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This article presents a modified method of mountain gazelle optimizer
(MMGO) as a direct current (DC) motor control. Mountain gazelle optimizer
(MGO) is an algorithm inspired by the life of the mountain gazelle animal in
nature. This animal concept has five essential steps that are duplicated in
mathematical modeling. This article uses two tests to get the performance of
the MMGO method. The first test uses a benchmark function test with a
comparison method, namely the sine tree seed algorithm (STSA) and the
original MGO. The second test is the application of MMGO as a DC motor
control. The simulation results show that MMGO can reduce the overshoot
of conventional proportional integral derivative (PID) control by 0.447% and
has a better integral time square error (ITSE) value of 5.345 than
conventional PID control. Thus, the MMGO method shows promising
performance.
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1. INTRODUCTION

Technology development today is speedy and spread [1], [2]. This makes accuracy and efficiency
increasingly important in using electronic equipment [3]-[5]. DC motors that have become popular in several
electronic equipments are also affected [6], [7]. DC motors are widely used in various industrial household
applications that demand a flexible speed range [8], [9]. This is to maintain accurate adaptation or where low-

speed torque is required.

Speed control is a concept to keep the speed within the required range. The concept of control can
be applied based on automatic and manual [10]. DC motors can be controlled with different controls.
[11]-[14]. The conventional proportional-integral (PI) and proportional integral derivative (PID) controls are
popular and often applied controls. PID is in the spotlight because it has a low price compared to more
complex control systems [15], [16]. In addition, the PID can maintain system output according to the value
set within the error limit [17], [18]. PID's downside is its lack of toughness [19]-[21].
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Nonlinear modeling problems are often a constraint in a control [22], [23]. One effort to solve
nonlinear problems is to do mathematical modeling. This provides support in the use of time and cost
efficiency. However, mathematical modeling will not be presented easily. This has prompted several
researchers to approach the control system.

In recent years, many studies have been presented on optimization-based control concepts such as
the application of the whale optimization algorithm (WOA) [24], Henry gas solubility optimization (HGSO)
[25], particle swarm optimization (PSO) [26], coronavirus optimization algorithm (COA) [27], Grey wolf
optimization (GWO) [28], Harris hawks optimization (HHO) [29], and evolutionary algorithms (EA) [30].

Although several optimized control studies have been presented, there is still much room to be
explored in DC motor control. This article presents a control concept based on a modified mountain gazelle
optimizer (MMGO) method in tuning PID parameters in DC motors. This article applies 2 performance
measurements of the modified mountain gazelle optimization (MGO) method. The first performance
measurement is to compare the benchmark function tests with the comparison method, namely the sine tree
seed algorithm (STSA) and the original MGO. The MMGO method was tested for DC motor control using
PID in the second experiment. In the second test, a comparison method was used, namely the conventional
PID method, STSA-based PID (PID-STSA), original MGO-based PID (PID-MGO) and MMGO-based PID
(PID-MMGO). The contribution of this article is the application of PID control on DC motors using the
MMGO method.

2. RESEARCH METHOD
2.1. Mountain gazelle optimizer

MGO is an algorithm based on the life of mountain gazelles in nature. Animals originating from the
Arabian peninsula have a uniqueness close to the Robinia tree. This animal has a very territorial uniqueness. For
that reason, they are very far apart from each other. This animal has three groups: parent-child territory, young
male territory, and single male zone. The optimization of the MGO algorithm applies five important keys: non-
grouping, stag male groups, maternity groups, male zones, and the migration process in search of food [31].

2.1.1. Male zones

This session describes the struggle for territory or females between mountain gazelles. Each
individual has a separate and remote area. The character of the young male is to conquer the area of the
female. Meanwhile, the other task is to take care of the area itself. This session can be derived
mathematically in (1)-(5):

M, = my — |(riy X YM — iy x X(£)) X F| X cv )
YM = X,q X |ry] + My, X [r],7a = {|§| N} )
F = N,(D) X exp (2 —it % (m;xit)> 3)
(@+1)+m
v = P @
N5 (D) X Ny(D)? X cos( (r, X 2) X N5(D))
a=—1+itx (=) ©

where the position of the optimum global breaking is m, ri; and ri, are the random values. cv is a
coefficient vector that is random and updated in each iteration. X, is illustrated as a random value with a
range ra. M,, is illustrated as the average value of the search agent. The total of search agents is N. A
random value from the basic distribution is N;(D). it and maxit are the current iteration and maximum
iteration. r3, and r, are random numbers [0,1]. N,, N5 and N, are random numbers in the natural space and
the sizes of the issue.

2.1.2. Maternity groups
In this section, the maternity group holds the key to the life cycle of the mountain gazelles. This
session will get a challenging stag. This session can be modeled mathematically in (6):
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MG = (YM + cv) + (riz X mg — Tig X Xpgqnq) X CV (6)

Where x,.n4 1S the vector position of an agent that is randomly chosen from the all population. ri; and i,
are the integer and the random values.

2.1.3. Stag male groups
In this session, adult males are encouraged to dominate the territory and females. This power
struggle occurs between young males and adult males. Behavior in this session can be formulated in (7)-(8):

STG = (X(t) — D) + (ris X my —rig X MG) X cv (7
D =X+ |my|)+@x1—1) (8)

Where the ris and riy are integers 1 or 2 that are selected randomly. X(t) and r, are the positions of the
agent vectors in the current iteration and random value.

2.1.4. Migration process
This session describes this animal as having a good running and jumping character. They always
move long distances in search of food. This session is formulated in (9):

M = (UB—LB)xr, + LB 9)
Where UB and LB are the upper and lower limits.

2.2. DC motor schematic

In this session, the mechanical electrical equations and their combination are used to obtain a linear
model of a DC motor. Mathematical models and model concepts are explained. The primary key in control
design is the accuracy of the model. This brings time and cost savings as well as efficiency. The concept of
building the right model is an important step. The popular DC motor modeling concept is the integration of
electrical and mechanical equations, which can be seen in the illustration in Figure 1.
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Figure 1. The DC motor schematic [32]

2.3. The modified mountain gazelle optimizer
This article presents a modification of MGO by using the parameters of elite individuals. Individual
elites are individuals with minimum fitness.

Xeiite = argmin(f (X;)) (10)
In (10) is integrated into (2) and (5). So that (2) becomes (11) and (5) becomes (12).
YM = Xy X 1]+ My, X [15] X Xy, 7a = {[3] .. N} (11)

-1

a=-1+itx (maxlt) X Xepite (12)
2.4. The proposed MMGO for tuning proportional integral derivative in DC motor
MMGO is used to obtain PID parameters to obtain DC motor adaptive control. This is to get the

optimal transient response points. An illustration of the proposed control can be seen in Figure 2.
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Figure 2. The proposed MMGO methodology

3. RESULTS AND DISCUSSION

MATLAB/Simulink application with a laptop with an Intel 15-5200 2.19 GHz processor
specification and 8 GB of RAM are used to perform simulations and write code. The performance
measurement of the MMGO algorithm uses the benchmark function. This is to determine the performance of
the proposed method. The set of mathematical problems has 23 benchmark functions. This set comprises 10
fixed-dimensional multimodal functions F14-F23, 6 multimodal functions F8—F13, and 7 unimodal functions
F1-F7. Figures 3(a) to (g) (in appendix) show the unimodal. Figures 3(h) to (m) (in appendix) show the
multi-modal function chart. Figures 3(n) to (v) (in appendix) show the composite function chart. Details of
the performance measurement with the benchmark function can be seen in Figure 3.

DC motor control that uses PID requires precise and accurate parameter tuning. The application of
MMGO to get good PID parameters is also necessary to validate its performance. The results of the PID
control for DC motors by applying MMGO can be seen in Figure 4. Several theories can be used to measure
the performance of a control. Some well-known theories include integral square error (ISE), integrated
absolute error (IAE), and integral time square error (ITSE). In this article, ITSE is used as performance
validation.
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Figure 4. The result of DC motor

By testing the MMGO-based PID on a DC motor with a reference speed of 1 pu, the ITSE of the
PID-MMGO is 0.2905. This value is the same as the approach via PID-STSA. The detailed results of the
performance test of each algorithm can be seen in Table 1.
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Table 1. Output DC motor with PID

Controller Overshoot Risetime Settlingtime  ITSE

PID-STSA 1.0027 0.1774 0.2841 0.2905

PID-MGO 1.003 0.1777 0.2845 0.2909
PID-MMGO 1.0026 0.1775 0.2841 0.2904

4. CONCLUSION

This article proposes a modified method of the mountain gazelle algorithm. The hierarchy and social
structure of wild mountain gazelles served as the inspiration for the development of the MGO. Based on the
social and hierarchical requirements of gazelles, the MGO is mathematically modeled. The algorithm is
modeled using the fundamental elements, including motherhood herds, bachelor male herds, territorial males,
solitude, and migration in quest of food. A solution can conduct the exploratory operation while also
progressing toward the ideal solution using the four stages of the proposed model. The proposed method adds
a parameter for new exploration and exploitation performance. Performance on DC motor control using a
comparison method, namely the conventional PID method, STSA, and the original MGO. From the
simulation results, the article finds that the overshoot value of the conventional method can be reduced by
0.447% with the application of MMGO. The ITSE value of MMGO is slightly different from MGQO's, which

is 0.137%. The application of the MMGO method has promising expectations.
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