests that they perform better than distinct models even when numerous different data sets are employed.

The results of the research methods, as presented in Table 1 (in Appendix) [18], [22]-[40] demonstrated that

the optimal and significantly improved SDEE estimate performance was obtained by combining their two

strategies. According to their projections, hybrid approaches may produce satisfactory results for varying

sizes.

3. RESEARCH METHODOLOGY

This proposed research includes MLE approach to grab the optimal features as a precise step in the

first level approach for choosing SDEE models to calculate effort in level 2. Figure 1 shows the overall

feature selection process and software development effort estimation. The suggested method efficiently

assigns ranks for features while simultaneously dealing with the imbalanced data problem in a software quality

dataset to avoid bias problems. The following feature selection phases are defined to meet the objective.

Figure 1. Prediction of SDEE using proposed MLE

3.1. Feature subset selection

A compelling feature selection system requires finding the primitive features that will be used to

train the models [41]. The relevance or correlation between the characteristic and the class label serves as the

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Feature importance for software development effort estimation using ulti level ensemble … (K. Eswara Rao)

1093

selection process's core guiding principle and is frequently applied to classification problems. Relevance

measurements can be used to assess the significance of qualities like dimensionality reduction with five

cross-fold validations. The model seeks to identify the best feature subset 𝑓 (|𝑓|) = 𝑘 that maximises

classification accuracy for a given dataset D=(𝑎𝑖, 𝑏𝑖), using a feature set and class label b. To this, we

proposed an adaptive boosting [42] and gradient tree boosting [43] ensemble model that takes into account

the base ensemble classifiers trained using classification and AUC accuracy of each feature and increased to

three permutations produced by feature selection is known as ensemble feature selection aims to limit the

impact of high dimensions on learning algorithms while conducting classifier accuracy and developing

successful ensemble learning systems for classification difficulties.

The general process of ensemble feature selection is shown in Figure 1. The fundamental concept is

to use loss (Ψ) of accuracy as shown in (1) of individual feature weight based on the feature subset is divided

randomly and diversity across the chosen feature subsets is ensured, and finally the mean of all loss of all

classification methods has been computed based on (2) to perform consistently and how effectively each

single feature separates the given dataset D=(𝑎𝑖, 𝑏𝑖) to all 15 features they can distinguish between examples

of proposed classifier models.

Ψ𝑎𝑖

Mi = 𝑎𝑏 (𝑚𝑗 . 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐷) − 𝑚𝑗 . 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐷 − 𝑎𝑖)) (1)

In (1) Ψ represents loss of boosting model on each attribute 𝑎𝑖 and 𝑚𝑗 . 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐷) denotes

accuracy measure of boosting model mi.

𝑚𝑒𝑎𝑛𝑙𝑜𝑠𝑠
𝑎𝑖 = ∑ 𝑙𝑠𝑎𝑖

mi𝑁
𝑓=1 (2)

The proposed approach has two ensemble methods, in this approach both ensembles choose the

correct class label, resulting in the correct conclusion have assigned a class label to each unique occurrence

of the dataset, and the final class label is selected by a frequently occurrence in both methods as optimal. To

support the first phase, the following algorithms 1 and 2 are taken.

Algorithm 1. Pseudo code of Ada-Boost for feature selection
Input:

 Training Dataset 𝐷= {𝑎𝑖 , bi}1
n where 𝑎𝑖 ∈ 𝑅𝑝 𝑎𝑛𝑑 𝑏𝑖 ∈ {−1, +1}

 Set of 𝛼 features 𝐹𝑒 = {𝑎1, 𝑎2, … , 𝑎𝛼}
Output:

 Optimal features based on ranks 𝑅 = (𝐷, {𝑟𝑎1
, 𝑟𝑎2

… 𝑟𝑎𝛼
})

Begin :

1: Initialize weights 𝑤1,𝑖 =
1

2𝑚
,

1

2𝑙
 for 𝑏𝑖 = 0,1 respectively, for 𝑘 = 1,2, . . , 𝐾

2: Normalize weights 𝑤𝑘,𝑖 =
𝑤𝑘,𝑖

∑ 𝑤𝑘,𝑗

𝑛

𝑗=1

3: Each feature j train a base classifier ℎ𝑗 which is classified to using a distinct

feature.

4: Calculate error 𝑤𝑘 𝜖𝑘 = ∑ 𝑤𝑖 𝑖 |ℎ𝑗(𝑎𝑖) − 𝑏𝑖|

5: opt the classifier ℎ𝑗 , with the lowest error 𝜖𝑘

6: revise weights 𝑤𝑘+1,𝑖 = 𝑤𝑘,𝑖 𝛽𝑘
1−𝑥𝑖

7: Repeat until weights upto get final ℎ(𝑥) = {
1 ∑ 𝛼𝑘

𝐾
𝑘=1 ℎ𝑘(𝑎) ≥

1

2
∑ 𝛼𝑘

𝐾
𝑘=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 where 𝛼𝑘 = log
1

𝛽𝑘

8: end for

 The resulting model outputs are used as the final forecast for test cases.

 Note: Ranking assigned from 1 to 10.

End

Algorithm 2. Pseudo code of gradient boost feature selection
Input:

 Training Set 𝐷== {𝑎𝑖 , bi}1
n where 𝑎𝑖 ∈ 𝑅𝑝 and 𝑏𝑖 ∈ {0,1}

 Set of 𝛼 features 𝐹𝑒 = {𝑎1, 𝑎2, … , 𝑎𝛼}
Output:

 To assign rankings of features 𝑅 = (𝐷, {𝑟𝑎1
, 𝑟𝑎2

… 𝑟𝑎𝛼
})

Begin :

1: {ℎ1, ℎ2, … , ℎ𝑚, } ⇽ 𝑡𝑟𝑎𝑖𝑛 𝐺𝐵𝑇
2: Î ⇽ [0, … , 0]

3: for each ℎ𝑚 𝑖𝑛 {ℎ1, ℎ2, … , ℎ𝑚, } 𝑑𝑜
4: for j = 1 to d do

5: Î 𝑗 = Î 𝑗 +
1

𝑀
 . 𝐼𝑗(ℎ𝑚)

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 1090-1102

1094

6: Î ⇽
Î

∑ Î 𝑗
𝑀
𝐽=1

7: 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 𝑑𝑜

8: 𝑎𝑖,𝑗 ⇽ [Î 𝑗𝑎𝑖,𝑗] Î 𝑗 ≥𝑡ℎ where threshold 𝑡ℎ ∈ (0, 1)

9: Return {(𝑎1(𝑖), 𝑏𝑖), 𝑖 = 1,2, … 𝑛 }
10: The dataset 𝐷 is returned preserving only the selected features

 The resulting model outputs features importance according to weights.

 Note: Ranking assigned from 1 to 10.

End

To reach the proposed approach, this research used the COCOMO-81 dataset, as shown in Table 2,

which accomplishes the selection of weighted features by rating their classification accuracy and AUC value

in an initial model that includes all predictors. The gradient tree boost model uses a greedy optimisation

strategy to identify the top-performing subset of elements based on the proposed Ada-Boost [35]. The dataset

in Table 2 contains 17 features from 𝑭𝟏 to 𝑭𝟏𝟓 to as contributing, and the dependent as "LOC," in 𝑭𝟏𝟔 and

𝑭𝟏𝟕 as another target was "actual cost".

Table 2. Dataset information for COCOMO-81
Feature.

No.
Description of feature Code Value

GT Boost Ada-Boost
Mean Std Mean Std

𝐹1

F
ea

tu
re

s
p
ar

ti
ci

p
at

ed

Required software reliability rely

N
u

m
er

ic

0.01131 0.002986 0.00267857 0.00087617

𝐹2 Data base size data 0.027381 0.002393 0.100645 0.0172055

𝐹3 Process complexity cplx 0.001091 0.000982 0.0168651 0.00505271

𝐹4 Time constraint for cpu modern time 0.009921 0.00271 0.126438 0.0119631

𝐹5 Main memory constraint stor 0.00377 0.001964 0.0274802 0.0165147

𝐹6 Machine volatility virt 0.000794 0.00014 0.00124008 0.00059936

𝐹7 Turnaround time turn 0.003373 0.000612 0.00763889 0.00092

𝐹8 Analysts capability acap 0.001687 0.001148 0.003125 0.00107994

𝐹9 Application experience aexp 0.028373 0.00231 0.0198413 0.00546806

𝐹10 Programmers capability pcap 0.002679 0.000643 0.00128968 0.00101171

𝐹11 Virtual machine experience vexp -9.92E-05 0.00014 1.98E-04 0.0001403

𝐹12 Language experience lexp 0.000198 0.00014 0.0014881 0.00084179

𝐹13 Programming practices modp 0.000595 0.000643 0.018502 0.00633835

𝐹14 Use of software tools tool 0.001984 0.000982 0.00138889 0.0002806

𝐹15 Schedule constraint sced 0.000496 0.000506 0.00530754 0.00401939

𝐹16 Target Lines of code LOC

𝐹17 Actual cost Actual

From the above, collected sufficient number of features based on their ranks with respect to two targets.

Then these sets of data forwarded to seven classifiers and calculate the loss Ψ of each one as shown in (3):

Ψ Mi

Mn = ab (Mn. acc(Tr)) (3)

Where 𝑚𝑒𝑎𝑛𝑙𝑜𝑠𝑠
𝑎𝑖 calculates mean loss of each permutation to three permutations for all individual classifiers.

When working on a specific learning set, the stacked model can be thought of as a method of calculating all

base classifier losses ∑ ΨN
i=1 and then correcting prediction residuals using the level 1 model. The mean of

all accuracy losses is derived using (5), which stands for the mean of all accuracy losses.

MeanΨ

Mn = ∑ ΨMi

MnN
j=1 (4)

In (4), ΨMi

Mn represents the loss of classifier Mn on selected feature 𝑓𝑖 and Mn. acc(Tr) denotes

accuracy measure of classifierMn. In (4), Meanφ
Mn represents mean loss upon ranked features Mi from all

classifiers. The overall accuracy is produced in the order that optimal features are selected based on the

ranking. The ensemble classifier was used to choose and consider the top features for inclusion in the

classification model based on the output of the ranked features that were analyzed.

3.2. Experimental setup and simulation

The proposed research was executed on a system which contains Intel(R) i5 – 6200 CPU 3.40 GHz,

8 GB (RAM), and a 64-bit latest Windows-10 (OS) GUI interface. Python Anaconda is an open-source

programming language, and Spyder IDE is used for the simulation. Table 3, all the classifiers' parameters are

selected using a trial-error method.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Feature importance for software development effort estimation using ulti level ensemble … (K. Eswara Rao)

1095

Table 3. Parameter setup
Base models Parameter setup

KNN {Number of neighbours (k): 5}
Naïve bayes {No hyperparameters to tune }

SVM poly {C (regularization parameter): 1.0}; {kernel: polynomial};{degree of polynomial kernel: 3}

SVM RBF {C (regularization parameter): 1.0}; {kernel: RBF}
NN 30-30 {Neurons per layer: 30}; {activation function: relu for hidden}

{layers, softmax for output layer}; {learning rate: 0.001}; {training duration: 100 epochs}

LR {Regularization type: l2 (ridge)}; {regularization parameter (c): 1.0}
{training duration: 100 epochs}

Proposed stacked ensemble model {Base models: nn 3030 classifier, SVM RBF, NB, SVM poly, LR

 Meta learner: logistic regression}
{Number of base models: 6}

{Hyperparameters for base models and meta learner tuned during stacking}

4. RESULT ANALYSIS

As stated in the first phase results in Table 2, using two boosting models, optimal features were

identified, and ranks were assigned. Those two models gave good recognition to the elements in standard,

prepared an optimal dataset with the optimal ranked features, and then calculated mean loss and rank.

Figure 2 shows an analysis of the optimal dataset with ten features assigned positions for each element by

applying GT Boosting classification accuracy (CA) and AUC score. Figure 3 represents classifier accuracy

and AUC of the Ada-Boost classifier of optimal features. Calculated ranks for top ten features with the

support of Ada-Boost classifier. Here, we can observe the positions for the top ten out of fifteen parameters

based on their scores.

Figure 2. Gradient tree boosting classifier feature ranking

Figure 3. Ada-Boosting classifier feature ranking

According to algorithms 1 and 2, calculate CA and AUC scores each boosting algorithm assigns

ranks as shown in Table 4. Positions are given to all fifteen features such as 𝑭𝒓𝒆𝒍𝒚, 𝑭𝒅𝒂𝒕𝒂, 𝑭𝒄𝒑𝒍𝒙,

𝑭𝒕𝒊𝒎𝒆, 𝑭𝒔𝒕𝒐𝒓, 𝑭𝒗𝒊𝒓𝒕, 𝑭𝒕𝒖𝒓𝒏, 𝑭𝒂𝒄𝒂𝒑, 𝑭𝒂𝒆𝒙𝒑, 𝑭𝒑𝒄𝒂𝒑, 𝑭𝒗𝒆𝒙𝒑, 𝑭𝒍𝒆𝒙𝒑, 𝑭𝒎𝒐𝒅𝒑, 𝑭𝒕𝒐𝒐𝒍, 𝑭𝒔𝒄𝒆𝒅. Out of fifteen features GT

Boosting CA is very low for 𝑭𝒗𝒊𝒓𝒕, 𝑭𝒗𝒆𝒙𝒑, 𝑭𝒍𝒆𝒙𝒑, 𝑭𝒎𝒐𝒅𝒑, 𝑭𝒔𝒄𝒆𝒅 features, and Ada-Boost CA is very low

𝑭𝒗𝒊𝒓𝒕, 𝑭𝒑𝒄𝒂𝒑, 𝑭𝒗𝒆𝒙𝒑, 𝑭𝒍𝒆𝒙𝒑, 𝑭𝒕𝒐𝒐𝒍. So, which features are commonly identified and get low accuracies for both

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 1090-1102

1096

algorithms are removed from the original dataset and a new subset of features with twelve features and this

subset of features dataset forward to next level ensemble approach.

Table 4. Rankings of features for predicting boosting classifiers
 Optimal features based on their ranks

Adaptive boost classifier GT boost classifier

[𝐹1, 𝐹8, 𝐹15, 𝐹7, 𝐹3, 𝐹13, 𝐹9, 𝐹5, 𝐹2, 𝐹4]

required software reliability (rely), analysts capability
(acap), schedule constraint (sced), turnaround time (turn),

process complexity (cplx), programming practices (modp),

application experience (aexp), data base size (data), main
memory constraint (stor), time constraint for cpu modern

(time).

[𝐹3, 𝐹8, 𝐹14, 𝐹10, 𝐹7, 𝐹5, 𝐹9, 𝐹4, 𝐹1, 𝐹2]

process complexity (cplx), analysts capability (acap),
programmers capability (pcap), use of software tools

(tool), turnaround time (turn), main memory

constraint (stor), application experience (aexp),
required software reliability (rely), data base size

(data), time constraint for cpu modern (time).

New optimal subset features total 12 [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹7, 𝐹8, 𝐹9, 𝐹10, 𝐹13, 𝐹14, 𝐹15]

4.1. Discussion on level 1 results

As per MLE proposed model the first level conducting experiments for the original dataset and the

performance metrics of all six classifiers (NN 30-30, NB, SVM RBF, SVM poly, K-NN, and LR) concerning

the LOC and actual cost as targets reside in the original dataset, based on the experiments calculate the CA,

AUC, F1, precision and recall to all classifiers and outcomes showed in Table 5 for each model. All models

have shown relatively good performance in predicting the performance metrics. NB scored 97%, and K-NN

scored 99%, indeed a better performance compared to all other models, as the process's objective was to

predict the actual effort and LOC in the target dataset for developing the SDEE. SVM poly stands good in

CA with 95% precision and a low error rate, and the NN 30-30 classifier stands at an accuracy of 54% on

other models to predict targets.

Table 5. Classifiers performance was observed with 15 features

S.NO Base model
Performance measures with 15 features

AUC CA F1-score Precision Recall

1. NN 30-30 classifier 0.831 0.476 0.438 0.545 0.476
2. NB 0.973 0.667 0.694 0.846 0.667

3. SVM RBF 0.541 0.825 0.833 0.851 0.825

4. K-NN (EQUL) 0.993 0.873 0.870 0.883 0.873
5. SVM poly 0.651 0.937 0.939 0.955 0.937

6. LR 0.906 0.873 0.873 0.908 0.873

The ROC-AUC curve in Figure 4 shows the relationship between the true positive rate (TPR), which

measures the model sensitivity and the false positive rate (FPR) which measures model specificity for the

original dataset, which participates in fifteen features and finds the targets as LOC and actual cost, both are

proportional.

According to the ROC curve, NB performs better than the remaining individual classifiers, all

indicating respective colours, as shown in Figure 4. A lift curve analysis helps evaluate the performance of

different models, especially in classification tasks. Figure 5 shows the K-NN model achieves an

exceptionally high AUC of 4.65 at a probability threshold of 0.0, indicating that it can make highly accurate

predictions when selecting the nearest neighbors. The SVM model with a polynomial kernel has a lower

AUC of 0.508 at a probability threshold 0.168. This suggests that it may not perform as well.

4.2. Discussion on stacking ensemble learning approach at level 2

Based on the research proposal in the second level, we used an effective ensemble learning

algorithm that learns how to combine predictions from two or more base ML techniques, the stacked

ensemble. It is used to train models and make predictions, and the advantage of stacking is that it can

combine the abilities of six high-performing models on a classification and regression difficulties task to

provide forecasts that perform better than any one model in the ensemble [44]. Using this method, the

performances of multiple models are integrated to create a single, effectual output. This method uses level 1

as a base model fitting to the training data and whose predictions are generated and level 2 as a meta-model

that learns how to best combine the base models' predictions. The results of the fundamental learners'

developing features can be integrated using a weighted average. It grants the model dominance in prediction

performance as well as reliability. Also, the high-impact features selected by RF and GTB can be seen in

Table 4, with the optimal subset of features a new featured dataset prepared separately and given as input to

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Feature importance for software development effort estimation using ulti level ensemble … (K. Eswara Rao)

1097

all classifiers, including proposed stacked ensemble and conduct experiments. For this experiment, actual

cost and LOC are the target variables (both are proportional) to find the performance of the proposed model,

including all the model's accuracies, as shown in Table 6. The model performance evaluation used the same

metrics followed by level 1. The evaluation mechanism used in this study focuses on assessing the

performance of the new optimal feature dataset in predicting the development effort.

Figure 4. Performance of all models on fifteen features

Figure 5. Lift curve of all models on original dataset

Table 6. Performance of ensemble model in comparison to that of classifiers for optimal features

S.No Base model
Performance measures with 12 features

AUC CA F1-score Precision Recall

1. NN 30-30 classifier 0.841 0.492 0.481 0.580 0.492

2. Navie bayes 0.977 0.667 0.692 0.781 0.667

3. SVM RBF 0.606 0.810 0.812 0.833 0.810
4. K-NN (EQUL) 0.983 0.873 0.870 0.883 0.873

5. SVM poly 0.965 0.921 0.925 0.947 0.921

6. LR 0.851 0.794 0.791 0.807 0.794
7. Stacked ensemble 0.989 0.990 0.990 0.991 0.996

After an experimental study with a prosed model conducting experiments with twelve features, all

classifiers have shown good performance compared with level 1 results in predicting the performance

metrics. The outcome of our research proposal stacked ensemble scored 99%, and K-NN scored 98%, indeed

a better performance compared to all other models, as the objective of the process was to predict the actual

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 1090-1102

1098

effort and LOC in the target dataset for developing the SDEE. The proposed stacked ensemble stands at 99%

in CA, 99% precision and less error to predict the target.

The ROC-AUC curve in Figure 6 shows the relationship between TPR, which measures the model

sensitivity, and FPR, which measures model specificity for the optimal feature subset of the dataset which

participates in twelve features and finds the targets as LOC and actual cost, (both are proportional).

According to the ROC curve, the proposed stacked ensemble reached 1 to perform all-time better than all

remaining individual classifiers, all indicating respective colours, as shown in Figure 6.

Figure 6. Performance of all models on optimal feature subset dataset

The probability of the threshold of the proposed stacked ensemble classifier for the optimal feature

subset dataset (12 features) was also calculated to find the error in each effort category. Figure 7 shows the lift

curve analysis for each model, including the stacked ensemble concerning LOC and Actual as targets. The

proposed model achieves an exceptionally high AUC of 2.783 at a probability threshold of 0.025, indicating that

it can make highly accurate predictions compared to other individual models. The proposed model has a lower

high AUC at a probability threshold 0.0258. This suggests that our proposed model performs well, indicating

that it can make highly accurate predictions comparatively with the state-of-the-art models.

Figure 7. Lift curve of all models on optimal feature subset dataset

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Feature importance for software development effort estimation using ulti level ensemble … (K. Eswara Rao)

1099

Compared to the feature ranking technique, the accuracy obtained by stacked ensemble learning for

all classifiers as shown in Table 6 has been impossibly promising. This is partly due to the stacked ensemble-

learning algorithm's dedicated targeting of the top features based on ranking. Compared to the ideal dataset,

Figure 8 displays the classification accuracy and AUC values for the base learners and the proposed stacked

ensemble approach. The proposed stacking ensemble produced the all-time highest accuracy in predicting

SDEE and proves this research study's objective.

Figure 8. Model analysis of proposed model on optimal feature subset dataset

5. CONCLUSION

This research examined ways to estimate the software development effort with minimum time. We

noticed that using a few outstanding features yields a considerably greater AUC than the alternative. In

addition, NB and K-NN outperformed comparative with traditional techniques like NN 30-30, SVMs (poly,

RBF), and LR on the COCOMO dataset, and we proved that they usually incorporate more essential features

in achieving an acceptable level of accuracy and indicating that giving features weights may improve SDEE

when employing individual classifiers. For this, we propose a multi-level ensemble model to predict

outstanding features based on priority to estimate development effort by adopting a stacked ensemble with a

group of six well-designed learners, which outperformed and higher AUC measurements over the more

traditional techniques like NN 30-30, SVMs (poly, RBF), NB, K-NN, and LR. Based on the No Free Lunch

theorem, according to “No Free Lunch hypothesis” No-one ML classifier model is the best on every

situation, so when taking into account different ensembles, our work has revealed that it is improbable that

there is a model that is always the best. The software product manager should ideally test several models

while employing a guiding framework considering all the goals and projects they access. It makes it possible

to pinpoint the model to deliver the behaviour that best suits the manager's requirements. In future, we plan to

use further feature selection approaches to support our claim that many features in publicly available

software product datasets are unnecessary or redundant. Investigating additional ensemble learners to

contrast our system will also be part of future work.

APPENDIX

Table 1. Research on software effort estimation by adopting various appraochs
S.No Techniques used Data-set used Problem name State of art Metrics used for study Ref.

1. RSA USP05-FT

USP05-RQ

Feature reduction FFNN

NB
− MMRE

− RMSE

− MAE

[22]

2. DTF ISBSG
Desharnais

SEE DT
MLR

− MRE

− MMRE

− MdMRE

− PRED

[23]

3. COCOMO NASA 93 SDEE NB

LR

RF

− AUC

− CA

− Precision

− Recall

[24]

4. ANN COCOMO II Minimize

predetermined error

- − MMRE

− MSE

[25]

0
.9
8
3

0
.9
8
9

0
.6
0
6 0
.9
6
5

0
.9
7
7

0
.8
4
1

0
.8
5
1

0
.8
7
3

0
.9
9
0

0
.8
1

0
.9
2
1

0
.6
6
7

0
.4
9
2 0
.7
9
4

0
0.2
0.4
0.6
0.8
1

1.2
P

e
r
fo

r
m

a
n

c
e

V
a
lu

es

ML Models include Staking

12 Attributes MLs Analysis including Stacking

AUC CA

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 1090-1102

1100

Table 1. Research on software effort estimation by adopting various appraochs (continued)
S.No Techniques used Data-set used Problem name State of art Metrics used for study Ref.

5. GLM ISBSG SEE SVM
MLP

− MAE

− RMSE

− MMER, etc

[26]

6. RF ISBSG

COCOMO

SEE - − PRED

− MRE

− MMRE

− PRED

[18]

7. GA, PSO, FL, ACO, ABC - Predict reliability - - [27]

8. SEER-SEM COCOMO FPA - − MMRE

− PRED

[28]

9. OLS

SWR

RR

COCOMO

MAXWELL

CHINA

Regression based

effort estimation

ML − MAE

− BMMRE

[29]

10. ABEO-KN Promise

Repository

datasets

Ranking of

estimation methods

Analog based

methods
− MMRE

− MAR

− MdAR

− SD

− RSD

− LSD

[30]

11. ASEE Desharnais

ISBSG
Albrecht

COCOMO

Kemerer

SDEE Analog based

SDEE
− MMRE

− PRED

− MdMRE

− MRE

[31]

12. ANN COCOMO Estimating effort - − MMRE

− PRED

− RMSE

[32]

13. Classical analogy
Ensemble

ISBSG SEE Fuzzy analogy
models

− MAE

− LSD

− MBRE

− MIBRE

[33]

14. GP, MOGP Desharnais,

Finnish

Miyazaki

Accuracy - − MMRE

− PRED

− MdEMRE

[34]

15. Multi layered feed forward

neural network
(MLFFANN)

COCOMOII Prediction of

software effort

- − MSE

− MMRE

[35]

16. Fuzzy logic - SCE Bailey Basili,

Dotly, Halstead
− MRE,MF

− MMRE

[36]

17. ABE ISBSG Predict SEE CART
MLR

CNN

− MRE

− MMRE

− PRED

[37]

18. Ada Boost Desharnais

MAXWELL

LOC,

actual cost

K-NN

SVM
− Loss

− Accuracy

[38]

19. ML

CBR

Infoway

Diyatech
Tsoft

SDE - − BRE

− MRE

[39]

20. Metaheuristic optimization NASA GA, PSO, FA − MAE

− MMRE

− VAF

[40]

REFERENCES
[1] H. Park and S. Baek, “An empirical validation of a neural network model for software effort estimation,” Expert Systems with

Applications, vol. 35, no. 3, pp. 929–937, Oct. 2008, doi: 10.1016/j.eswa.2007.08.001.
[2] K. V. Kumar, V. Ravi, M. Carr, and N. R. Kiran, “Software development cost estimation using wavelet neural networks,” Journal

of Systems and Software, vol. 81, no. 11, pp. 1853–1867, Nov. 2008, doi: 10.1016/j.jss.2007.12.793.

[3] A. Khalid, M. A. Latif, and M. Adnan, “An approach to estimate the duration of software project through machine learning
techniques,” Gomal University Journal of Research, vol. 33, no. 1, pp. 47–59, 2017.

[4] A. B. Nassif, L. F. Capretz, and D. Ho, “Estimating software effort based on use case point model using sugeno fuzzy inference system,”

in 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, Nov. 2011, pp. 393–398. doi: 10.1109/ICTAI.2011.64.
[5] I. C. Suherman, R. Sarno, and Sholiq, “Implementation of random forest regression for COCOMO II effort estimation,” in 2020

International Seminar on Application for Technology of Information and Communication (iSemantic), Sep. 2020, pp. 476–481.

doi: 10.1109/iSemantic50169.2020.9234269.
[6] H. Leung and Z. Fan, “Software cost estimation,” in Handbook of Software Engineering and Knowledge Engineering, World

Scientific Publishing Company, 2002, pp. 307–324. doi: 10.1142/9789812389701_0014.

[7] J. Shivhare, “Effectiveness of feature selection and machine learning techniques for software effort estimation,” National Institute

of Technology Rourkela, 2014.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Feature importance for software development effort estimation using ulti level ensemble … (K. Eswara Rao)

1101

[8] K. E. Rao and G. A. Rao, “Ensemble learning with recursive feature elimination integrated software effort estimation: a novel
approach,” Evolutionary Intelligence, vol. 14, no. 1, pp. 151–162, 2021, doi: 10.1007/s12065-020-00360-5.

[9] Z. Polkowski, J. Vora, S. Tanwar, S. Tyagi, P. K. Singh, and Y. Singh, “Machine learning-based software effort estimation: an

analysis,” in 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Jun. 2019, pp. 1–
6. doi: 10.1109/ECAI46879.2019.9042031.

[10] I. Attarzadeh, A. Mehranzadeh, and A. Barati, “Proposing an enhanced artificial neural network prediction model to improve the

accuracy in software effort estimation,” in 2012 Fourth International Conference on Computational Intelligence, Communication
Systems and Networks, Jul. 2012, pp. 167–172. doi: 10.1109/CICSyN.2012.39.

[11] Z. Shahpar, V. K. Bardsiri, and A. K. Bardsiri, “An evolutionary ensemble analogy‐based software effort estimation,” Software:

Practice and Experience, vol. 52, no. 4, pp. 929–946, Apr. 2022, doi: 10.1002/spe.3040.
[12] C. Singh, N. Sharma, and N. Kumar, “An efficient approach for software maintenance effort estimation using particle swarm

optimization technique,” International Journal of Recent Technology and Engineering, vol. 7, no. 6C, pp. 1–6, 2019.

[13] L. L. Minku and X. Yao, “Ensembles and locality: insight on improving software effort estimation,” Information and Software
Technology, vol. 55, no. 8, pp. 1512–1528, Aug. 2013, doi: 10.1016/j.infsof.2012.09.012.

[14] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble effort estimation,” IEEE Transactions on Software

Engineering, vol. 38, no. 6, pp. 1403–1416, Nov. 2011, doi: 10.1109/TSE.2011.111.
[15] D. Azhar, P. Riddle, E. Mendes, N. Mittas, and L. Angelis, “Using ensembles for web effort estimation,” in 2013 ACM / IEEE

International Symposium on Empirical Software Engineering and Measurement, Oct. 2013, pp. 173–182. doi:

10.1109/ESEM.2013.25.
[16] M. Azzeh, A. B. Nassif, and L. L. Minku, “An empirical evaluation of ensemble adjustment methods for analogy-based effort

estimation,” Journal of Systems and Software, vol. 103, pp. 36–52, May 2015, doi: 10.1016/j.jss.2015.01.028.

[17] A. B. Nassif, M. Azzeh, A. Idri, and A. Abran, “Software development effort estimation using regression fuzzy models,”
Computational Intelligence and Neuroscience, vol. 2019, Feb. 2019, doi: 10.1155/2019/8367214.

[18] A. Idri, F. A. Amazal, and A. Abran, “Analogy-based software development effort estimation: a systematic mapping and review,”

Information and Software Technology, vol. 58, pp. 206–230, Feb. 2015, doi: 10.1016/j.infsof.2014.07.013.
[19] P. S. Kumar and H. S. Behera, “Estimating software effort using neural network: an experimental investigation,” in Advances in

Intelligent Systems and Computing, Springer Singapore, 2020, pp. 165–180. doi: 10.1007/978-981-15-2449-3_14.

[20] L. L. Minku and X. Yao, “A principled evaluation of ensembles of learning machines for software effort estimation,” Sep. 2011.
doi: 10.1145/2020390.2020399.

[21] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl, “Optimal project feature weights in analogy-based cost

estimation: improvement and limitations,” IEEE Transactions on Software Engineering, vol. 32, no. 2, pp. 83–92, Feb. 2006, doi:
10.1109/TSE.2006.1599418.

[22] J. Shivhare and S. K. Rath, “Software effort estimation using machine learning techniques,” Feb. 2014. doi:

10.1145/2590748.2590767.
[23] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “A comparison between decision trees and decision tree forest models for

software development effort estimation,” in 2013 Third International Conference on Communications and Information

Technology (ICCIT), Jun. 2013, pp. 220–224. doi: 10.1109/ICCITechnology.2013.6579553.
[24] A. B. Mustafa, “Predicting software effort estimation using machine learning techniques,” Jul. 2018. doi:

10.1109/CSIT.2018.8486222.

[25] P. Rijwani and S. Jain, “Enhanced software effort estimation using multi layered feed forward artificial neural network
technique,” Procedia Computer Science, vol. 89, pp. 307–312, 2016, doi: 10.1016/j.procs.2016.06.073.

[26] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective approach for software project effort and duration

estimation with machine learning algorithms,” Journal of Systems and Software, Mar. 2017, doi: 10.1016/j.jss.2017.11.066.
[27] C. Diwaker, P. Tomar, R. C. Poonia, and V. Singh, “Prediction of software reliability using bio inspired soft computing

techniques,” Journal of Medical Systems, vol. 42, no. 5, pp. 1–16, May 2018, doi: 10.1007/s10916-018-0952-3.

[28] W. L. Du, D. Ho, and L. F. Capretz, “A neuro-fuzzy model with SEER-SEM for software effort estimation,” 2015.
[29] S. Mensah, J. Keung, M. F. Bosu, and K. E. Bennin, “Duplex output software effort estimation model with self-guided

interpretation,” Information and Software Technology, vol. 94, pp. 1–13, Feb. 2018, doi: 10.1016/j.infsof.2017.09.010.
[30] P. Phannachitta, J. Keung, A. Monden, and K. Matsumoto, “A stability assessment of solution adaptation techniques for analogy-based

software effort estimation,” Empirical Software Engineering, vol. 22, no. 1, pp. 474–504, Feb. 2017, doi: 10.1007/s10664-016-9434-8.

[31] A. Idri, F. A. Amazal, and A. Abran, “Analogy-Based software development effort estimation: a systematic mapping and review,”
Information and Software Technology, Feb. 2014, doi: 10.1016/j.infsof.2014.07.013.

[32] K. K. T. M, S. Aihole, and S. Putage, “Anticipation of software development effort using artificial neural network for NASA data

sets,” International Journal of Engineering Science and Computing, vol. 7, no. 5, p. 11228, 2017.

[33] A. Idri, M. Hosni, and A. Abran, “Improved estimation of software development effort using classical and fuzzy analogy

ensembles,” Applied Soft Computing, vol. 49, pp. 990–1019, Dec. 2016, doi: 10.1016/j.asoc.2016.08.012.

[34] F. Sarro, F. Ferrucci, and C. Gravino, “Single and multi objective genetic programming for software development effort estimation,” in
Proceedings of the 27th Annual ACM Symposium on Applied Computing, Mar. 2012, pp. 1221–1226. doi: 10.1145/2245276.2231968.

[35] L. Friedman and O. V Komogortsev, “Assessment of the effectiveness of seven biometric feature normalization techniques,”

IEEE Transactions on Information Forensics and Security, vol. 14, no. 10, pp. 2528–2536, Oct. 2019, doi:
10.1109/TIFS.2019.2904844.

[36] A. Mittal, K. Parkash, and H. Mittal, “Software cost estimation using fuzzy logic,” ACM SIGSOFT Software Engineering Notes,

vol. 35, no. 1, pp. 1–7, Jan. 2010, doi: 10.1145/1668862.1668866.
[37] E. Khatibi and V. K. Bardsiri, “Model to estimate the software development effort based on in‐depth analysis of project

attributes,” IET Software, vol. 9, no. 4, pp. 109–118, Aug. 2015, doi: 10.1049/iet-sen.2014.0169.

[38] O. Hidmi and B. E. Sakar, “Software development effort estimation using ensemble machine learning,” International Journal of
Computing, Communication and Instrumentation Engineering, vol. 4, no. 1, pp. 143–147, Jun. 2017, doi:

10.15242/IJCCIE.E0317026.

[39] M. Usman, K. Petersen, J. Börstler, and P. S. Neto, “Developing and using checklists to improve software effort estimation: a
multi-case study,” Journal of Systems and Software, Dec. 2018, doi: 10.1016/j.jss.2018.09.054.

[40] N. Ghatasheh, H. Faris, I. Aljarah, and R. M. H. Al-Sayyed, “Optimizing software effort estimation models using firefly

algorithm,” Journal of Software Engineering and Applications, 2019, doi: 10.4236/jsea.2015.83014.
[41] P. Rani, R. Kumar, A. Jain, and S. K. Chawla, “A hybrid approach for feature selection based on genetic algorithm and recursive

feature elimination,” International Journal of Information System Modeling and Design, vol. 12, no. 2, pp. 17–38, Apr. 2021, doi:

10.4018/IJISMD.2021040102.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 1090-1102

1102

[42] B. Al-Salemi, M. Ayob, and S. A. M. Noah, “Feature ranking for enhancing boosting-based multi-label text categorization,”

Expert Systems with Applications, vol. 113, pp. 531–543, Dec. 2018, doi: 10.1016/j.eswa.2018.07.024.
[43] H. Rao et al., “Feature selection based on artificial bee colony and gradient boosting decision tree,” Applied Soft Computing, vol.

74, pp. 634–642, Jan. 2019, doi: 10.1016/j.asoc.2018.10.036.

[44] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble learning on selected features,” Information
and Software Technology, vol. 58, pp. 388–402, Feb. 2015, doi: 10.1016/j.infsof.2014.07.005.

BIOGRAPHIES OF AUTHORS

K. Eswara Rao received the Doctorate Degree in Computer Science and

Engineering (CSE) from GITAM University, Visakhapatnam, AP, India, in 2023, and the

Masters Degree in Neural Networks specialization in the CSE from JNT University,

Kakinada, AP, India, in 2009. He is currently working as Associate Professor in Aditya

Institute of Technology and Management (AITAM), Tekkali, Srikakulam. His research

interests include machine learning, data mining, data analytics, and operating system. He has

published numerous conference proceedings as well as published Scopus, Wos, Google

Scholors indexed papers also published various international books. He can be contacted at

email: eswarkoppala@gmail.com.

Pandu Ranga Vital Terlapu obtained his Degree in CS from Andhra

University in A.P,. He pursued his M. Tech in CSE from ANU in A.P., and completed his

Ph.D. in CSE from GITAM University. With a total of 24 years of teaching and 18 years of

research experience, he currently holds the position of Professor in the Department of

Computer science and Engineering at Aditya Institute of Technology and Management

(AITAM), India. Dr. Terlapu has contributed to the field of computer science with over 50

research papers published in reputed international journals, including SCI, SCOPUS-indexed

journals, and conferences published by Springer, Elsevier, and available online. He can be

contacted at email: vital2927@gmail.com.

Paidi Annan Naidu working as an Associate Professor, Department of

Computer Science and Engineering in Aditya Institute of Technology and Management

(Autonomous), Tekkali, Srikakulam, AndhraPradesh, India. He has 15 years of teaching

experience in Engineering Colleges/University and he has published many research papers in

UGC/WoS/Scopus indexed journals, three patents, three book chapters and in the

proceedings of several conferences. His area of research includes data mining, artificial

intelligence, machine learning, and GAN. He is a life member of ISTE and various reputed

computer science associations. He also served as reviewer, editorial board member and co-

chair for various international journals and conferences respectively. He can be contacted at

email: annanpaidi@gmail.com.

Tammineni Ravi Kumar received the Doctorate Degree in Computer Science

and Engineering (CSE) from GITAM University, Visakhapatnam, AP, India, in 2023, and

the Masters Degree in Computer Science and Engineering CSE from JNT University,

Hyderabad, AP, India, in 2008. He is currently working as Associate Professor in Aditya

Institute of Technology and Management (AITAM), Tekkali, Srikakulam. His research

interests include machine learning, data mining, data analytics, software engineering, and

network security. He has published numerous conference proceedings as well as papers in

international journals. He can be contacted at email: ravi.4u@adityatekkali.edu.in.

Bala Murali Pydi received the Bachelor's Degree in Electrical and Electronics

engineering from JNT University, Kakainada in 2001, the Master's Degree in Powersystem

from NIT Jamshedpur in 2006, and the Completed philosophy of doctorate in Electrical and

Electronics Engineering in NIT Jamshedpur, respectively. Now he is currently working as an

Associate Professor at the Department of Electrical and Electronics Engineering, Aditya

Institute of Technology and Management, Tekkali, Andhra Pradesh, India. His research areas

include power systems, electrical machines, renewable energy sources, and control systems.

He has been serving as a reviewer for many highly-respected journals. He can be contacted

at email: balu_p4@yahoo.com.

https://orcid.org/0000-0003-3808-3537
https://scholar.google.com/citations?user=wOd4lL4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57222625444
https://www.webofscience.com/wos/author/record/AAV-1710-2020
https://orcid.org/0000-0002-4393-0692
https://scholar.google.co.in/citations?user=NOYbEHUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57209504816
https://www.webofscience.com/wos/author/record/3521412
http://www.orcid.org/0000-0003-4919-3686
http://scholar.google.co.in/citations?user=Nrb9A3UAAAAJ
http://www.scopus.com/authid/detail.url?authorId=57213170347
http://www.researcherid.com/rid/ABH-4023-2020
https://orcid.org/0000-0002-0856-3719
https://scholar.google.com/citations?user=3aEaZlMAAAAJ&hl=en
https://orcid.org/0000-0003-2458-7179
https://www.scopus.com/authid/detail.uri?authorId=58075925800

