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 Traditional methods for tracking the paths of driverless vehicles use plant 
models to determine the corresponding control laws. Due to the intricate 
interactions between the road and the tires, time-varying characteristics, and 
unidentified disturbances. It is challenging to create an accurate vehicle 
model. As a result, data-driven controllers, which are independent of a 
predetermined plant model are becoming more and more well-liked. This 
work implements adaptive cruise control (ACC) by employing a control 
approach called extremum seeking technique (EST), which is a model-free 
control (MFC), to control a vehicle braking and longitudinal acceleration. 
The main aim here is to create an ego vehicle that travels at a specific speed 
with maintaining a secure space with respect to a guide vehicle. A car 
including an ACC technique called ego car, exploits radar to determine 
relative velocity and relative space relating to the guiding car. The ACC 
technique is considered to keep maintain a relatively secure space or a 
preferred cruising velocity concerning the guiding vehicle. The developed 
model succeeded to determine the relative velocity and relative space 
according for the ego car to another guiding car with acceleration not more 
than ±2 m/s2 and spacing error less than 6 m. 
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1. INTRODUCTION 

In today’s technologically advanced world, it is becoming more and more important to create 
intelligent composing systems that are capable of carrying out various control duties. As a result, the 
connectivity between these units also becomes crucial. Therefore, it is crucial to accurately design the 
compositional systems that control these linkages. Each component of this compositional design should 
function as predicted without concern for any intervention that would impair the overall performance of the 
system. Traditional methods for tracking the paths of driverless vehicles use plant models to determine the 
corresponding control laws. Due to the intricate interactions between the road and the tires, time-varying 
characteristics, and unidentified disturbances. It is challenging to create an accurate vehicle model. As a 
result, data-driven controllers [1]–[3], which are independent of a predetermined plant model are becoming 
more and more well-liked. Particularly, the model-free control (MFC), which offers a simple solution to earth 
vehicle pathway tracking, characterizes the derivatives of an output control as summations of an offset term 
and an amplified control input. Despite its simplicity, MFC still largely relies on trial-and-error tweaking for 
control gain, which can be tedious and unreliable. 
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Smart energy systems, smart medical equipment, and smart transportation systems are a few examples 
of cyber-physical systems [4], [5]. These systems essentially have two main components: i) a physical 
component that gives the system a continuous representation of the physical world, typically through the use 
of ordinary differential equations and ii) a communication and computational component that keeps an eye 
on, coordinates, and controls the physical systems. Strong communication links are necessary for the 
computing unit, which also houses the design’s software component, to both receive and transmit data to the 
outside world [6]. Cyber-physical systems control and robustness and reliability maintenance face enormous 
hurdles. Dissipativity and more precisely passivity are energy-based notions that offer a potent tool for 
overcoming the difficulties that compositional systems bring about. Instead of producing their energy, 
passive systems merely store or release the energy that has been supplied to them. For zero-state detectable 
(ZSD) systems, passivity can exhibit asymptotic stability in the proper circumstances [7]. Passivity and 
stability are maintained for large-scale systems made up of passive stable units because both negative 
feedback and parallel interconnections of passive systems remain passive [8]. Because of this, passive 
designs are an excellent choice for developing cyber-physical systems. An important variable in vehicle 
safety control systems is the tire-road friction coefficient. Antilock braking systems (ABS) and traction 
control systems (TCS) in particular need friction information when braking and when accelerating. The road 
condition determines the extremum of the force characteristic acting on the tires. Extremum seeking technique 
(EST) is a real-time model-free adaptive control method used to adapt parameters to unidentified mappings and 
unidentified system dynamics starting by input parameters to the objective function. EST can solve dynamic 
systems problems related to parameters and static optimization [9], [10]. 

The adaptive gain-tuning techniques now in use either rely on the attempt to simultaneously 
recognize the offset term and the control gain or the directive from the previous step to repeatedly renew the 
control gain at the present phase. They might, however, result in chattering or unrestricted improvements in 
control. Research by Wang et al. [9] integrated a MFC with the EST to offer a fresh perspective for the MFC 
gain adjustment while enhancing its control performance for the EST. To gradually improve the control 
performance of the MFC, EST changes the control gain of real-time MFC. However, the stability of the 
method was not effective for vehicle braking and longitudinal acceleration. The adaptive constant wheel slip 
control (WSC) for exercise service vehicles with decoupled high-dynamic electro-hydraulic brake systems 
was described in [11]. Although this study describes the system design and a mathematical formulation of the 
WSC was proposed as a state estimator, the presented algorithm didn’t discuss vehicle braking. This issue 
has been discussed by Zhou et al. [12] with a new fractional-order EST method based online but for another 
application, which is an energy management control application. Research by Lin et al. [13] proposed a 
method without using position measurements by addressing a 3-D problem involving maneuvering a 
nonholonomic vehicle to locate an unidentified source of a spatially distributed signal field. An EST-based 
method with configurable pitch, yaw velocities, and constant forward speed was presented. However, the 
longitudinal acceleration didn’t consider the control loop. Research by See et al. [14] solved the boundary 
layer thickness of the water column for an underwater vehicle. Although this study presented an EST-based 
unscented Kalman filter detecting and tracking this cannot be applied on a ground vehicle. Research by 
Zengin et al. [15] developed an EST based on recursive least squares to determine the ideal slip ratio online 
to achieve the greatest acceleration/deceleration. Although the presented simulation results demonstrated the 
efficacy of the created method and quantitatively compare it with a gradient-based estimate, there is no 
discussion about the breaking control of the vehicle. Research by Liu et al. [16] presented EST on a 
Hammerstein plant together with an adaptive phase compensator and a high-gain optimizer. However, this 
system didn’t present a safety distance and braking controller. Research by Bhattacharjee et al. [17] 
examined two methods: i) the peak seeking algorithm based on adaptive sampling and ii) the EST. The 
nonlinear model predictive controller (MPC) uses a brand-new state dependent coefficient version of the 
nonlinear quadcopter dynamics. This makes it possible to include input, state, and output constraints in the 
formulation, which increases the realism of the simulations. The suggested algorithms were effective in 
locating the area of greatest concentration for a constant plume but not for tracking, safe distance, and 
breaking control.  

All this allows asserting that it is expedient to conduct a study on implementing an adaptive cruise 
control (ACC) by employing an EST control approach to control a vehicle braking and longitudinal 
acceleration, which will lead to creating an ego vehicle that travels at a specific speed with maintaining a 
secure space with respect to a guide vehicle. The aim of the research is to implement ACC by employing a 
control approach called EST to create an ego vehicle that travels at a specific speed with maintaining a secure 
space with respect. This will make it possible to a guide vehicle using braking and longitudinal acceleration 
control. To achieve this aim, the following objectives are accomplished: i) to obtain the velocity and relative 
space for the guide and ego vehicles, ii) to examine EST seeking cost function, and iii) to analyze and get the 
gains of controllers during tracking simulation. 
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2. METHOD 
2.1.  Object and research hypothesis 

This work develops an implementation of ACC by employing a control approach called EST. A car 
including an ACC technique called ego car exploits radar to determine relative velocity (Vrel) and relative 
space (Srel) relating to the guiding car. The ACC technique is considered to preserve and maintain a 
relatively secure space (Ssaf) or a preferred cruising velocity (Vset) from the guiding vehicle. The control 
objective is settled according to the following circumstances:  
- If Srel>Ssaf, the ACC will follow the preferred reference cruise speed that the driver is controlling. 
- If Srel<Ssaf, the ACC will control the ego vehicle’s relative location with regard to the guide vehicle. 

 
2.2.  Using adaptive cruise control 

In this work, we use the same ACC technique with MPC to model both the guide and ego vehicle 
using MATLAB environment functions. The assumptions made in the work are described in section 2.4, 
while the simplifications adopted are demonstrated in the following subsections. By implementing a simple 
second-order linear model [18], the longitudinal dynamics of the vehicle can be represented by the following 
transfer function: 

 

𝐺 =
ଵ

଴.ହ௦మା௦
 (1) 

 
where the parameters of the ACC are listed in Table 1. 

 
 

Table 1. Adaptive cruise control parameters 
Description Value Description Value 

Default spacing (m) D_default=10 Maximum acceleration for driver comfort (m/s^2) amax_ego=2 
Time gap (s) t_gap=1.4 Minimum acceleration for driver comfort (m/s^2) amin_ego=-3 
Initial ego car velocity (m/s) v0_ego=20 Driver-set velocity (m/s) v_set=30 
Initial ego car position (m) x0_ego=10 Sample time (s) Ts=0.1 
Initial lead car velocity (m/s) v0_lead=25 Duration (s) Tf=150 
Initial lead car position (m) x0_lead=50   

 
 

2.3.  Applying extremum seeking technique with adaptive cruise control 
To maximize an objective function, EST is used to tune the parameters of the controllers that are 

adaptive MFC [19]. These controllers are functional to be adapted to unknown mappings from an objective 
function to control parameters and unidentified system dynamics. The EST employs a different tuning loop 
for each parameter when searching for several parameters. By perturbing (modulating) the parameters with a 
sinusoidal signal and demodulating the resultant perturbed goal function, the EST block looks for the best 
control parameters. Figure 1 demonstrates the block diagram of applying the EST with ACC. 

 
 

 
 

Figure 1. Applying extremum seeking technique 
 
 
Referring to the Figure 1, 𝜔𝑙 and 𝜔ℎ denote the low-pass filter and the high-pass filter cutoff 

frequency, respectively. 𝑇𝑠 denotes the discrete-time controller sample time learning rate. The 𝜃 and ˆ𝜃 
denote the modulation and estimated parameter of the signal, while 𝑦 = 𝑓(𝜃) represents the optimized 
objective function output with forcing frequency (𝜔) for the demodulated (𝑎 · 𝑠𝑖𝑛(𝜔𝑡)) and modulated 
(𝑏 · 𝑠𝑖𝑛(𝜔𝑡)) signals on the 𝑘 learning rate. At the highest value of 𝑓(𝜃), the parameter’s ideal value, 𝜃 ∗, 
occurs. We use a different tuning loop for each parameter to optimize several parameters. The EST for a 
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growing segment of the objective function plot is shown in Figure 2(a). The modulated waveform is made up 
of the existing predictable parameter and the modulation waveform. A perturbed objective function of the 
same stage as the modulation waveform is produced by applying f(θ). A positive signal is generated by 
multiplying the demodulation signal by the altered objective function. The value rises as the signal is 
integrated, bringing it closer to the objective function’s peak. The goal function curve’s declining section is 
illustrated as EST in Figure 2(b). 

 
 

  
(a) (b) 

 
Figure 2. EST for; (a) a growing segment and (b) a declining section of the objective function plot 

 
 
Applying 𝑓(𝜃) in this situation results in 180° out of phase objective function with the modulation 

waveform. A negative signal is generated by multiplying the demodulation signal [20]. To construct an EST 
algorithm, we configure parameter initial conditions, learning rates, demodulation signal, modulation signals, 
and appropriate forcing frequencies. Then set the time scale to the fastest value is ensured for the system 
dynamics, a medium time scale for the perturbation forcing frequencies, and the slowest time scale for the 
filter cutoff frequencies. EST can be used in both discrete-time and continuous-time systems. The tuning 
loops include the time domain of the integrators, low-pass filters, and high-pass filters are all impacted by a 
change in the controller’s time domain. We use a discrete-time controller to provide code for the EST, which 
can be deployed on the hardware. By modifying control settings in real-time to optimize an objective 
function (𝐽), EST achieves sufficient control performance [21]–[23]. We use this objective function, which is 
dependent on set velocity, relative velocity, safe distance, and relative distance, 𝐽 for this work can be 
represented as in (2): 

 
𝐽 = −∫𝑄ௗ(𝑆௥௘௟ − 𝑆௦௔௙)

ଶ +𝑄ௗ(𝑣௥௘௟ − 𝑣௦௘௧)
ଶ (2) 

 
Here 𝑄𝑣 = 0.5 and 𝑄𝑑 = 1 are the weights of the objective function of the velocity error and distance error 
index. EST tunes the values of the parameters by using the following phases: 
- The modulation stage uses a low-amplitude sinusoidal signal to change the value of the parameter being 

improved. 
- Response stage, where the optimizing system responds to the perturbations of the parameter, that 

response may affect an equivalent transform on the value of the objective function. 
- The demodulation stage multiplies a sinusoidal signal of a frequency similar to the modulation signal by 

the objective function signal. To eliminate bias from the objective function waveform, this phase contains 
a high-pass filter as an option. 

- Updating the parameters stage, this process performs an integration process and optional low-pass filter 
on the demodulated input signals to eliminate the noise of high-frequency. The state of the integrator 
represents the parameter value. 

The EST considers the position error gain (Kxerr), velocity error gain (Kverr), and relative velocity 
gain (Kvrel) as the gains for the EST controller [24]. These gains are specified initially with values 1, 1, and 
0.5, respectively for the ACC. 
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2.4.  Identifying parameters of extremum seeking technique 
The three gains of these controllers have been tuned by specifying the number of parameters (𝑁 = 3). 

Each parameter is tuned using a different tuning loop by the controller. By amounting the preliminary gain 
values regarding the learning rate for every parameter lr, we specify the parameter initial conditions for 
updating integrators by 𝑙𝑟 = 0.02[2,3,1] and set the frequencies, phases, amplitudes of the modulation, and 
demodulation signals (phi 2, phi 1, and omega) (b and a). There must be a different forcing frequency for 
each parameter. In this work, we use identical demodulation, modulation amplitudes, and phases for all 
parameters. A low-pass filter eliminates the noise due to the high frequency from the demodulated input, a 
high-pass filter is used to eliminate the signal bias of the anxious goal function and to give these filters their 
cut-off frequencies. The simulation of the EST-based ACC is shown in Figure 3, while the objective and 
plant dynamics block that computes the objective function and includes the ACC models for the ESC method 
is shown in Figure 4. The parameters of the extremum-seeking technique are listed in Table 2. 

 
 

 
 

Figure 3. Simulation design of EST-based adaptive cruise controller 
 
 

 
 

Figure 4. Simulation of the objective and plant dynamics 
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Table 2. Parameters of extremum seeking technique 
Description Symbol and value 

Forcing frequency (rad/s) omega=0.8*[5,7,8] 
omega_hpf =0.01 
omega_lpf =0.04 
Modulation phase (rad) phi_2=pi/4 
Demodulation phase (rad) phi_1=0 
Demodulation amplitude a=0.01 
Modulation amplitude b=0.5*lr 

 
 

3. RESULTS AND DISCUSSION 
3.1.  Velocity and relative space for guide and ego vehicles 

After running the developed simulation, the result of the vehicle velocity model is shown in  
Figure 5(a), while the acceleration variation for the ego vehicle is shown in Figure 5(b). The ACC technique 
is considered to keep maintain a relatively secure space or a preferred cruising velocity from the guiding 
vehicle. To keep a secure in-between space the ACC technique controls the ego vehicle speed whenever the 
guide vehicle speed changes. When the guide vehicle velocity exceeds the set velocity with a higher value, 
the ego vehicle discontinues following the guide vehicle speed and cruises at the set speed. The relative space 
between the ego and guide vehicles with the secure distance was shown in Figure 6(a), while the relative 
space error between the ego and guide vehicles was shown in Figure 6(b).  

The graph shows that the velocity of the guide vehicle changes in a sinusoidal pattern, which leads 
the ego vehicle to compensate for the difference by adjusting its speed. It is shown that the secure in-between 
space varies when the ego vehicle speed changes. In addition, the relative in-between space between the 
guide and ego vehicles irregularly falls slightly under the secure in-between space, which is due to the 
activity of the ACC technique to enforce the relative space to use soft restriction. The relative in-between 
space between the guide and ego vehicles irregularly falls slightly under the secure in-between space, which 
is due to the activity of the ACC technique to enforce the relative space to use soft restriction. 

 
 

  
(a) (b) 

 
Figure 5. The model results for; (a) the velocity model for the guide and ego vehicles with the set speed and 

(b) the acceleration model of the ego vehicle 
 
 

  
(a) (b) 

 

Figure 6. The relative space between the ego and guide vehicles: (a) secure distance and (b) spacing error 



Bulletin of Electr Eng & Inf ISSN:2302-9285  
 

Controlling a vehicle braking and longitudinal acceleration using a seeking control … (Saad A. Salman) 

149

3.2.  EST seeking cost function 
The cost function is an essential parameter to determine how well the tracking model is performed 

for specified inputs [25]. It determines and represents as a single real number the difference between the 
target values and simulated values. The cost function of ESC seeking search optimization of control gains is 
represented in Figure 7. The cost function result shows that its values fluctuate between zero and 24 during 
performing the tracking process, which indicates acceptable performance. 

 
 

 
 

Figure 7. The costs function of ESC seeking 
 
 

3.3.  Controller gains 
The consequential gains of controllers during tracking simulation are shown in Figure 8. The 

velocity error gain (Kverr) of the EST controller was plotted on the top followed by the position error gain 
(Kxerr) and the relative velocity gain (Kvrel) at the bottom. The modulation signals of the EST are what 
cause fluctuations in the gain values. The modulation signals of the EST are what cause fluctuations in the 
gain values shown in Figure 8. This fluctuation was unaffordable by this algorithm, which can be considered 
a type of disadvantage. 

 
 

 
 

Figure 8. The gains of controllers during tracking simulation 
 
 

4. CONCLUSION 
This work develops an implementation of ACC by employing an EST control approach. The ego car 

with ACC algorithm exploits radar to determine relative velocity and relative space according to another 
guiding car. We can conclude the following significant points: i) the developed model for implementing the 
ACC by employing the EST control approach succeeded to determine the relative velocity and relative space 
according to the ego car to another guiding car with acceleration, not more than ±2 m/s2 and spacing error 
less than 6 m; ii) the seeking cost function of EST was decreasing to zero but with fluctuations fewer than 24 
when the guide vehicle velocity was between 2532 m/s; and iii) all the EST controller gains for the velocity 
error, the position error gain, and the relative velocity gain are converged to constant values with small 
fluctuations due to the modulation signals of EST. The limitation of this work is in its application which can 
be expanded in future work to cover aircraft flight control. 
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