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 The game cross-efficiency method, a commonly utilized approach for 

ranking decision-making units in tie-breaking scenarios, is based on 

secondary goals. However, in certain data envelopment analysis ranking 

problems, the classical game cross-efficiency method may fail to 

differentiate all decision-making units effectively. To address this limitation, 

it is prudent to explore the development of a new method that can enhance 

the ranking performance of the classical game cross-efficiency approach. In 

this study, we propose a novel Gibbs entropy linear programming model that 

integrates both optimistic and pessimistic perspectives of the classical game 

cross-efficiency method for data envelopment analysis ranking problems. To 

validate the reliability and utility of our proposed method, we present three 

examples: the six nursing homes problem, numerical example 2, and an 

application involving twenty Thai provinces with cash crop data. The 

reliability of the proposed method is assessed using Spearman’s correlation 

coefficient (rs) on the numerical examples. The results demonstrate that the 

rs values for both the proposed method and the classical game cross-

efficiency method, specifically for the six nursing homes problem, numerical 

example 2, and the application involving twenty Thai provinces, are 

determined to be rs=0.998, 0.998, and 0.986 respectively. 

Keywords: 

Data envelopment analysis  

Game cross-efficiency method  

Gibbs entropy 

Gibbs entropy linear 

programming model 

Optimistic-pessimistic game 

cross-efficiency method  

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Narong Wichapa 

Department of Industrial Engineering, Faculty of Engineering and Industrial Technology  

Kalasin University 

62/1, Kasetsomboon Road, Muang District 46000, Kalasin, Thailand  

Email: narong.wi@ksu.ac.th 

 

 

1. INTRODUCTION 

Initially, Farrell [1] introduced a methodology to assess the performance of a group of comparable 

decision-making units (DMUs) characterized by multiple inputs and outputs. However, Charnes et al. [2] 

who were credited with being the first to operationalize Farrell [1] concept into a data envelopment analysis 

model data envelopment analysis (DEA) model, famously known as the Charnes, Cooper and Rhodes (CCR) 

model, named in honor of the three authors’ initials. The DEA model computes a DMU’s maximum relative 

efficiency score via a linear programming model that seeks to maximize the output-to-input ratio. Typically, 

when a DMU achieves a relative efficiency score of 1, it is classified as efficient. Given its proven 

effectiveness and versatility, the DEA model has garnered significant attention and found applications across 

diverse domains. Banker et al. [3] introduced the Banker, Charnes and Cooper (BCC) model, a widely 

employed framework with applications spanning various fields, including economics and finance. The DEA 
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model’s performance measurements have the advantage of evaluating the performance of many DMUs without 

the need to standardize input and output data. It is unnecessary to assume the production function assumptions 

for DEA. In addition, there is no requirement to establish input and output weights because the weight may be 

generated using DEA model [4], [5]. DMUs can be compared to manufacturing units, businesses, schools, 

banks, hospitals, universities, and commercial firms in this context. The DEA can classify DMUs into two 

distinct categories: efficient and inefficient. The efficient DMUs can create the same output or more with fewer 

inputs, whereas the inefficient DMUs require more inputs to produce the same result or less. Nevertheless, the 

DEA model lacks the capability to rank efficient DMUs (relative efficiency score values of 1) [6]–[8]; therefore, 

Sexton et al. [9] enhanced this methodology and presented the DEA cross-efficiency method. 

The cross-efficiency approach combines self-assessment and peer-evaluation to determine the 

relative efficiency of each DMU. This technique offers several key advantages [10]–[12]. Firstly, it 

effectively discriminates between strong and weak performance, resulting in a comprehensive DMU ranking. 

Secondly, it overcomes the challenge of unrealistic weight schemes without the need for weight constraints. 

By leveraging assessed weights from DMUs and other DMUs, the cross-efficiency approach calculates 

average cross-efficiency (ACE) scores, forming the basis for DMU rankings. A higher ACE score signifies 

superior organizational performance. Nevertheless, the traditional cross-efficiency method faces a 

fundamental drawback. The optimal weights for inputs and outputs derived from the conventional DEA 

model lack uniqueness, leading to non-unique cross-efficiency scores. To address this, Doyle and Green [13] 

introduced an innovative secondary goal to the standard cross-efficiency approach. They proposed aggressive 

and benevolent models to identify the ideal DEA weights for a DMU. The benevolent (or aggressive) model 

maintains a DMU’s relative efficiency score while optimizing (or reducing) the relative efficiency scores of 

other DMUs through the best possible DEA weights. However, these models may generate different rankings 

for similar cases due to their distinct perspectives. Subsequently, various mathematical models emerged 

based on the concept of secondary goals in cross-efficiency measurement. For instance, Liang et al. [14] 

developed three alternative cross-efficiency models with secondary goals, integrating the notion of optimal 

spot to address common challenges. Liang et al. [15] introduced the game cross-efficiency method, 

integrating competitive elements, to assess efficiency within the DEA framework. They also explored the 

concept of Nash equilibrium in this context. This research enhances our understanding of how DMUs can 

enhance their efficiency while considering the competitive dynamics that influence their operations. Further 

advancements include Wang and Chin [16] extension of Liang’s models [14] by defining the true ideal point 

and altering the efficiency target. Wang and Chin [17] proposed a neutral cross-efficiency model to combat 

discrimination among DMUs. Jahanshahloo [18] introduced a method of symmetric weighting to reward 

DMUs for balanced weighting decisions without compromising feasibility. Additionally, several neutral 

cross-efficiency models based on ideal and anti-ideal DMUs were proposed [19], [20], and DEA-CE techniques 

were developed based on weight-balanced models and Pareto optimization [21]. Abolghasem et al. [22] 

incorporated flexible measures into the aggressive and benevolent models for the DEA-CE technique. 

Despite these developments, the problem of unique efficiency persists, as the optimal DEA weights 

derived from a CCR model are frequently not unique. Nevertheless, the game cross-efficiency approach 

provides a solution by generating unique cross-efficiency values through pairwise games between competing 

DMUs, while preserving the efficiency of other DMUs. Each DMU is viewed as an individual seeking to 

maximize its own efficiency, with the assumption that the cross-efficiency of other DMUs remains unaffected. 

The optimal game cross-efficiency scores are determined by the iterative nature of the game cross-efficiency 

model, and various initial scores result in identical cross-efficiency outcomes, representing a Nash equilibrium. 

This method has gained widespread acceptance and application across various domains, including supplier 

selection [23], [24], urban public infrastructure investment [25], [26], ecological efficiency surveys [27], [28], 

energy efficiency [29], [30], forest carbon sequestration [31]–[38]. However, it’s important to note that the 

game cross-efficiency technique may not be suitable for ranking all DMUs in certain DEA ranking problems, as 

indicated by the literature review. In this study, we merge the optimistic and pessimistic aspects of the 

traditional game cross-efficiency model to address data envelopment analysis ranking problems. After 

compiling a game interval cross-efficiency decision matrix, Gibbs entropy information is leveraged to rank all 

DMUs based on interval data. The following section provides a literature review on entropy information. 

Entropy formulation is an effective and extensively employed weighting method for evaluating the 

uncertainty of data. According to the concept of entropy, the integrity of the information is one of the most 

crucial factors in determining the best course of action. In determining the weights of criteria in DEA ranking 

problems [39]–[41], the entropy approach of Shannon is frequently employed. Recently, however, the 

application of entropy to interval DEA ranking problems has been presented and has become a topic of 

interest. Wang et al. [41] initially utilized a DEA entropy model to convert interval values of cross-efficiency 

into precise relative efficiencies, and all DMUs can be arranged according to the positive ideal distance. In 

order to rank all DMUs, Lu and Liu [42] proposed a Gibbs entropy optimization model to transform interval 
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cross-efficiency scores into precise entropy scores. This model is user-friendly and can be calculated using 

optimization software. Nonetheless, the original Gibbs entropy model is classified as a nonlinear 

programming model; employing the optimization solver to identify optimal entropy solutions for large 

problems can be extremely difficult. In order to rank all DMUs in this study, the optimization model based on 

the original Gibbs entropy model [42] must be converted into a linear programming model. This research 

presents a hybrid strategy for ranking all DMUs based on an optimistic–pessimistic game cross-efficiency 

method. The following are the principal contributions of this research: 

a. Based on the original Gibbs entropy model [42], this model is categorized as a nonlinear programming 

model. Obtaining optimal solutions with optimization software may be challenging. This study introduces 

the Gibbs entropy linear programming model, a novel linear programming model based on Gibbs entropy 

concepts, for ranking DMUs with interval data. 

b. We apply the proposed method to a real-world scenario that includes twenty provinces in Thailand with 

data on revenue crops. This will be immensely beneficial for research in this sector in practically every 

country, especially agricultural nations. 

The remainder of this paper is as follows: next, some cross-efficiency models and the original Gibbs 

entropy model are presented. Section 2 then presents a novel Gibbs entropy linear programming model that 

combines the optimistic and pessimistic perspectives of the traditional game cross-efficiency method for data 

envelopment analysis ranking problems. In section 3, verification is conducted for three numerical examples, six 

nursing institutions, numerical example 2, and twenty Thai provinces. Section 4 concludes with the conclusions. 

  

 

2. METHOD  

This section introduces the Gibbs entropy-based model, an innovative linear programming 

approach. It combines optimistic and pessimistic viewpoints from the game cross-efficiency model to address 

ranking problems in DEA. The model accurately determines weights using linear programming techniques, 

providing decision-makers with a comprehensive assessment of DMU performance. Figure 1 visually depicts 

the framework of the proposed model. 
 

 

 
 

Figure 1. The proposed framework 

 

 

2.1.  CCR model  

Charnes et al. [2] proposed a mathematical model known as DEA-CCR model, which was designed to 

evaluate the performance of a collection of DMUs that possess various inputs and outputs. This model assumes 

that each 𝐷𝑀𝑈𝑗  (where 𝑗 = 1, 2, 3, . . . , 𝑛) possesses a collection of multi-inputs (𝑥𝑖𝑗), where 𝑖 = 1, 2, 3, . . . , 𝑚, 

and generates a set of multi-outputs (𝑦𝑟𝑗), where 𝑟 = 1,2, . . . , 𝑠. Let 𝑣𝑖𝑘, where 𝑘 = 1, 2, 3, … , 𝑛, be the input 

weight for each 𝐷𝑀𝑈𝑘. Let 𝑢𝑟𝑘, where 𝑘 = 1, 2, 3, … , 𝑛, be the output weight for each 𝐷𝑀𝑈𝑘. The efficiency 

score (𝐸𝑑𝑑) for a set of 𝐷𝑀𝑈𝑑  (1 ≤ 𝑑 ≤ 𝑛) can be measured using the CCR model, as shown in model (1). 
 

𝐸𝑑𝑑 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑑   

 

𝑠. 𝑡. : ∑ 𝑢𝑟𝑑𝑦𝑟𝑗
𝑠
𝑟=1 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗

𝑚
𝑖=1 ≤ 0, 𝑗, 𝑑 = 1,2,3, . . . , 𝑛 (1) 

 

∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1 = 1, 𝑑 = 1,2,3, . . . , 𝑛  

 

𝑢𝑟𝑑 ≥ 0, 𝑣𝑖𝑑 ≥ 0, 𝑖 = 1,2,3, . . . , 𝑚, 𝑟 = 1,2,3, . . . , 𝑠 
 

 

 
 

Phase 2 

Rank all DMUs based on the optimal entropy vales 

Calculate optimal entropy values using the Gibbs 

entropy linear programming model 

Phase 1 

Calculate efficiency of DMUs using the CCR model 

Calculate ACEs of all DMUs based on traditional 

cross-efficiency method 

Generate Game interval decision matrix  
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In model (1), each DMU constructs the programming and selects the best DEA weights for its inputs 

and outputs to maximize efficiency, which could contribute to biases in how DMUs are ranked for efficiency 

when comparing their efficiency scores. This is the reason why the cross-efficiency method has been 

proposed as a solution to this issue. 

 

2.2.  Traditional cross-efficiency method  

The cross-efficiency method is a potent and widely adopted traditional CCR model that utilizes self-

assessment and peer-assessment to evaluate and rank DMUs with multiple inputs and multiple outputs. The 

CCR model’s calculation stages are as follows. After solving the CCR model in model (1), let and represent 

the optimal output and input weights for a particular 𝐷𝑀𝑈𝑑 , respectively. Then, the cross-efficiencies of each 

𝐷𝑀𝑈𝑗  (𝑗 = 1, 2, 3, . . . , 𝑛) are provided by 𝐷𝑀𝑈𝑑 . 
 

𝐸𝑑𝑗 = ∑ 𝑢𝑟𝑑
∗𝑠

𝑟=1 𝑦𝑟𝑗/ ∑ 𝑣𝑖𝑑
∗𝑚

𝑖=1 𝑥𝑖𝑗 , 𝑑, 𝑗 = 1,2,3, … , 𝑛 (2) 
 

Sexton et al. [9] consequently defined the ACE score of 𝐷𝑀𝑈𝑗  as (3): 
 

𝐸̄𝑗 = (1/𝑛) ∑ 𝐸𝑑𝑗
𝑛
𝑑=1 , 𝑑, 𝑗 = 1,2, . . . , 𝑛 (3) 

 

If the 𝐸̄𝑗 (ACE score) of a DMU is higher, it is better ordered. However, the cross-efficiency method 

may encounter a problem with multiple solutions; consequently, numerous researchers have sought to enhance 

the traditional cross-efficiency method by incorporating secondary objectives into the traditional model. 

 

2.3.  Generating the game interval cross-efficiency matrix  

By solving (1), the optimal weights of the inputs and outputs can be determined. The ACE scores of 

each DMU can then be determined (3) using (2). The optimistic-pessimistic perspectives of the classical 

game cross-efficiency model are then constructed in order to construct the game interval decision matrix. The 

details of the optimistic and pessimistic game cross-efficiency models are as (4):  
 

𝑍𝑑 = 𝑚𝑎𝑥 𝑜 𝑟 𝑚𝑖𝑛 ∑ 𝑢𝑟𝑗
𝑑 𝑦𝑟𝑗

𝑠
𝑟=1   

 

𝑠. 𝑡. : ∑ 𝑣𝑖𝑗
𝑑 𝑥𝑖𝑙 − ∑ 𝑢𝑟𝑗

𝑑 𝑦𝑟𝑙 ≥ 0,𝑠
𝑟=1

𝑚
𝑖=1   

 

∑ 𝑣𝑖𝑗
𝑑 𝑥𝑖𝑗

𝑚
𝑖=1 = 1, (4) 

 

𝛼𝑑 ∑ 𝑣𝑖𝑗
𝑑 𝑥𝑖𝑑

𝑚

𝑖=1

− ∑ 𝑢𝑟𝑗
𝑑 𝑦𝑟𝑑

𝑠

𝑟=1

≤ 0, 

 

𝑣𝑖𝑗
𝑑 ≥ 0, 𝑢𝑟𝑗

𝑑 ≥ 0, 𝑟 = 1,2,3, . . . , 𝑠, 𝑖 = 1,2,3, . . . , 𝑚. 
 

To obtain the optimistic and pessimistic scores of DMUs, model (4) is run twice based on the objective 

function: by solving model (4) with the three steps of the iterative algorithm described in the literature by  

Liang et al. [15], the game interval cross-efficiency matrix based on the optimistic (max 𝑍) and pessimistic (min 𝑍) 

viewpoints can be generated, as shown in Table 1, where 𝐷𝑀𝑈𝑗 (𝑗 = 1,2,3, … , 𝑛) can be viewed as the alternative 

𝑗, and iteration 𝑡(𝐼𝑡) can be viewed as the criterion 𝑡(𝑡 = 1,2,3, … , 𝑚). Let 𝛼𝑗
𝑢𝑡 and 𝛼𝑗

𝑙𝑡 be the optimistic game 

cross-efficiency score and the pessimistic game cross-efficiency score, respectively, for 𝐷𝑀𝑈𝑗 and 𝐼𝑡. 
 

 

Table 1. The game interval cross-efficiency matrix 
DMUj I1 I2 ⋯ Im 

1 [𝛼1
𝑙1, 𝛼1

𝑢1] [𝛼1
𝑙2, 𝛼1

𝑢2] ⋯ [𝛼1
lm, 𝛼1

𝑢𝑚] 
2 [𝛼2

𝑙1, 𝛼2
𝑢1] [𝛼2

𝑙2, 𝛼2
𝑢2] ⋯ [𝛼2

lm, 𝛼2
𝑢𝑚] 

⋮ ⋮ ⋮ ⋮ ⋮ 
n [𝛼𝑛

𝑙1, 𝛼𝑛
𝑢1] [𝛼𝑛

𝑙2, 𝛼𝑛
𝑢2] ⋯ [𝛼𝑛

𝑙𝑚, 𝛼𝑛
𝑢𝑚] 

 

 

2.4.  Calculating the optimal entropy values using the novel Gibbs entropy linear programming model  

Given that the original Gibbs entropy model [42] is classified as a non-linear programming model, it 

may be challenging to obtain optimal solutions using optimization software. Therefore, it is necessary to 

modify the original model to integrate linear programming. This study presents an original Gibbs entropy 

linear programming model for ranking all DMUs based on the optimistic and pessimistic perspectives of the 
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game cross-efficiency model. The following details pertain to the proposed Gibbs entropy linear 

programming model. Using the original Gibbs entropy model [42], models (5) through (8) illustrate how the 

proposed model could be derived. 
 

𝐻̄𝑗 = 𝑚𝑖𝑛[−𝐺𝑗 ∑ (𝛼̄𝑗
𝑡/ ∑ 𝛼̄𝑗

𝑡𝑚
𝑡=1 ) 𝑙𝑛( 𝛼̄𝑗

𝑡/ ∑ 𝛼̄𝑗
𝑡𝑚

𝑡=1 )𝑚
𝑡=1 ] , ∀𝑗,  

 

𝑠. 𝑡. : ∑ (𝛼̄𝑗
𝑡/ ∑ 𝛼̄𝑗

𝑡𝑚
𝑡=1 )𝑚

𝑡=1 = 1, ∀𝑗, (5) 
 

𝛼𝑖𝑗
𝑙𝑡 ≤ 𝛼̄𝑗

𝑡 ≤ 𝛼𝑖𝑗
𝑢𝑡, ∀𝑡, ∀𝑗. 

 

𝐻̄𝑗 = 𝑚𝑖𝑛[−𝐺𝑗 ∑ (((𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡)/2)/ ∑ ((𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡)/2𝑛
𝑗=1 ) 𝑙𝑛( (𝛼𝑗

𝑙𝑡 + 𝛼𝑗
𝑢𝑡)/2)/ ∑ ((𝛼𝑗

𝑙𝑡 + 𝛼𝑗
𝑢𝑡)/2𝑛

𝑗=1 ))𝑚
𝑡=1 ] , ∀𝑗, (6) 

 

𝑠. 𝑡. : ∑ (((𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡)/2)/ ∑ ((𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡)/2)𝑛
𝑗=1 )𝑚

𝑡=1 = 1, ∀𝑗,  
 

where 𝐺𝑗 is the cross-efficiency score for the final game for 𝐷𝑀𝑈𝑗 (constant value). Using division, model 

(6) can be transformed into model (7). 
 

𝐻̄𝑗 = 𝑚𝑖𝑛[−𝐺𝑗 ∑ (((𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡)/2)/ ∑ ((𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡)/2𝑛
𝑗=1 ) 𝑙𝑛( (𝛼𝑗

𝑙𝑡 + 𝛼𝑗
𝑢𝑡)/2)/ ∑ ((𝛼𝑗

𝑙𝑡 + 𝛼𝑗
𝑢𝑡)/2𝑛

𝑗=1 ))𝑚
𝑡=1 ] , ∀𝑗, (7) 

 

𝑠. 𝑡. : ∑ ((𝛼𝑗
𝑙𝑡/ ∑ (𝛼𝑗

𝑙𝑡 + 𝛼𝑗
𝑢𝑡)𝑚

𝑡=1 ) + (𝛼𝑗
𝑢𝑡/ ∑ (𝛼𝑗

𝑙𝑡 + 𝛼𝑗
𝑢𝑡)𝑚

𝑡=1 ))𝑚
𝑡=1 = 1, ∀𝑗,  

 

Model (7) is a nonlinear programming model. Set tj as 𝑡𝑗 = 1/ ∑ (𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡)𝑚
𝑡=1 . This model can be 

converted to a linear programming model as shown in model (8).  
 

𝐻̄𝑗 = 𝑚𝑖𝑛 (−𝐺𝑗 ∑ ((𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡)𝑡𝑗 𝑙𝑛(𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡) 𝑡𝑗)𝑚
𝑡=1 ) , ∀𝑗,  

  

𝑠. 𝑡. : ∑ ((𝛼𝑗
𝑙𝑡 + 𝛼𝑗

𝑢𝑡)𝑡𝑗)𝑚
𝑡=1 = 1, ∀𝑗,  (8) 

 

𝑡𝑗 ≥ 0, ∀𝑗 
 

where 𝐺𝑗 is the constant value of 𝐷𝑀𝑈𝑗 and 𝑡𝑗 is the decision variable for 𝐷𝑀𝑈𝑖 . 𝐻̄𝑗
∗ is the optimal entropy 

value. If the optimal entropy value (𝐻̄𝑗
∗) of a DMU is higher, it is better ordered.  

 

 

3. RESULTS  

In this section, the research outcomes are described alongside a thorough analysis. Results can be 

presented in figures, graphs, and tables that facilitate reader comprehension [14], [15]. The discussion may be 

divided into multiple subsections. 

 

3.1.  The six nursing homes problem  

The six-nursing home problem was presented by Sexton et al. [9] with two inputs and two outputs. 

Let 𝑥1, 𝑥2, 𝑦1, and 𝑦2 represent the staff hours per day, the supplies per day, the total medicare-plus-medicaid 

patient days, and the total privately paid patient days, respectively. Table 2 displays the data set for the six 

nursing homes problem. 
 

 

Table 2. Set of data for the six nursing homes problem 
𝐷𝑀𝑈𝑗 𝑥1 𝑥2 𝑦1 𝑦2 CCR 

1 1.50 0.20 1.40 0.35 1.0000 
2 4.00 0.70 1.40 2.10 1.0000 
3 3.20 1.20 4.20 1.05 1.0000 
4 5.20 2.00 2.80 4.20 1.0000 
5 3.50 1.20 1.90 2.50 0.9775 
6 3.20 0.70 1.40 1.50 0.8675 

 

 

3.1.1. Generating the game interval cross-efficiency matrix based on the optimistic and pessimistic 

viewpoints for the six nursing homes 

Based on the data set for the six nursing homes regarding the inputs and outputs of each 𝐷𝑀𝑈𝑗 listed 

in Table 2, the CCR scores based on model (1) were coded using LINGO software. After obtaining the 

optimal weights for the inputs and outputs, the ACE score of each DMU (𝐸̄𝑗) was obtained using (2) to (3). 

As a result, the values of 𝐸̄1, 𝐸̄2, 𝐸̄3, 𝐸̄4, 𝐸̄5, and 𝐸̄6 were calculated to be 0.8529, 0.8259, 0.7643, 0.8510, 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 1411-1423 

1416 

0.8316, and 0.7286 respectively. In this research, the cross-efficiency score of the arbitrary strategy was set with 

an initial value of 𝛼𝑗
1, 𝜀 set as 0.001. For iteration 1 (criterion 1 or 𝐼1), for each DMUj, if 𝛼𝑗

1 = 𝐸̄𝑑 (𝑗 = 𝑑), then 

𝛼1
1=0.8529, 𝛼2

1=0.8259, 𝛼3
1=0.7643, 𝛼4

1=0.8510, 𝛼5
1=0.8316, and 𝛼6

1=0.7286. These parameters were taken 

into model (4) to generate the game interval cross-efficiency scores for iteration 2. For iteration 2, using 

model (4), through 3 steps of the iterative algorithm, the optimistic cross-efficiency scores (max 𝑍𝑑) of 

iterations 2 (𝑡 = 2) for each 𝐷𝑀𝑈𝑗 were determined to be 𝛼1
1=1.0000, 𝛼2

1=1.0000, 𝛼3
1=1.0000, 𝛼4

1=1.0000, 

𝛼5
1=0.9775, and 𝛼6

1=0.8675, respectively. The pessimistic cross-efficiency scores (min 𝑍𝑑) of iterations 2 

(𝑡 = 2) for each DMUj were obtained as 𝛼1
1=0.4532, 𝛼2

1=0.5276, 𝛼3
1=0.4068, 𝛼4

1=0.5689, 𝛼5
1=0.5580, and 

𝛼6
1=0.4761. As a result, the game interval cross-efficiency matrix shown in Table 3 was generated. The 

attainment of scores for optimistic game cross-efficiency for all DMUs during the seventh iteration (𝐼7) is 

demonstrated in Table 3. The cross-efficiency scores for DMU1, DMU2, DMU3, DMU4, DMU5, and 

DMU6 in the final game were 1.00, 0.9868, 0.9221, 1.00, 0.9766, and 0.8615, respectively (shown in bold). 
 
 

Table 3. The game interval cross-efficiency matrix for the six nursing homes 
𝐷𝑀𝑈𝑗 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 

1 [0.8529, 

0.8529] 

[0.4532, 

1.0000] 

[0.7496, 

1.0000] 

[0.7184, 

1.0000] 

[0.7300, 

1.0000] 

[0.7277, 

1.0000] 

[0.7286, 

1.0000] 
2 [0.8259, 

0.8259] 

[0.5276, 

1.0000] 

[0.7004, 

0.9773] 

[0.6847, 

0.9879] 

[0.6910, 

0.9861] 

[0.6898, 

0.9870] 

[0.6903, 

0.9868] 

3 [0.7643, 
0.7643] 

[0.4068, 
1.0000] 

[0.6428, 
0.9148] 

[0.6120, 
0.9280] 

[0.6222, 
0.9216] 

[0.6199, 
0.9226] 

[0.6206, 
0.9221] 

4 [0.8510, 

0.8510] 

[0.5689, 

1.0000] 

[0.7176, 

1.0000] 

[0.7030, 

1.0000] 

[0.7080, 

1.0000] 

[0.7068, 

1.0000] 

[0.7072, 

1.0000] 
5 [0.8316, 

0.8316] 

[0.5580, 

0.9775] 

[0.6956, 

0.9758] 

[0.6818, 

0.9767] 

[0.6864, 

0.9765] 

[0.6854, 

0.9766] 

[0.6858, 

0.9766] 

6 [0.7286, 
0.7286] 

[0.4761, 
0.8675] 

[0.6081, 
0.8570] 

[0.5971, 
0.8620] 

[0.6008, 
0.8611] 

[0.5999, 
0.8615] 

[0.6002, 
0.8615] 

 

 

3.1.2. Rank all DMUs using the Gibbs entropy linear programming model for the six nursing homes 

The game interval cross-efficiency matrix Table 3 was obtained and afterwards, the suggested Gibbs 

entropy model was employed to convert the interval cross-efficiency scores into crisp scores. This conversion 

was necessary in order to rank the DMUs comprehensively. In order to acquire the values of 𝐻̄𝑗
∗, the pertinent 

parameters enumerated in Table 3 were inputted into model (8). An illustrative instance of a linear 

programming model is employed to determine the best value of entropy, denoted as 𝐻̄𝑗
∗.  

 

𝐻̄1 = 𝑚𝑖𝑛 (−1.0000 (

(0.8529 + 0.8529)𝑡1 𝑙𝑛(0.8529 + 0.8529) 𝑡1 + (0.4532 + 1.0000)𝑡1 𝑙𝑛(0.4532 + 1.0000) 𝑡1 + (0.7496 + 1.0000)𝑡1

𝑙𝑛(0.7496 + 1.0000) 𝑡1 + (0.7184 + 1.0000)𝑡1 𝑙𝑛(0.7184 + 1.0000) 𝑡1 + (0.7300 + 1.0000)𝑡1 𝑙𝑛(0.7300 + 1.0000) 𝑡1

+(0.7277 + 1.0000)𝑡1 𝑙𝑛(0.7277 + 1.0000) 𝑡1 + (0.7286 + 1.0000)𝑡1 𝑙𝑛(0.7286 + 1.0000) 𝑡1

)) 

 

𝑠. 𝑡. : (0.8529 + 0.8529)𝑡1 + (0.4532 + 1.0000)𝑡1 + (0.7496 + 1.0000)𝑡1

+ (0.7184 + 1.0000)𝑡1 + (0.7300 + 1.0000)𝑡1 + (0.7277 + 1.0000)𝑡1

+ (0.7286 + 1.0000)𝑡1 = 1, 
 

𝑡1 ≥ 0. 
  

To determine the optimal value of 𝐻̄1
∗, this LP model for 𝐻̄1

∗ was solved using the LINGO software. 

The optimal value of 𝐻̄1
∗ was determined to be 1.9442, occurring at 𝑡1

∗=0.08465. With the same calculation 

steps, the other values of 𝐻̄𝑗
∗ (j=2, 3, ..., 6) were determined to be 1.9198, 1.7939, 1.9455, 1.9000, and 1.6760, 

respectively. The other values of 𝑡𝑗
∗ (j=2, 3, ..., 6) were determined to be 0.08650, 0.09379, 0.08465, 0.08684, 

and 0.09891, respectively. Based on the obtained optimal entropy values, all the DMUs could be fully 

ranked. The ranking comparisons between the proposed technique and other methods are presented in Table 4 

for all the DMUs. 

The rankings for all the DMUs were computed using the suggested technique, as indicated in  

Table 4. The suggested technique has a tendency towards consistency with previous cross-efficiency 

methods. Furthermore, it is important to acknowledge that the original game cross-efficiency algorithm lacks 

the ability to distinguish between 𝐷𝑀𝑈1 and 𝐷𝑀𝑈4. The results of the suggested technique are compared 

with those of the original game cross-efficiency method, as seen in Figure 2. The graphic shown in this 

analysis demonstrates a notable alignment between the suggested method and the original game cross-

efficiency approach. The two methodologies yielded differing rankings for just the 𝐷𝑀𝑈1. 
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Table 4. Ranking comparisons between the proposed method and the alternative methods for the six nursing 

homes problem 
DMUj Aggressive (rank) Benevolent (rank) Game (rank) Proposed (rank) Original model (rank) 

1 0.7639 (1) 1.0000 (1) 1.0000 (1) 1.9442 (2) 1.9173 (2) 

2 0.7004 (3) 0.9773 (3) 0.9868 (3) 1.9198 (3) 1.8982 (3) 

3 0.6428 (5) 0.8580 (5) 0.9221 (5) 1.7939 (5) 1.7642 (5) 
4 0.7184 (2) 1.0000 (1) 1.0000 (1) 1.9455 (1) 1.9261 (1) 

5 0.6956 (4) 0.9758 (4) 0.9766 (4) 1.9000 (4) 1.8814 (4) 

6 0.6081 (6) 0.8570 (6) 0.8615 (6) 1.6760 (6) 1.6579 (6) 

 
 

 
 

Figure 2. The ranking comparisons for the six nursing homes 
 

  

Furthermore, the statistical analysis included the examination of Spearman’s correlation coefficient 

(𝑟𝑠). Consequently, the 𝑟𝑠 for the suggested approach, namely the aggressive, benevolent, and game cross-

efficiency methods, were calculated as 0.939, 0.900, and 0.998 correspondingly. It is noteworthy to mention 

that the suggested ranking methodology exhibits a significant association with the widely recognized cross-

efficiency approaches. Besides, the proposed Gibbs entropy linear programming model was compared with 

the Gibbs entropy optimization model of Lu and Liu [42] for solving this problem. The results show that the 

ranks of each DMU were the same for both models.  

 

3.2.  The numerical example 2  

In numerical example 2 provided by Liang et al. [15], there were ten DMUs with two inputs (𝑥1 and 

𝑥2) and three outputs (𝑦1, 𝑦2 and 𝑦3) each. The CCR scores for each DMU were calculated using the 

traditional CCR model, followed by the proposed game cross-efficiency method for calculating the interval 

cross-efficiency scores for each DMU. Table 5 displays the information for numerical example 2. 
 
 

Table 5. The numerical example 2’s dataset 
𝐷𝑀𝑈𝑗 𝑥1 𝑥2 𝑦1 𝑦2 𝑦3 CCR 

1 0.37589 0.19389 0.62731 0.71654 0.11461 1.0000 
2 0.00988 0.90481 0.69908 0.51131 0.66486 1.0000 
3 0.41986 0.56921 0.39718 0.77640 0.36537 0.7590 
4 0.75367 0.63179 0.41363 0.48935 0.14004 0.3099 
5 0.79387 0.23441 0.65521 0.18590 0.56677 1.0000 
6 0.91996 0.54878 0.83759 0.70064 0.82301 0.7155 
7 0.84472 0.93158 0.37161 0.98271 0.67395 0.5062 
8 0.36775 0.33520 0.42525 0.80664 0.99945 1.0000 
9 0.62080 0.65553 0.59466 0.70357 0.96164 0.6608 

10 0.73128 0.39190 0.56574 0.48496 0.05886 0.4594 

 

 

3.2.1. Generating the game interval cross-efficiency matrix for numerical example 2 based on 

optimistic and pessimistic perspectives 

Based on the inputs and outputs of each 𝐷𝑀𝑈𝑗  listed in Table 6, the CCR scores and the values of 

each 𝐸̄𝑗 were calculated using the same calculation steps as shown in subsubsection 3.1.1. As a result, the 

cross-efficiency score of the arbitrary model was set at an initial value of 𝛼𝑗
1, 𝜀 set as 0.001. Finally, Table 6 

displays the results of the game interval cross-efficiency matrix. 

 

3.2.2. Rank all DMUs using the Gibbs entropy linear programming model for numerical example 2 

After obtaining the game interval cross-efficiency matrix for numerical example 2 and using the 

same calculation procedures of the proposed Gibbs entropy linear programming model as presented in 
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subsubection 3.1.2. the proposed Gibbs entropy linear programming model was utilized to rank the DMUs 

exhaustively. The ranking comparisons between the proposed method and the other methods for each DMU 

are displayed in Table 7. The rankings for all the DMUs were computed using the proposed method, as 

shown in Table 7. The suggested technique has a tendency towards consistency with previous cross-

efficiency methods. Furthermore, it is important to acknowledge that the game cross-efficiency approaches 

lack the ability to distinguish between DMU1 and DMU8. Figure 3 illustrates the outcomes obtained from the 

suggested methodology in comparison with the conventional game cross-efficiency approach. The graphic 

illustrates a strong association between the suggested approach and the game cross-efficiency method. The 

two techniques yielded different rankings for just DMU1. 
 

 

Table 6. The game interval cross-efficiency matrix for the numerical example 2 
𝐷𝑀𝑈𝑗 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 𝐼8 𝐼9 𝐼10 𝐼11 𝐼12* 

1 [0.9492, 
0.9492] 

[0.4270, 
1.0000] 

[0.6900, 
1.0000] 

[0.5748, 
1.0000] 

[0.6324, 
1.0000] 

[0.6071, 
1.0000] 

[0.6192, 
1.0000] 

[0.6136, 
1.0000] 

[0.6162, 
1.0000] 

[0.6150, 
1.0000] 

[0.6155, 
1.0000] 

[0.6153, 
1.0000] 

2 [0.8887, 

0.8887] 

[0.3095, 

1.0000] 

[0.5361, 

0.9395] 

[0.4091, 

1.0000] 

[0.4645, 

0.9732] 

[0.4380, 

0.9850] 

[0.4496, 

0.9794] 

[0.4441, 

0.9819] 

[0.4466, 

0.9807] 

[0.4455, 

0.9812] 

[0.4460, 

0.9810] 

[0.4458, 

0.9811] 
3 [0.5650, 

0.5650] 

[0.2560, 

0.7208] 

[0.3814, 

0.6364] 

[0.3260, 

0.6673] 

[0.3526, 

0.6506] 

[0.3404, 

0.6577] 

[0.3460, 

0.6543] 

[0.3434, 

0.6559] 

[0.3446, 

0.6552] 

[0.3441, 

0.6555] 

[0.3443, 

0.6554] 

[0.3442, 

0.6554] 

4 [0.2775, 
0.2775] 

[0.1256, 
0.3077] 

[0.1925, 
0.2989] 

[0.1626, 
0.3043] 

[0.1771, 
0.3018] 

[0.1707, 
0.3030] 

[0.1737, 
0.3025] 

[0.1724, 
0.3027] 

[0.1730, 
0.3026] 

[0.1727, 
0.3026] 

[0.1728, 
0.3026] 

[0.1728, 
0.3026] 

5 [0.4398, 

0.4398] 

[0.1741, 

0.8517] 

[0.3434, 

0.6853] 

[0.2774, 

0.7807] 

[0.3129, 

0.7403] 

[0.2973, 

0.7575] 

[0.3046, 

0.7494] 

[0.3012, 

0.7532] 

[0.3028, 

0.7514] 

[0.3021, 

0.7522] 

[0.3024, 

0.7519] 

[0.3023, 

0.7520] 
6 [0.4960, 

0.4960] 

[0.3005, 

0.6805] 

[0.4087, 

0.6129] 

[0.3657, 

0.6522] 

[0.3887, 

0.6347] 

[0.3787, 

0.6437] 

[0.3834, 

0.6396] 

[0.3812, 

0.6415] 

[0.3822, 

0.6406] 

[0.3818, 

0.6410] 

[0.3820, 

0.6408] 

[0.3819, 

0.6409] 

7 [0.3716, 
0.3716] 

[0.1794, 
0.4791] 

[0.2608, 
0.4257] 

[0.2260, 
0.4440] 

[0.2432, 
0.4346] 

[0.2353, 
0.4388] 

[0.2390, 
0.4368] 

[0.2373, 
0.4377] 

[0.2381, 
0.4373] 

[0.2377, 
0.4375] 

[0.2379, 
0.4374] 

[0.2378, 
0.4374] 

8 [0.9056, 

0.9056] 

[0.4992, 

1.0000] 

[0.6944, 

0.9903] 

[0.6159, 

1.0000] 

[0.6559, 

1.0000] 

[0.6382, 

1.0000] 

[0.6465, 

1.0000] 

[0.6426, 

1.0000] 

[0.6444, 

1.0000] 

[0.6436, 

1.0000] 

[0.6440, 

1.0000] 

[0.6438, 

1.0000] 
9 [0.5207, 

0.5207] 

[0.3062, 

0.6511] 

[0.3979, 

0.6103] 

[0.3610, 

0.6373] 

[0.3789, 

0.6272] 

[0.3710, 

0.6321] 

[0.3747, 

0.6299] 

[0.3730, 

0.6309] 

[0.3738, 

0.6304] 

[0.3734, 

0.6306] 

[0.3736, 

0.6305] 

[0.3735, 

0.6306] 

10 [0.3765, 
0.3765] 

[0.1494, 
0.4487] 

[0.2617, 
0.4248] 

[0.2118, 
0.4361] 

[0.2371, 
0.4305] 

[0.2260, 
0.4331] 

[0.2313, 
0.4319] 

[0.2289, 
0.4325] 

[0.2300, 
0.4322] 

[0.2295, 
0.4323] 

[0.2297, 
0.4323] 

[0.2296, 
0.4323] 

 

 

Table 7. Comparisons between the proposed Gibbs entropy model and the other methods for numerical 

example 2 
DMUj Aggressive (rank) Benevolent (rank) Game (rank) Proposed (rank) Original model (rank) 

1 0.8150 (1) 0.9928 (1) 1.0000 (1) 2.4830 (2) 2.4549 (2) 
2 0.7153 (3) 0.8945 (3) 0.9811 (3) 2.4354 (3) 2.3587 (3) 
3 0.4382 (7) 0.5344 (7) 0.6554 (5) 1.6282 (5) 1.5943 (5) 
4 0.2240 (10) 0.2862 (10) 0.3026 (10) 0.7515 (10) 0.7412 (10) 
5 0.4705 (4) 0.5786 (6) 0.7520 (4) 1.8679 (4) 1.7884 (4) 
6 0.4486 (5) 0.5792 (5) 0.6409 (6) 1.5925 (6) 1.5727 (6) 
7 0.3014 (9) 0.3523 (9) 0.4374 (8) 1.0867 (8) 1.0661 (8) 
8 0.7843 (2) 0.9587 (2) 1.0000 (1) 2.4841 (1) 2.4628 (1) 
9 0.4394 (6) 0.5802 (4) 0.6306 (7) 1.5669 (7) 1.5508 (7) 

10 0.3190 (8) 0.4122 (8) 0.4323 (9) 1.0737 (9) 1.0536 (9) 

 

 

 

 

Figure 3. The comparisons of ranks for the numerical example 2 
 

 

Additionally, the rs was evaluated. Consequently, 𝑟𝑠=0.939, 0.900, and 0.998 were calculated for the 

proposed method, the aggressive, beneficent, and game cross-efficiency methods, respectively. Notably, the 
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correlation between the proposed ranking method and well-known cross-efficiency methods is quite high. Besides, 

the proposed Gibbs entropy linear programming model was compared with the Gibbs entropy optimization model 

of [42] for solving this problem. The results show that the ranks of each DMU were the same for both models. 

 

3.3.  The twenty Thai provinces application 

In Thailand, agriculture plays an important role in rural life, trade incomes, food security, and domestic 

economic development. Agriculture is also the backbone of food industries because it meets their demand for raw 

materials. Therefore, one of the main national goals of the Thai government is to increase the agricultural 

productivity of cash crops. The government has promoted a new economic model in a systematic manner with 

the aim of achieving the Government ‘s Thailand 4.0 vision by focusing on 10 targeted S-curve industries; one of 

them is the agricultural sector. In the Northeastern region of Thailand, agriculture remains the largest sector, and 

rice, maize, cassava, sugar cane, and palm are the main cash crops. Agricultural productivity in the poorest 

regions remains less efficient compared with other regions due to the inefficient use of inputs. This results in 

reduced efficiency and weak planning, which often leads to inefficient policy making in agriculture, in terms of 

budget allocation, technology, infrastructure, and other resources. Agricultural productivity can be viewed as the 

ratio of agricultural outputs to inputs. In some cases, there are multiple production units with multiple inputs and 

outputs, and input and output measurements have different units. It is exceedingly difficult to calculate 

agricultural productivity since this problem is complex. Unquestionably, measuring efficiency and ranking the 

provinces based on their use of these input factors are crucial for establishing appropriate government policies for 

the economic growth of each province. Planning and formulating policies and related actions to further develop 

the nation’s economy would be greatly aided by the discovery of a dependable instrument for measuring the 

efficacy and classification of each province. This problem has twenty DMUs, including three inputs (x1, x2 and x3) 

and five outputs (y1, y2, y3, y4 and y5). Inputs: x1, x2 and x3 are the number of farmers (persons), the provincial 

minimum wage (baht), and the planted area (km2), respectively. Outputs: y1, y2, y3, y4 and y5 are the production 

volume of rice (tons), the production volume of maize (tons), the production volume of cassava (tons), the 

production volume of sugarcane (tons), and the production volume of oil palm (tons), respectively. DMUs: The 

twenty DMUs are Loei (DMU1), Nong Bua Lamphu (DMU2), Udon Thani (DMU3), Nong Khai (DMU4), Bueng 

Kan (DMU5), Sakon Nakhon (DMU6), Nakhon Phanom (DMU7), Mukdahan (DMU8), Kalasin (DMU9), Khon 

Kaen (DMU10), Maha Sarakham (DMU11), Roi Et (DMU12), Nakhon Ratchasima (DMU13), Chaiyaphum 

(DMU14), Buriram (DMU15), Surin (DMU16), Yasothon (DMU17), Sisaket (DMU18), Amnat Charoen (DMU19), 

and Ubon Ratchathani (DMU20), details of this problem are shown in Table 8. 
 

 

Table 8. The data set for the twenty Thai provinces 
DMUj x1 x2 x3 y1 y2 y3 y4 y5 CCR 

1 129638 320 2305 158423 258194 1025676 2725505 39280 1.0000 
2 126715 315 1843 262373 18303 337508 2872516 6302 1.0000 
3 315405 320 5046 765891 1845 1599257 5936670 35855 1.0000 
4 87995 325 1280 270757 147 73077 613127 34060 1.0000 
5 55107 320 882 160015 0 21676 35613 50666 1.0000 
6 283207 323 4119 793565 62 517047 859419 26955 0.9774 
7 177004 320 2575 560177 0 80345 128048 8424 1.0000 
8 86845 323 1263 188016 0 495264 1927371 4813 1.0000 
9 269444 323 3919 736558 113 370968 3836298 7900 1.0000 

10 330834 325 5293 786188 3120 870198 5219604 2267 0.9457 
11 256394 315 4102 849444 0 554556 1100761 128 1.0000 
12 389831 320 5670 1139001 0 245245 1432720 2728 1.0000 
13 664858 325 10638 1276037 468945 4908505 4337480 12437 1.0000 
14 361593 315 5260 547606 52725 1920715 3799033 7350 0.8958 
15 386095 320 5616 1014534 365 1462651 977755 10539 0.9907 
16 375448 320 5461 1138049 46 561824 928355 6516 1.0000 
17 177939 320 2588 512585 0 370968 856559 3834 0.9717 
18 369434 315 5374 1053588 21624 773525 81534 10786 0.9755 
19 142038 315 2066 366439 273 459639 841473 8388 0.9486 

20 435969 325 7751 1481730 53465 1818897 28968 30944 1.0000 

 

 

3.3.1. Generating the game interval cross-efficiency matrix for the twenty Thai provinces based on 

optimistic and pessimistic perspectives 

Based on the dataset provided in Table 8, which contains information on the inputs and outputs of 

each DMUj from the twenty Thai provinces, there were a total of twenty DMUs. Each DMU was 

characterized by two inputs (x1, x2, and x3) and three outputs (y1, y2, y3, y4, and y5). To evaluate the 

performance of each DMU, the CCR and ACE scores were computed using (1) to (3). The interval cross-
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efficiency scores for each DMU were then calculated using the proposed game cross-efficiency method. The 

pertinent information for this instance can be found in Table 9. 
 

 

Table 9. The interval cross-efficacy matrix for the twenty provinces in Thailand 
DMUj I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14*  

1 [0.895, 
0.895] 

[0.291, 
1.000] 

[0.497, 
0.957] 

[0.370, 
1.000] 

[0.462, 
0.993] 

[0.407, 
1.000] 

[0.438, 
0.996] 

[0.419, 
1.000] 

[0.431, 
0.997] 

[0.423, 
0.999] 

[0.428, 
0.998] 

[0.425, 
0.998] 

[0.427, 
0.998] 

[0.426, 
0.998] 

 

2 [0.774, 

0.774] 

[0.339, 

0.993] 

[0.526, 

0.899] 

[0.433, 

0.969] 

[0.501, 

0.931] 

[0.464, 

0.956] 

[0.487, 

0.941] 

[0.473, 

0.950] 

[0.482, 

0.944] 

[0.476, 

0.948] 

[0.480, 

0.945] 

[0.477, 

0.947] 

[0.479, 

0.946] 

[0.478, 

0.947] 
 

3 [0.970, 

0.970] 

[0.558, 

1.000] 

[0.709, 

0.981] 

[0.630, 

1.000] 

[0.683, 

0.987] 

[0.651, 

0.998] 

[0.670, 

0.991] 

[0.658, 

0.995] 

[0.665, 

0.993] 

[0.660, 

0.994] 

[0.663, 

0.993] 

[0.661, 

0.994] 

[0.662, 

0.993] 

[0.662, 

0.994] 
 

4 [0.856, 
0.856] 

[0.306, 
1.000] 

[0.508, 
0.940] 

[0.410, 
1.000] 

[0.485, 
0.985] 

[0.446, 
1.000] 

[0.473, 
0.998] 

[0.457, 
1.000] 

[0.467, 
1.000] 

[0.461, 
1.000] 

[0.465, 
1.000] 

[0.462, 
1.000] 

[0.464, 
1.000] 

[0.463, 
1.000] 

 

5 [0.759, 

0.759] 

[0.206, 

1.000] 

[0.402, 

0.891] 

[0.296, 

0.999] 

[0.377, 

0.964] 

[0.336, 

0.994] 

[0.365, 

0.985] 

[0.349, 

0.993] 

[0.359, 

0.990] 

[0.353, 

0.992] 

[0.357, 

0.991] 

[0.354, 

0.992] 

[0.356, 

0.992] 

[0.355, 

0.992] 
 

6 [0.855, 

0.855] 

[0.422, 

0.974] 

[0.565, 

0.929] 

[0.504, 

0.964] 

[0.550, 

0.947] 

[0.526, 

0.959] 

[0.542, 

0.952] 

[0.533, 

0.956] 

[0.539, 

0.954] 

[0.535, 

0.956] 

[0.538, 

0.954] 

[0.536, 

0.955] 

[0.537, 

0.955] 

[0.537, 

0.955] 
 

7 [0.807, 
0.807] 

[0.316, 
0.997] 

[0.501, 
0.934] 

[0.419, 
0.990] 

[0.483, 
0.967] 

[0.451, 
0.985] 

[0.473, 
0.976] 

[0.460, 
0.982] 

[0.469, 
0.979] 

[0.463, 
0.981] 

[0.467, 
0.979] 

[0.465, 
0.980] 

[0.466, 
0.980] 

[0.465, 
0.980] 

 

8 [0.846, 

0.846] 

[0.302, 

1.000] 

[0.520, 

0.928] 

[0.409, 

0.998] 

[0.492, 

0.963] 

[0.447, 

0.991] 

[0.476, 

0.975] 

[0.459, 

0.985] 

[0.470, 

0.978] 

[0.463, 

0.982] 

[0.467, 

0.979] 

[0.464, 

0.981] 

[0.466, 

0.980] 

[0.465, 

0.981] 
 

9 [0.873, 

0.873] 

[0.463, 

1.000] 

[0.629, 

0.971] 

[0.551, 

0.999] 

[0.607, 

0.987] 

[0.574, 

0.998] 

[0.595, 

0.991] 

[0.584, 

0.996] 

[0.591, 

0.992] 

[0.586, 

0.995] 

[0.589, 

0.993] 

[0.587, 

0.994] 

[0.588, 

0.993] 

[0.588, 

0.994] 
 

10 [0.791, 
0.791] 

[0.441, 
0.942] 

[0.569, 
0.891] 

[0.507, 
0.924] 

[0.550, 
0.902] 

[0.524, 
0.916] 

[0.539, 
0.906] 

[0.531, 
0.912] 

[0.536, 
0.908] 

[0.533, 
0.911] 

[0.535, 
0.909] 

[0.533, 
0.910] 

[0.534, 
0.909] 

[0.534, 
0.910] 

 

11 [0.885, 

0.885] 

[0.413, 

1.000] 

[0.582, 

0.981] 

[0.511, 

1.000] 

[0.566, 

0.997] 

[0.538, 

1.000] 

[0.556, 

0.999] 

[0.545, 

1.000] 

[0.552, 

0.999] 

[0.548, 

0.999] 

[0.551, 

0.999] 

[0.549, 

0.999] 

[0.550, 

0.999] 

[0.549, 

0.999] 
 

12 [0.824, 

0.824] 

[0.397, 

0.993] 

[0.567, 

0.948] 

[0.495, 

0.982] 

[0.551, 

0.965] 

[0.521, 

0.977] 

[0.542, 

0.969] 

[0.530, 

0.974] 

[0.538, 

0.971] 

[0.533, 

0.973] 

[0.536, 

0.972] 

[0.534, 

0.973] 

[0.535, 

0.972] 

[0.535, 

0.972] 
 

13 [0.936, 
0.936] 

[0.445, 
1.000] 

[0.608, 
0.968] 

[0.514, 
1.000] 

[0.579, 
0.982] 

[0.535, 
0.995] 

[0.565, 
0.987] 

[0.547, 
0.992] 

[0.558, 
0.989] 

[0.551, 
0.991] 

[0.555, 
0.989] 

[0.552, 
0.991] 

[0.554, 
0.990] 

[0.553, 
0.990] 

 

14 [0.736, 

0.736] 

[0.376, 

0.863] 

[0.493, 

0.794] 

[0.430, 

0.837] 

[0.473, 

0.803] 

[0.448, 

0.823] 

[0.463, 

0.809] 

[0.454, 

0.817] 

[0.459, 

0.812] 

[0.456, 

0.815] 

[0.458, 

0.813] 

[0.457, 

0.814] 

[0.457, 

0.813] 

[0.457, 

0.814] 
 

15 [0.884, 

0.884] 

[0.422, 

0.990] 

[0.572, 

0.950] 

[0.505, 

0.983] 

[0.555, 

0.965] 

[0.528, 

0.977] 

[0.546, 

0.969] 

[0.535, 

0.974] 

[0.542, 

0.971] 

[0.538, 

0.973] 

[0.541, 

0.971] 

[0.539, 

0.972] 

[0.540, 

0.972] 

[0.539, 

0.972] 
 

16 [0.883, 
0.883] 

[0.433, 
1.000] 

[0.596, 
0.975] 

[0.527, 
0.999] 

[0.581, 
0.990] 

[0.553, 
0.997] 

[0.572, 
0.993] 

[0.561, 
0.996] 

[0.568, 
0.994] 

[0.564, 
0.996] 

[0.567, 
0.995] 

[0.565, 
0.995] 

[0.566, 
0.995] 

[0.565, 
0.995] 

 

17 [0.825, 

0.825] 

[0.355, 

0.972] 

[0.527, 

0.924] 

[0.453, 

0.968] 

[0.510, 

0.950] 

[0.480, 

0.964] 

[0.500, 

0.958] 

[0.489, 

0.962] 

[0.496, 

0.959] 

[0.491, 

0.961] 

[0.495, 

0.960] 

[0.493, 

0.960] 

[0.494, 

0.960] 

[0.493, 

0.960] 
 

18 [0.856, 

0.856] 

[0.388, 

0.973] 

[0.548, 

0.939] 

[0.479, 

0.969] 

[0.532, 

0.956] 

[0.504, 

0.965] 

[0.523, 

0.959] 

[0.512, 

0.964] 

[0.519, 

0.961] 

[0.515, 

0.963] 

[0.518, 

0.962] 

[0.516, 

0.962] 

[0.517, 

0.962] 

[0.516, 

0.962] 
 

19 [0.799, 
0.799] 

[0.333, 
0.948] 

[0.496, 
0.887] 

[0.420, 
0.939] 

[0.477, 
0.915] 

[0.447, 
0.932] 

[0.467, 
0.923] 

[0.455, 
0.929] 

[0.463, 
0.925] 

[0.458, 
0.928] 

[0.461, 
0.926] 

[0.459, 
0.927] 

[0.461, 
0.927] 

[0.460, 
0.927] 

 

20 [0.960, 

0.960] 

[0.431, 

1.000] 

[0.612, 

0.989] 

[0.531, 

1.000] 

[0.594, 

0.999] 

[0.560, 

1.000] 

[0.583, 

1.000] 

[0.569, 

1.000] 

[0.578, 

1.000] 

[0.572, 

1.000] 

[0.576, 

1.000] 

[0.573, 

1.000] 

[0.575, 

1.000] 

[0.574, 

1.000] 
 

 

 

3.3.2. Rank all DMUs using the Gibbs entropy linear programming model for numerical example 2 

Utilizing the identical computational procedures outlined in subsubsection 3.1.2 for the Gibbs 

entropy linear programming model, the study applied this model to rank DMUs across twenty Thai 

provinces, utilizing the game interval cross-efficiency matrix. As delineated in Table 9, the interval cross-

efficiency values, initially varying, uniformly converged to a stable game interval cross-efficiency value for 

each DMU after 14 iterations. This convergence signifies the solution’s nature as a Nash equilibrium, a fact 

substantiated by prior research [15]. Table 10 presents the comparative rankings of the proposed method 

against alternative cross-efficiency approaches, revealing the proposed method’s superior ability to 

differentiate between DMUs, a shortcoming observed in the game cross-efficiency method, notably 

concerning DMU1 and DMU20. Furthermore, the study juxtaposed the proposed Gibbs entropy model with 

Lu and Liu’s Gibbs entropy optimization model [42], yielding a correlation coefficient of rs=0.877. This 

outcome underscores the model’s efficacy in addressing the problem at hand.  

As seen in Table 9, an initial interval cross efficiency value for each DMU converges to a stable game 

interval cross efficiency value, indicating that the solution is a Nash equilibrium, as demonstrated in [15]. Table 9 

demonstrates that after 14 iterations, all DMUs calculated by the proposed algorithm attain a constant value for 

game-cross efficiency. The concurrence between the proposed method and the original game cross-efficiency 

method is vividly demonstrated in Figure 4. Notably, only DMU20 exhibited divergent rankings between the two 

methods. Spearman’s correlation coefficient (rs) attested to this strong concordance (rs=0.986), underscoring the 

effectiveness of the proposed ranking method and its affinity with the game cross-efficiency method. 
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Table 10. The ranking comparisons of the proposed method and the other cross-efficiency methods for the 

twenty Thai provinces 
DMUj Aggressive (rank) Benevolent (rank) Game (rank) Proposed (rank) Original (rank) 

1 0.5993 (11) 0.9034 (8) 0.9983 (4) 2.6321 (4) 2.5357(8) 
2 0.6168 (8) 0.8305 (18) 0.9467 (17) 2.4980 (17) 2.4388(17) 
3 0.7464 (1) 0.9764 (1) 0.9937 (7) 2.6213 (7) 2.5991(1) 
4 0.5616 (15) 0.8657 (14) 1.0000 (1) 2.6376 (1) 2.5575(7) 
5 0.4644 (20) 0.7024 (20) 0.9918 (8) 2.6164 (8) 2.4792(14) 
6 0.5783 (14) 0.8821(12) 0.9550 (16) 2.5195 (16) 2.4775(15) 
7 0.5316 (18) 0.8625 (15) 0.9801 (11) 2.5857 (11) 2.5128(11) 
8 0.6092 (10) 0.8923 (10) 0.9805 (10) 2.5863 (10) 2.5113(12) 
9 0.6944 (2) 0.9348 (6) 0.9938 (6) 2.6221 (6) 2.5851(4) 

10 0.6522 (4) 0.8381 (17) 0.9097 (19) 2.4004 (19) 2.3668(19) 
11 0.6212 (7) 0.9422 (4) 0.9991(3) 2.6357 (3) 2.5870(3) 
12 0.6166 (6) 0.8843 (11) 0.9724 (12) 2.5657 (12) 2.5186(10) 
13 0.6756 (3) 0.9431 (3) 0.9901 (9) 2.6113 (9) 2.5666(6) 
14 0.5358 (17) 0.7604 (19) 0.8139 (20) 2.1473 (20) 2.1123(20) 
15 0.5961 (12) 0.9191 (7) 0.9720 (13) 2.5641 (13) 2.5192(9) 
16 0.6297 (6) 0.9372 (5) 0.9951 (5) 2.6253 (5) 2.5822(5) 
17 0.5559 (16) 0.8818 (13) 0.9601 (15) 2.5329(15) 2.4756(16) 
18 0.5788 (13) 0.8994 (9) 0.9621 (14) 2.5380(14) 2.4878(13) 
19 0.5212 (19) 0.8416 (16) 0.9270 (18) 2.4455 (18) 2.3850(18) 
20 0.6389 (5) 0.9608 (2) 1.0000 (1) 2.6371 (2) 2.5938(2) 

 
 

 
 

Figure 4. The ranking comparisons for the twenty Thai provinces 

 

 

4. CONCLUSION  

Although the traditional game cross-efficiency method is a valuable approach for tackling DEA 

ranking challenges, it has limitations in effectively distinguishing all DMUs in specific DEA ranking 

problems. To address this constraint, we have developed an innovative Gibbs entropy linear programming 

model that incorporates both optimistic and pessimistic perspectives of the original game cross-efficiency 

technique. This advancement enables the ranking of all DMUs. Furthermore, the model proficiently 

quantifies uncertainty when dealing with interval data during DMU ranking. Through the examination of 

three numerical examples involving six nursing home, numerical example 2, and twenty Thai provinces, we 

have demonstrated the efficacy of the proposed method in accurately ranking all DMUs. Moreover, the 

proposed method exhibits a strong correlation with the classical game cross-efficiency method and introduces 

a novel approach for DEA ranking problems by integrating Gibbs entropy with the traditional game cross-

efficiency method. The obtained results, with Spearman’s correlation coefficient (rs) values of 0.998, 0.998, 

and 0.986 for the proposed method and the classical game cross-efficiency method in the cases of six nursing 

homes, numerical example 2, and the application involving twenty Thai provinces, respectively, provide 

compelling evidence of the efficiency and reliability of the proposed method. It offers a more comprehensive 

rating procedure that leads to sensible and practical conclusions compared to earlier research. Additionally, 

the proposed Gibbs entropy linear programming model brings added benefits in terms of simplicity and 

convenience when compared to the original Gibbs entropy optimization model (Lu and Liu’s model). 

Furthermore, we anticipate that our proposed Gibbs entropy linear programming model, developed in this 

study, can be effectively employed to handle imprecise data. It holds the potential to address problems related 

to interval data envelopment analysis, fuzzy data envelopment analysis, and multi-criteria decision-making. 

In summary, the proposed method contributes significantly to DEA ranking methodologies, providing a 

robust and adaptable framework for decision-making across various domains where uncertainty and 

imprecise data are prevalent. It offers a more comprehensive and practical approach to ranking, ultimately 

yielding more dependable and meaningful outcomes compared to prior research. 
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