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The game cross-efficiency method, a commonly utilized approach for
ranking decision-making units in tie-breaking scenarios, is based on
secondary goals. However, in certain data envelopment analysis ranking
problems, the classical game cross-efficiency method may fail to
differentiate all decision-making units effectively. To address this limitation,
it is prudent to explore the development of a new method that can enhance
the ranking performance of the classical game cross-efficiency approach. In
this study, we propose a novel Gibbs entropy linear programming model that
integrates both optimistic and pessimistic perspectives of the classical game
cross-efficiency method for data envelopment analysis ranking problems. To
validate the reliability and utility of our proposed method, we present three
examples: the six nursing homes problem, numerical example 2, and an
application involving twenty Thai provinces with cash crop data. The
reliability of the proposed method is assessed using Spearman’s correlation
coefficient (rs) on the numerical examples. The results demonstrate that the
rs values for both the proposed method and the classical game cross-
efficiency method, specifically for the six nursing homes problem, numerical
example 2, and the application involving twenty Thai provinces, are
determined to be rs=0.998, 0.998, and 0.986 respectively.
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1. INTRODUCTION

Initially, Farrell [1] introduced a methodology to assess the performance of a group of comparable
decision-making units (DMUs) characterized by multiple inputs and outputs. However, Charnes et al. [2]
who were credited with being the first to operationalize Farrell [1] concept into a data envelopment analysis
model data envelopment analysis (DEA) model, famously known as the Charnes, Cooper and Rhodes (CCR)
model, named in honor of the three authors’ initials. The DEA model computes a DMU’s maximum relative
efficiency score via a linear programming model that seeks to maximize the output-to-input ratio. Typically,
when a DMU achieves a relative efficiency score of 1, it is classified as efficient. Given its proven
effectiveness and versatility, the DEA model has garnered significant attention and found applications across
diverse domains. Banker et al. [3] introduced the Banker, Charnes and Cooper (BCC) model, a widely
employed framework with applications spanning various fields, including economics and finance. The DEA
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model’s performance measurements have the advantage of evaluating the performance of many DMUs without
the need to standardize input and output data. It is unnecessary to assume the production function assumptions
for DEA. In addition, there is no requirement to establish input and output weights because the weight may be
generated using DEA model [4], [5]. DMUs can be compared to manufacturing units, businesses, schools,
banks, hospitals, universities, and commercial firms in this context. The DEA can classify DMUs into two
distinct categories: efficient and inefficient. The efficient DMUs can create the same output or more with fewer
inputs, whereas the inefficient DMUs require more inputs to produce the same result or less. Nevertheless, the
DEA model lacks the capability to rank efficient DMUs (relative efficiency score values of 1) [6]-[8]; therefore,
Sexton et al. [9] enhanced this methodology and presented the DEA cross-efficiency method.

The cross-efficiency approach combines self-assessment and peer-evaluation to determine the
relative efficiency of each DMU. This technique offers several key advantages [10]-[12]. Firstly, it
effectively discriminates between strong and weak performance, resulting in a comprehensive DMU ranking.
Secondly, it overcomes the challenge of unrealistic weight schemes without the need for weight constraints.
By leveraging assessed weights from DMUs and other DMUSs, the cross-efficiency approach calculates
average cross-efficiency (ACE) scores, forming the basis for DMU rankings. A higher ACE score signifies
superior organizational performance. Nevertheless, the traditional cross-efficiency method faces a
fundamental drawback. The optimal weights for inputs and outputs derived from the conventional DEA
model lack uniqueness, leading to non-unique cross-efficiency scores. To address this, Doyle and Green [13]
introduced an innovative secondary goal to the standard cross-efficiency approach. They proposed aggressive
and benevolent models to identify the ideal DEA weights for a DMU. The benevolent (or aggressive) model
maintains a DMU?’s relative efficiency score while optimizing (or reducing) the relative efficiency scores of
other DMUs through the best possible DEA weights. However, these models may generate different rankings
for similar cases due to their distinct perspectives. Subsequently, various mathematical models emerged
based on the concept of secondary goals in cross-efficiency measurement. For instance, Liang et al. [14]
developed three alternative cross-efficiency models with secondary goals, integrating the notion of optimal
spot to address common challenges. Liang et al. [15] introduced the game cross-efficiency method,
integrating competitive elements, to assess efficiency within the DEA framework. They also explored the
concept of Nash equilibrium in this context. This research enhances our understanding of how DMUs can
enhance their efficiency while considering the competitive dynamics that influence their operations. Further
advancements include Wang and Chin [16] extension of Liang’s models [14] by defining the true ideal point
and altering the efficiency target. Wang and Chin [17] proposed a neutral cross-efficiency model to combat
discrimination among DMUs. Jahanshahloo [18] introduced a method of symmetric weighting to reward
DMUs for balanced weighting decisions without compromising feasibility. Additionally, several neutral
cross-efficiency models based on ideal and anti-ideal DMUs were proposed [19], [20], and DEA-CE techniques
were developed based on weight-balanced models and Pareto optimization [21]. Abolghasem et al. [22]
incorporated flexible measures into the aggressive and benevolent models for the DEA-CE technique.

Despite these developments, the problem of unique efficiency persists, as the optimal DEA weights
derived from a CCR model are frequently not unique. Nevertheless, the game cross-efficiency approach
provides a solution by generating unique cross-efficiency values through pairwise games between competing
DMUs, while preserving the efficiency of other DMUs. Each DMU is viewed as an individual seeking to
maximize its own efficiency, with the assumption that the cross-efficiency of other DMUs remains unaffected.
The optimal game cross-efficiency scores are determined by the iterative nature of the game cross-efficiency
model, and various initial scores result in identical cross-efficiency outcomes, representing a Nash equilibrium.
This method has gained widespread acceptance and application across various domains, including supplier
selection [23], [24], urban public infrastructure investment [25], [26], ecological efficiency surveys [27], [28],
energy efficiency [29], [30], forest carbon sequestration [31]-[38]. However, it’s important to note that the
game cross-efficiency technique may not be suitable for ranking all DMUs in certain DEA ranking problems, as
indicated by the literature review. In this study, we merge the optimistic and pessimistic aspects of the
traditional game cross-efficiency model to address data envelopment analysis ranking problems. After
compiling a game interval cross-efficiency decision matrix, Gibbs entropy information is leveraged to rank all
DMUs based on interval data. The following section provides a literature review on entropy information.

Entropy formulation is an effective and extensively employed weighting method for evaluating the
uncertainty of data. According to the concept of entropy, the integrity of the information is one of the most
crucial factors in determining the best course of action. In determining the weights of criteria in DEA ranking
problems [39]-[41], the entropy approach of Shannon is frequently employed. Recently, however, the
application of entropy to interval DEA ranking problems has been presented and has become a topic of
interest. Wang et al. [41] initially utilized a DEA entropy model to convert interval values of cross-efficiency
into precise relative efficiencies, and all DMUs can be arranged according to the positive ideal distance. In
order to rank all DMUs, Lu and Liu [42] proposed a Gibbs entropy optimization model to transform interval
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cross-efficiency scores into precise entropy scores. This model is user-friendly and can be calculated using
optimization software. Nonetheless, the original Gibbs entropy model is classified as a nonlinear
programming model; employing the optimization solver to identify optimal entropy solutions for large
problems can be extremely difficult. In order to rank all DMUs in this study, the optimization model based on
the original Gibbs entropy model [42] must be converted into a linear programming model. This research
presents a hybrid strategy for ranking all DMUs based on an optimistic—pessimistic game cross-efficiency
method. The following are the principal contributions of this research:

a. Based on the original Gibbs entropy model [42], this model is categorized as a nonlinear programming
model. Obtaining optimal solutions with optimization software may be challenging. This study introduces
the Gibbs entropy linear programming model, a novel linear programming model based on Gibbs entropy
concepts, for ranking DMUs with interval data.

b. We apply the proposed method to a real-world scenario that includes twenty provinces in Thailand with
data on revenue crops. This will be immensely beneficial for research in this sector in practically every
country, especially agricultural nations.

The remainder of this paper is as follows: next, some cross-efficiency models and the original Gibbs
entropy model are presented. Section 2 then presents a novel Gibbs entropy linear programming model that
combines the optimistic and pessimistic perspectives of the traditional game cross-efficiency method for data
envelopment analysis ranking problems. In section 3, verification is conducted for three numerical examples, six
nursing institutions, numerical example 2, and twenty Thai provinces. Section 4 concludes with the conclusions.

2. METHOD

This section introduces the Gibbs entropy-based model, an innovative linear programming
approach. It combines optimistic and pessimistic viewpoints from the game cross-efficiency model to address
ranking problems in DEA. The model accurately determines weights using linear programming techniques,
providing decision-makers with a comprehensive assessment of DMU performance. Figure 1 visually depicts
the framework of the proposed model.
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Figure 1. The proposed framework

2.1. CCR model

Charnes et al. [2] proposed a mathematical model known as DEA-CCR model, which was designed to
evaluate the performance of a collection of DMUs that possess various inputs and outputs. This model assumes
that each DMU; (where j = 1,2,3,...,n) possesses a collection of multi-inputs (x;;), where i = 1,2,3,...,m,
and generates a set of multi-outputs (y,;), where v = 1,2,...,s. Let vy, where k = 1,2,3, ...,n, be the input
weight for each DMU,,. Let u,,, where k = 1,2, 3, ..., n, be the output weight for each DMU,,. The efficiency
score (E4q) foraset of DMU, (1 < d < n) can be measured using the CCR model, as shown in model (1).

Eqq = max Y5-1 Urq Yra
St i UpgYVrj — Die1 VigXi; < 0,j,d =1,2,3,...,n )
I ViaXxig = 1,d =1,23,...,n

Ug =20,v420,i=123,...mr=123,...,s
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In model (1), each DMU constructs the programming and selects the best DEA weights for its inputs
and outputs to maximize efficiency, which could contribute to biases in how DMUs are ranked for efficiency
when comparing their efficiency scores. This is the reason why the cross-efficiency method has been
proposed as a solution to this issue.

2.2. Traditional cross-efficiency method

The cross-efficiency method is a potent and widely adopted traditional CCR model that utilizes self-
assessment and peer-assessment to evaluate and rank DMUs with multiple inputs and multiple outputs. The
CCR model’s calculation stages are as follows. After solving the CCR model in model (1), let and represent
the optimal output and input weights for a particular DM U, respectively. Then, the cross-efficiencies of each
DMU; (j = 1,2,3,...,n) are provided by DMU,.

Eqj = X3=1Urq Yrj/ ZiZ1 Vig Xijpd,j = 1,2,3,...,m (2)
Sexton et al. [9] consequently defined the ACE score of DMU; as (3):
Ej=(1/n)23:1Edj,d,j=1,2,...,n (3)

If the EJ (ACE score) of a DMU is higher, it is better ordered. However, the cross-efficiency method
may encounter a problem with multiple solutions; consequently, numerous researchers have sought to enhance
the traditional cross-efficiency method by incorporating secondary objectives into the traditional model.

2.3. Generating the game interval cross-efficiency matrix

By solving (1), the optimal weights of the inputs and outputs can be determined. The ACE scores of
each DMU can then be determined (3) using (2). The optimistic-pessimistic perspectives of the classical
game cross-efficiency model are then constructed in order to construct the game interval decision matrix. The
details of the optimistic and pessimistic game cross-efficiency models are as (4):

Zq =max orminYy_, ulyy;

.y'm d s da
St Nty VX — Xr=1 Up¥r 2 0,

m d —
Yt vixi =1, 4)
m S
d d
Qg Z VijXig — Z UpiVra <0,
i=1 r=1
v:i>0,ut >0r=123,...,5si=123,...,m

To obtain the optimistic and pessimistic scores of DMUs, model (4) is run twice based on the objective
function: by solving model (4) with the three steps of the iterative algorithm described in the literature by
Liang et al. [15], the game interval cross-efficiency matrix based on the optimistic (max Z) and pessimistic (min Z)
viewpoints can be generated, as shown in Table 1, where DMU; (j = 1,2,3, ..., n) can be viewed as the alternative
Jj, and iteration t(1,) can be viewed as the criterion t(t = 1,2,3, ..., m). Let a}” and a}t be the optimistic game
cross-efficiency score and the pessimistic game cross-efficiency score, respectively, for DMU; and I..

Table 1. The game interval cross-efficiency matrix
DMU; I bl
1 [afailla?, ai®] - [a", ai™]
2 o, af'l[af?, a3?][a}", a3™]

n_la ai'lla, ai?] ey, ay™]

2.4. Calculating the optimal entropy values using the novel Gibbs entropy linear programming model
Given that the original Gibbs entropy model [42] is classified as a non-linear programming model, it
may be challenging to obtain optimal solutions using optimization software. Therefore, it is necessary to
modify the original model to integrate linear programming. This study presents an original Gibbs entropy
linear programming model for ranking all DMUs based on the optimistic and pessimistic perspectives of the
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game cross-efficiency model. The following details pertain to the proposed Gibbs entropy linear
programming model. Using the original Gibbs entropy model [42], models (5) through (8) illustrate how the
proposed model could be derived.

H;i = min[—G; XL, (af/ Ty &) In(af/ B, ap)], v),

st NI (& / T &) = 1,V), (5)
aff < af < alf,vt,vj.

A = min[—G; S (@) + )/2)/ Bjer (& + a)/2) In( (@ + @) /2)/ Ty (@ + a*)/2))], v, (6)
s.t X (((af + ) /2)/ T (@ + a})/2)) = 1, V),

where G; is the cross-efficiency score for the final game for DMU; (constant value). Using division, model
(6) can be transformed into model (7).

By = min[—G; X7 (((af* + af)/2)/ Ejo1 (& +&f)/2) In((@ff +a})/2)/ T]a (& + /)], v), (7)
5.t 2 (0 Ea (e + @) + (a}/ B () + o)) = 1Y),

Model (7) is a nonlinear programming model. Set tj as t; = 1/ X%, (af* + a}**). This model can be
converted to a linear programming model as shown in model (8).

H; = min (—GJ- ym, ((a}t + o)ty In(aft + o) tj)),Vj,
s.taym, ((af}t + a}“)tj) =1,Vj, 8
£ >0,

where G; is the constant value of DMU; and t; is the decision variable for DMU;. FI]-* is the optimal entropy
value. If the optimal entropy value (H]-*) of a DMU is higher, it is better ordered.

3. RESULTS

In this section, the research outcomes are described alongside a thorough analysis. Results can be
presented in figures, graphs, and tables that facilitate reader comprehension [14], [15]. The discussion may be
divided into multiple subsections.

3.1. The six nursing homes problem

The six-nursing home problem was presented by Sexton et al. [9] with two inputs and two outputs.
Let x4, x,,y1, and y, represent the staff hours per day, the supplies per day, the total medicare-plus-medicaid
patient days, and the total privately paid patient days, respectively. Table 2 displays the data set for the six
nursing homes problem.

Table 2. Set of data for the six nursing homes problem
DMU; X1 X2 Y1 Y2 CCR

150 020 140 0.35 1.0000

400 070 140 210 1.0000

320 120 420 105 1.0000

520 2.00 280 4.20 1.0000

350 120 190 250 09775

320 070 140 150 0.8675

OO WN B

3.1.1. Generating the game interval cross-efficiency matrix based on the optimistic and pessimistic
viewpoints for the six nursing homes

Based on the data set for the six nursing homes regarding the inputs and outputs of each DMU; listed
in Table 2, the CCR scores based on model (1) were coded using LINGO software. After obtaining the
optimal weights for the inputs and outputs, the ACE score of each DMU (E;) was obtained using (2) to (3).
As a result, the values of £,, E,, E;, E,, Es, and E, were calculated to be 0.8529, 0.8259, 0.7643, 0.8510,
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0.8316, and 0.7286 respectively. In this research, the cross-efficiency score of the arbitrary strategy was set with
an initial value of ajl, € setas 0.001. For iteration 1 (criterion 1 or I,), for each DMU;, if ajl =E,4 (j = d), then

@}=0.8529, a1=0.8259, a1=0.7643, a}=0.8510, @2=0.8316, and «}=0.7286. These parameters were taken
into model (4) to generate the game interval cross-efficiency scores for iteration 2. For iteration 2, using
model (4), through 3 steps of the iterative algorithm, the optimistic cross-efficiency scores (max Z;) of
iterations 2 (t = 2) for each DMU; were determined to be a{=1.0000, @;=1.0000, a3=1.0000, a;=1.0000,
a2=0.9775, and a}=0.8675, respectively. The pessimistic cross-efficiency scores (min Z;) of iterations 2
(t = 2) for each DMU; were obtained as a1=0.4532, a3=0.5276, a1=0.4068, a};=0.5689, ai=0.5580, and
a}=0.4761. As a result, the game interval cross-efficiency matrix shown in Table 3 was generated. The
attainment of scores for optimistic game cross-efficiency for all DMUs during the seventh iteration (I;) is
demonstrated in Table 3. The cross-efficiency scores for DMU1, DMU2, DMU3, DMU4, DMUS5, and
DMUEG in the final game were 1.00, 0.9868, 0.9221, 1.00, 0.9766, and 0.8615, respectively (shown in bold).

Table 3. The game interval cross-efficiency matrix for the six nursing homes
DMU; I I I I I I I
1 [0.8529, [0.4532, [0.7496, [0.7184, [0.7300, [0.7277, [0.7286,
0.8529]  1.0000]  1.0000] 1.0000] ~ 1.0000] 1.0000]  1.0000]
2 [0.8259, [0.5276, [0.7004, [0.6847, [0.6910, [0.6898, [0.6903,
0.8259] 1.0000] 0.9773] 0.9879] 0.9861] 0.9870]  0.9868]
3 [0.7643, [0.4068, [0.6428, [0.6120, [0.6222, [0.6199, [0.6208,
0.7643]  1.0000] 0.9148] 0.9280] 0.9216] 0.9226]  0.9221]
4  [0.8510, [0.5689, [0.7176, [0.7030, [0.7080, [0.7068, [0.7072,
0.8510]  1.0000]  1.0000] 1.0000]  1.0000] 1.0000]  1.0000]
5  [0.8316, [0.5580, [0.6956, [0.6818, [0.6864, [0.6854, [0.6858,
0.8316] 0.9775] 0.9758] 0.9767] 0.9765] 0.9766]  0.9766]
6  [0.7286, [0.4761, [0.6081, [0.5971, [0.6008, [0.5999, [0.6002,
0.7286]  0.8675] 0.8570] 0.8620]  0.8611] 0.8615]  0.8615]

3.1.2. Rank all DMUSs using the Gibbs entropy linear programming model for the six nursing homes

The game interval cross-efficiency matrix Table 3 was obtained and afterwards, the suggested Gibbs
entropy model was employed to convert the interval cross-efficiency scores into crisp scores. This conversion
was necessary in order to rank the DMUs comprehensively. In order to acquire the values of I-'I]-*, the pertinent
parameters enumerated in Table 3 were inputted into model (8). An illustrative instance of a linear
programming model is employed to determine the best value of entropy, denoted as H]-*.

n(0.7496 + 1.0000) t; + (0.7184 + 1.0000)¢t; in(0.7184 + 1.0000) t; + (0.7300 + 1.0000)t, In(0.7300 + 1.0000) t;

(0.8529 + 0.8529)t, In(0.8529 + 0.8529) t, + (0.4532 + 1.0000)t, [n(0.4532 + 1.0000) t; + (0.7496 + 1.0000)¢;
A; = min| —1.0000
+(0.7277 + 1.0000)t, In(0.7277 + 1.0000) t; + (0.7286 + 1.0000)¢; In(0.7286 + 1.0000) t;

s.t.:(0.8529 + 0.8529)t, + (0.4532 + 1.0000)t, + (0.7496 + 1.0000)t,
+ (0.7184 + 1.0000)¢, + (0.7300 + 1.0000)¢, + (0.7277 + 1.0000)¢,
+ (0.7286 + 1.0000)t, = 1,

t, = 0.

To determine the optimal value of A, this LP model for A; was solved using the LINGO software.
The optimal value of H; was determined to be 1.9442, occurring at t;=0.08465. With the same calculation
steps, the other values of I-'Ij* (=2, 3, ..., 6) were determined to be 1.9198, 1.7939, 1.9455, 1.9000, and 1.6760,
respectively. The other values of ¢t/ (j=2, 3, ..., 6) were determined to be 0.08650, 0.09379, 0.08465, 0.08684,
and 0.09891, respectively. Based on the obtained optimal entropy values, all the DMUs could be fully
ranked. The ranking comparisons between the proposed technique and other methods are presented in Table 4
for all the DMUEs.

The rankings for all the DMUs were computed using the suggested technique, as indicated in
Table 4. The suggested technique has a tendency towards consistency with previous cross-efficiency
methods. Furthermore, it is important to acknowledge that the original game cross-efficiency algorithm lacks
the ability to distinguish between DMU, and DMU,. The results of the suggested technique are compared
with those of the original game cross-efficiency method, as seen in Figure 2. The graphic shown in this
analysis demonstrates a notable alignment between the suggested method and the original game cross-
efficiency approach. The two methodologies yielded differing rankings for just the DM U, .
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Table 4. Ranking comparisons between the proposed method and the alternative methods for the six nursing
homes problem
DMU;  Aggressive (rank)  Benevolent (rank)  Game (rank)  Proposed (rank)  Original model (rank)

1 0.7639 (1) 1.0000 (1) 1.0000 (1) 1.9442 (2) 1.9173 (2)
2 0.7004 (3) 0.9773 (3) 0.9868 (3) 1.9198 (3) 1.8982 (3)
3 0.6428 (5) 0.8580 (5) 0.9221 (5) 1.7939 (5) 1.7642 (5)
4 0.7184 (2) 1.0000 (1) 1.0000 (1) 1.9455 (1) 1.9261 (1)
5 0.6956 (4) 0.9758 (4) 0.9766 (4) 1.9000 (4) 1.8814 (4)
6 0.6081 (6) 0.8570 (6) 0.8615 (6) 1.6760 (6) 1.6579 (6)

Rank

&

2 3 4 £ 6
DMUs

Figure 2. The ranking comparisons for the six nursing homes

Furthermore, the statistical analysis included the examination of Spearman’s correlation coefficient
(r;). Consequently, the r, for the suggested approach, namely the aggressive, benevolent, and game cross-
efficiency methods, were calculated as 0.939, 0.900, and 0.998 correspondingly. It is noteworthy to mention
that the suggested ranking methodology exhibits a significant association with the widely recognized cross-
efficiency approaches. Besides, the proposed Gibbs entropy linear programming model was compared with
the Gibbs entropy optimization model of Lu and Liu [42] for solving this problem. The results show that the
ranks of each DMU were the same for both models.

3.2. The numerical example 2

In numerical example 2 provided by Liang et al. [15], there were ten DMUs with two inputs (x; and
x,) and three outputs (y;, y, and y;) each. The CCR scores for each DMU were calculated using the
traditional CCR model, followed by the proposed game cross-efficiency method for calculating the interval
cross-efficiency scores for each DMU. Table 5 displays the information for numerical example 2.

Table 5. The numerical example 2’s dataset
DMU; X1 X2 Y1 V2 V3 CCR
0.37589 0.19389 0.62731 0.71654 0.11461 1.0000
0.00988 0.90481 0.69908 0.51131 0.66486 1.0000
041986 056921 0.39718 0.77640 0.36537 0.7590
0.75367 0.63179 0.41363 0.48935 0.14004 0.3099
0.79387 023441 0.65521 0.18590 0.56677 1.0000
0.91996 054878 0.83759 0.70064 0.82301 0.7155
0.84472 093158 0.37161 0.98271 0.67395 0.5062
0.36775 0.33520 0.42525 0.80664 0.99945 1.0000
0.62080 0.65553 0.59466 0.70357 0.96164 0.6608
0.73128  0.39190 0.56574  0.48496  0.05886  0.4594

Boo~wooh~wNR

3.2.1. Generating the game interval cross-efficiency matrix for numerical example 2 based on
optimistic and pessimistic perspectives

Based on the inputs and outputs of each DMU; listed in Table 6, the CCR scores and the values of
each E; were calculated using the same calculation steps as shown in subsubsection 3.1.1. As a result, the
cross-efficiency score of the arbitrary model was set at an initial value of a}, & set as 0.001. Finally, Table 6
displays the results of the game interval cross-efficiency matrix.

3.2.2. Rank all DMUs using the Gibbs entropy linear programming model for numerical example 2
After obtaining the game interval cross-efficiency matrix for numerical example 2 and using the
same calculation procedures of the proposed Gibbs entropy linear programming model as presented in
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subsubection 3.1.2. the proposed Gibbs entropy linear programming model was utilized to rank the DMUs
exhaustively. The ranking comparisons between the proposed method and the other methods for each DMU
are displayed in Table 7. The rankings for all the DMUs were computed using the proposed method, as
shown in Table 7. The suggested technique has a tendency towards consistency with previous cross-
efficiency methods. Furthermore, it is important to acknowledge that the game cross-efficiency approaches
lack the ability to distinguish between DMU; and DMUs. Figure 3 illustrates the outcomes obtained from the
suggested methodology in comparison with the conventional game cross-efficiency approach. The graphic
illustrates a strong association between the suggested approach and the game cross-efficiency method. The
two techniques yielded different rankings for just DMU;.

Table 6. The game interval cross-efficiency matrix for the numerical example 2
DMUJ 11 12 13 14 15 16 17 18 19 110 111 112*
1 [0.9492, [0.4270, [0.6900, [0.5748, [0.6324, [0.6071, [0.6192, [0.6136, [0.6162, [0.6150, [0.6155, [0.6153,
0.9492] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000]
2 [0.8887, [0.3095, [0.5361, [0.4091, [0.4645, [0.4380, [0.4496, [0.4441, [0.4466, [0.4455, [0.4460, [0.4458,
0.8887] 1.0000] 0.9395] 1.0000] 0.9732] 0.9850] 0.9794] 0.9819] 0.9807] 0.9812] 0.9810] 0.9811]
3 [0.5650, [0.2560, [0.3814, [0.3260, [0.3526, [0.3404, [0.3460, [0.3434, [0.3446, [0.3441, [0.3443, [0.3442,
0.5650] 0.7208] 0.6364] 0.6673] 0.6506] 0.6577] 0.6543] 0.6559] 0.6552] 0.6555] 0.6554] 0.6554]
4  [0.2775, [0.1256, [0.1925, [0.1626, [0.1771, [0.1707, [0.1737, [0.1724, [0.1730, [0.1727, [0.1728, [0.1728,
0.2775] 0.3077] 0.2989] 0.3043] 0.3018] 0.3030] 0.3025] 0.3027] 0.3026] 0.3026] 0.3026] 0.3026]
5  [0.4398, [0.1741, [0.3434, [0.2774, [0.3129, [0.2973, [0.3046, [0.3012, [0.3028, [0.3021, [0.3024, [0.3023,
0.4398] 0.8517] 0.6853] 0.7807] 0.7403] 0.7575] 0.7494] 0.7532] 0.7514] 0.7522] 0.7519] 0.7520]
6  [0.4960, [0.3005, [0.4087, [0.3657, [0.3887, [0.3787, [0.3834, [0.3812, [0.3822, [0.3818, [0.3820, [0.3819,
0.4960] 0.6805] 0.6129] 0.6522] 0.6347] 0.6437] 0.6396] 0.6415] 0.6406] 0.6410] 0.6408] 0.6409]
7 [0.3716, [0.1794, [0.2608, [0.2260, [0.2432, [0.2353, [0.2390, [0.2373, [0.2381, [0.2377, [0.2379, [0.2378,
0.3716] 0.4791] 0.4257] 0.4440] 0.4346] 0.4388] 0.4368] 0.4377] 0.4373] 0.4375] 0.4374] 0.4374]
8  [0.9056, [0.4992, [0.6944, [0.6159, [0.6559, [0.6382, [0.6465, [0.6426, [0.6444, [0.6436, [0.6440, [0.6438,
0.9056] 1.0000] 0.9903] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000] 1.0000]
9  [0.5207, [0.3062, [0.3979, [0.3610, [0.3789, [0.3710, [0.3747, [0.3730, [0.3738, [0.3734, [0.3736, [0.3735,
0.5207] 0.6511] 0.6103] 0.6373] 0.6272] 0.6321] 0.6299] 0.6309] 0.6304] 0.6306] 0.6305] 0.6306]
10 [0.3765, [0.1494, [0.2617, [0.2118, [0.2371, [0.2260, [0.2313, [0.2289, [0.2300, [0.2295, [0.2297, [0.2296,
0.3765] 0.4487] 0.4248] 0.4361] 0.4305] 0.4331] 0.4319] 0.4325] 0.4322] 0.4323] 0.4323] 0.4323]

Table 7. Comparisons between the proposed Gibbs entropy model and the other methods for numerical

example 2
DMU;  Aggressive (rank)  Benevolent (rank)  Game (rank)  Proposed (rank)  Original model (rank)
1 0.8150 (1) 0.9928 (1) 1.0000 (1) 2.4830 (2) 2.4549 (2)
2 0.7153 (3) 0.8945 (3) 0.9811 (3) 2.4354 (3) 2.3587 (3)
3 0.4382 (7) 0.5344 (7) 0.6554 (5) 1.6282 (5) 1.5943 (5)
4 0.2240 (10) 0.2862 (10) 0.3026 (10) 0.7515 (10) 0.7412 (10)
5 0.4705 (4) 0.5786 (6) 0.7520 (4) 1.8679 (4) 1.7884 (4)
6 0.4486 (5) 0.5792 (5) 0.6409 (6) 1.5925 (6) 1.5727 (6)
7 0.3014 (9) 0.3523 (9) 0.4374 (8) 1.0867 (8) 1.0661 (8)
8 0.7843 (2) 0.9587 (2) 1.0000 (1) 2.4841 (1) 2.4628 (1)
9 0.4394 (6) 0.5802 (4) 0.6306 (7) 1.5669 (7) 1.5508 (7)
10 0.3190 (8) 0.4122 (8) 0.4323 (9) 1.0737 (9) 1.0536 (9)

Rank

1 2 3 4 5 6 7 8 9 10
DMUs

——Game = Proposed

Figure 3. The comparisons of ranks for the numerical example 2

Additionally, the rs was evaluated. Consequently, ,=0.939, 0.900, and 0.998 were calculated for the
proposed method, the aggressive, beneficent, and game cross-efficiency methods, respectively. Notably, the
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correlation between the proposed ranking method and well-known cross-efficiency methods is quite high. Besides,
the proposed Gibbs entropy linear programming model was compared with the Gibbs entropy optimization model
of [42] for solving this problem. The results show that the ranks of each DMU were the same for both models.

3.3. The twenty Thai provinces application

In Thailand, agriculture plays an important role in rural life, trade incomes, food security, and domestic
economic development. Agriculture is also the backbone of food industries because it meets their demand for raw
materials. Therefore, one of the main national goals of the Thai government is to increase the agricultural
productivity of cash crops. The government has promoted a new economic model in a systematic manner with
the aim of achieving the Government ‘s Thailand 4.0 vision by focusing on 10 targeted S-curve industries; one of
them is the agricultural sector. In the Northeastern region of Thailand, agriculture remains the largest sector, and
rice, maize, cassava, sugar cane, and palm are the main cash crops. Agricultural productivity in the poorest
regions remains less efficient compared with other regions due to the inefficient use of inputs. This results in
reduced efficiency and weak planning, which often leads to inefficient policy making in agriculture, in terms of
budget allocation, technology, infrastructure, and other resources. Agricultural productivity can be viewed as the
ratio of agricultural outputs to inputs. In some cases, there are multiple production units with multiple inputs and
outputs, and input and output measurements have different units. It is exceedingly difficult to calculate
agricultural productivity since this problem is complex. Unquestionably, measuring efficiency and ranking the
provinces based on their use of these input factors are crucial for establishing appropriate government policies for
the economic growth of each province. Planning and formulating policies and related actions to further develop
the nation’s economy would be greatly aided by the discovery of a dependable instrument for measuring the
efficacy and classification of each province. This problem has twenty DMUSs, including three inputs (X1, X2 and Xs)
and five outputs (y1, Y2, Ys, Y4 and ys). Inputs: xi, X2 and xs are the number of farmers (persons), the provincial
minimum wage (baht), and the planted area (km?), respectively. Outputs: yi, Y2, ¥s, Y2 and ys are the production
volume of rice (tons), the production volume of maize (tons), the production volume of cassava (tons), the
production volume of sugarcane (tons), and the production volume of oil palm (tons), respectively. DMUs: The
twenty DMUs are Loei (DMU3), Nong Bua Lamphu (DMUy), Udon Thani (DMUs3), Nong Khai (DMU4), Bueng
Kan (DMUs), Sakon Nakhon (DMUs), Nakhon Phanom (DMUy), Mukdahan (DMUs), Kalasin (DMUy), Khon
Kaen (DMUy), Maha Sarakham (DMU11), Roi Et (DMU12), Nakhon Ratchasima (DMU13), Chaiyaphum
(DMUy1y), Buriram (DMUss), Surin (DMUje), Yasothon (DMU17), Sisaket (DMU31g), Amnat Charoen (DMUyy),
and Ubon Ratchathani (DMUy), details of this problem are shown in Table 8.

Table 8. The data set for the twenty Thai provinces
DMU; X1 X Xs Vi Yo Ys Ya Ys CCR

1 129638 320 2305 158423 258194 1025676 2725505 39280 1.0000
2 126715 315 1843 262373 18303 337508 2872516 6302  1.0000
3 315405 320 5046 765891 1845 1599257 5936670 35855  1.0000
4 87995 325 1280 270757 147 73077 613127 34060 1.0000
5 55107 320 882 160015 0 21676 35613 50666 1.0000
6 283207 323 4119 793565 62 517047 859419 26955 0.9774
7 177004 320 2575 560177 0 80345 128048 8424  1.0000
8 86845 323 1263 188016 0 495264 1927371 4813  1.0000
9 269444 323 3919 736558 113 370968 3836298 7900  1.0000
10 330834 325 5293 786188 3120 870198 5219604 2267  0.9457
11 256394 315 4102 849444 0 554556 1100761 128 1.0000
12 389831 320 5670 1139001 0 245245 1432720 2728  1.0000

13 664858 325 10638 1276037 468945 4908505 4337480 12437 1.0000
14 361593 315 5260 547606 52725 1920715 3799033 7350  0.8958
15 386095 320 5616 1014534 365 1462651 977755 10539 0.9907
16 375448 320 5461 1138049 46 561824 928355 6516  1.0000
17 177939 320 2588 512585 0 370968 856559 3834  0.9717
18 369434 315 5374 1053588 21624 773525 81534 10786  0.9755
19 142038 315 2066 366439 273 459639 841473 8388  0.9486
20 435969 325 7751 1481730 53465 1818897 28968 30944 1.0000

3.3.1. Generating the game interval cross-efficiency matrix for the twenty Thai provinces based on
optimistic and pessimistic perspectives

Based on the dataset provided in Table 8, which contains information on the inputs and outputs of
each DMU; from the twenty Thai provinces, there were a total of twenty DMUs. Each DMU was
characterized by two inputs (xi, Xz, and x3) and three outputs (yi, Yo, Vs, Y4, and ys). To evaluate the
performance of each DMU, the CCR and ACE scores were computed using (1) to (3). The interval cross-
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efficiency scores for each DMU were then calculated using the proposed game cross-efficiency method. The
pertinent information for this instance can be found in Table 9.

Table 9. The interval cross-efficacy matrix for the twenty provinces in Thailand

DMU; [ I, [ [ Is lg I7 lg lg l1o 11y l1o l13 l14*
1 [0.895, [0.291, [0.497, [0.370, [0.462, [0.407, [0.438, [0.419, [0.431, [0.423, [0.428, [0.425, [0.427, [0.426,
0.895] 1.000] 0.957] 1.000] 0.993] 1.000] 0.996] 1.000] 0.997] 0.999] 0.998] 0.998] 0.998] 0.998]

2 [0.774, [0.339, [0.526, [0.433, [0.501, [0.464, [0.487, [0.473, [0.482, [0.476, [0.480, [0.477, [0.479, [0.478,
0.774] 0.993] 0.899] 0.969] 0.931] 0.956] 0.941] 0.950] 0.944] 0.948] 0.945] 0.947] 0.946] 0.947]

3 [0.970, [0.558, [0.709, [0.630, [0.683, [0.651, [0.670, [0.658, [0.665, [0.660, [0.663, [0.661, [0.662, [0.662,
0.970] 1.000] 0.981] 1.000] 0.987] 0.998] 0.991] 0.995] 0.993] 0.994] 0.993] 0.994] 0.993] 0.994]

4 [0.856, [0.306, [0.508, [0.410, [0.485, [0.446, [0.473, [0.457, [0.467, [0.461, [0.465, [0.462, [0.464, [0.463,
0.856] 1.000] 0.940] 1.000] 0.985] 1.000] 0.998] 1.000] 1.000] 1.000] 1.000] 1.000] 1.000] 1.000]

5 [0.759, [0.206, [0.402, [0.296, [0.377, [0.336, [0.365, [0.349, [0.359, [0.353, [0.357, [0.354, [0.356, [0.355,
0.759] 1.000] 0.891] 0.999] 0.964] 0.994] 0.985] 0.993] 0.990] 0.992] 0.991] 0.992] 0.992] 0.992]

6 [0.855, [0.422, [0.565, [0.504, [0.550, [0.526, [0.542, [0.533, [0.539, [0.535, [0.538, [0.536, [0.537, [0.537,
0.855] 0.974] 0.929] 0.964] 0.947] 0.959] 0.952] 0.956] 0.954] 0.956] 0.954] 0.955] 0.955] 0.955]

7 [0.807, [0.316, [0.501, [0.419, [0.483, [0.451, [0.473, [0.460, [0.469, [0.463, [0.467, [0.465, [0.466, [0.465,
0.807] 0.997] 0.934] 0.990] 0.967] 0.985] 0.976] 0.982] 0.979] 0.981] 0.979] 0.980] 0.980] 0.980]

8 [0.846, [0.302, [0.520, [0.409, [0.492, [0.447, [0.476, [0.459, [0.470, [0.463, [0.467, [0.464, [0.466, [0.465,
0.846] 1.000] 0.928] 0.998] 0.963] 0.991] 0.975] 0.985] 0.978] 0.982] 0.979] 0.981] 0.980] 0.981]

9 [0.873, [0.463, [0.629, [0.551, [0.607, [0.574, [0.595, [0.584, [0.591, [0.586, [0.589, [0.587, [0.588, [0.588,
0.873] 1.000] 0.971] 0.999] 0.987] 0.998] 0.991] 0.996] 0.992] 0.995] 0.993] 0.994] 0.993] 0.994]

10 [0.791, [0.441, [0.569, [0.507, [0.550, [0.524, [0.539, [0.531, [0.536, [0.533, [0.535, [0.533, [0.534, [0.534,
0.791] 0.942] 0.891] 0.924] 0.902] 0.916] 0.906] 0.912] 0.908] 0.911] 0.909] 0.910] 0.909] 0.910]

11 [0.885, [0.413, [0.582, [0.511, [0.566, [0.538, [0.556, [0.545, [0.552, [0.548, [0.551, [0.549, [0.550, [0.549,
0.885] 1.000] 0.981] 1.000] 0.997] 1.000] 0.999] 1.000] 0.999] 0.999] 0.999] 0.999] 0.999] 0.999]

12 [0.824, [0.397, [0.567, [0.495, [0.551, [0.521, [0.542, [0.530, [0.538, [0.533, [0.536, [0.534, [0.535, [0.535,
0.824] 0.993] 0.948] 0.982] 0.965] 0.977] 0.969] 0.974] 0.971] 0.973] 0.972] 0.973] 0.972] 0.972]

13 [0.936, [0.445, [0.608, [0.514, [0.579, [0.535, [0.565, [0.547, [0.558, [0.551, [0.555, [0.552, [0.554, [0.553,
0.936] 1.000] 0.968] 1.000] 0.982] 0.995] 0.987] 0.992] 0.989] 0.991] 0.989] 0.991] 0.990] 0.990]

14 [0.736, [0.376, [0.493, [0.430, [0.473, [0.448, [0.463, [0.454, [0.459, [0.456, [0.458, [0.457, [0.457, [0.457,
0.736] 0.863] 0.794] 0.837] 0.803] 0.823] 0.809] 0.817] 0.812] 0.815] 0.813] 0.814] 0.813] 0.814]

15 [0.884, [0.422, [0.572, [0.505, [0.555, [0.528, [0.546, [0.535, [0.542, [0.538, [0.541, [0.539, [0.540, [0.539,
0.884] 0.990] 0.950] 0.983] 0.965] 0.977] 0.969] 0.974] 0.971] 0.973] 0.971] 0.972] 0.972] 0.972]

16 [0.883, [0.433, [0.596, [0.527, [0.581, [0.553, [0.572, [0.561, [0.568, [0.564, [0.567, [0.565, [0.566, [0.565,
0.883] 1.000] 0.975] 0.999] 0.990] 0.997] 0.993] 0.996] 0.994] 0.996] 0.995] 0.995] 0.995] 0.995]

17 [0.825, [0.355, [0.527, [0.453, [0.510, [0.480, [0.500, [0.489, [0.496, [0.491, [0.495, [0.493, [0.494, [0.493,
0.825] 0.972] 0.924] 0.968] 0.950] 0.964] 0.958] 0.962] 0.959] 0.961] 0.960] 0.960] 0.960] 0.960]

18 [0.856, [0.388, [0.548, [0.479, [0.532, [0.504, [0.523, [0.512, [0.519, [0.515, [0.518, [0.516, [0.517, [0.516,
0.856] 0.973] 0.939] 0.969] 0.956] 0.965] 0.959] 0.964] 0.961] 0.963] 0.962] 0.962] 0.962] 0.962]

19 [0.799, [0.333, [0.496, [0.420, [0.477, [0.447, [0.467, [0.455, [0.463, [0.458, [0.461, [0.459, [0.461, [0.460,
0.799] 0.948] 0.887] 0.939] 0.915] 0.932] 0.923] 0.929] 0.925] 0.928] 0.926] 0.927] 0.927] 0.927]

20 [0.960, [0.431, [0.612, [0.531, [0.594, [0.560, [0.583, [0.569, [0.578, [0.572, [0.576, [0.573, [0.575, [0.574,
0.960] 1.000] 0.989] 1.000] 0.999] 1.000] 1.000] 1.000] 1.000] 1.000] 1.000] 1.000] 1.000] 1.000]

3.3.2. Rank all DMUSs using the Gibbs entropy linear programming model for numerical example 2

Utilizing the identical computational procedures outlined in subsubsection 3.1.2 for the Gibbs
entropy linear programming model, the study applied this model to rank DMUs across twenty Thai
provinces, utilizing the game interval cross-efficiency matrix. As delineated in Table 9, the interval cross-
efficiency values, initially varying, uniformly converged to a stable game interval cross-efficiency value for
each DMU after 14 iterations. This convergence signifies the solution’s nature as a Nash equilibrium, a fact
substantiated by prior research [15]. Table 10 presents the comparative rankings of the proposed method
against alternative cross-efficiency approaches, revealing the proposed method’s superior ability to
differentiate between DMUs, a shortcoming observed in the game cross-efficiency method, notably
concerning DMU; and DMUy. Furthermore, the study juxtaposed the proposed Gibbs entropy model with
Lu and Liu’s Gibbs entropy optimization model [42], yielding a correlation coefficient of rs=0.877. This
outcome underscores the model’s efficacy in addressing the problem at hand.

As seen in Table 9, an initial interval cross efficiency value for each DMU converges to a stable game
interval cross efficiency value, indicating that the solution is a Nash equilibrium, as demonstrated in [15]. Table 9
demonstrates that after 14 iterations, all DMUs calculated by the proposed algorithm attain a constant value for
game-cross efficiency. The concurrence between the proposed method and the original game cross-efficiency
method is vividly demonstrated in Figure 4. Notably, only DMU5 exhibited divergent rankings between the two
methods. Spearman’s correlation coefficient (rs) attested to this strong concordance (rs=0.986), underscoring the
effectiveness of the proposed ranking method and its affinity with the game cross-efficiency method.
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Table 10. The ranking comparisons of the proposed method and the other cross-efficiency methods for the
twenty Thai provinces
DMU;  Aggressive (rank)  Benevolent (rank)  Game (rank)  Proposed (rank)  Original (rank)

1 0.5993 (11) 0.9034 (8) 0.9983 (4) 2.6321 (4) 2.5357(8)
2 0.6168 (8) 0.8305 (18) 09467 (17)  2.4980 (17) 2.4388(17)
3 0.7464 (1) 0.9764 (1) 0.9937 (7) 2.6213 (7) 2.5991(1)
4 0.5616 (15) 0.8657 (14) 1.0000 (1) 2.6376 (1) 2.5575(7)
5 0.4644 (20) 0.7024 (20) 0.9918 (8) 2.6164 (8) 2.4792(14)
6 0.5783 (14) 0.8821(12) 09550 (16)  2.5195 (16) 2.4775(15)
7 0.5316 (18) 0.8625 (15) 09801 (11) 25857 (11) 2.5128(11)
8 0.6092 (10) 0.8923 (10) 09805 (10)  2.5863 (10) 2.5113(12)
9 0.6944 (2) 0.9348 (6) 0.9938 (6) 2.6221 (6) 2.5851(4)
10 0.6522 (4) 0.8381 (17) 09097 (19)  2.4004 (19) 2.3668(19)
11 0.6212 (7) 0.9422 (4) 0.9991(3) 2.6357 (3) 2.5870(3)
12 0.6166 (6) 0.8843 (11) 09724 (12) 25657 (12) 2.5186(10)
13 0.6756 (3) 0.9431 (3) 0.9901 (9) 2.6113 (9) 2.5666(6)
14 0.5358 (17) 0.7604 (19) 08139 (20)  2.1473 (20) 2.1123(20)
15 0.5961 (12) 0.9191 (7) 09720 (13) 25641 (13) 2.5192(9)
16 0.6297 (6) 0.9372 (5) 0.9951 (5) 2.6253 (5) 2.5822(5)
17 0.5559 (16) 0.8818 (13) 0.9601 (15) 2.5329(15) 2.4756(16)
18 0.5788 (13) 0.8994 (9) 0.9621 (14) 2.5380(14) 2.4878(13)
19 0.5212 (19) 0.8416 (16) 09270 (18)  2.4455 (18) 2.3850(18)
20 0.6389 (5) 0.9608 (2) 1.0000 (1) 2.6371 (2) 2.5938(2)

Rank
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Figure 4. The ranking comparisons for the twenty Thai provinces

4. CONCLUSION

Although the traditional game cross-efficiency method is a valuable approach for tackling DEA
ranking challenges, it has limitations in effectively distinguishing all DMUs in specific DEA ranking
problems. To address this constraint, we have developed an innovative Gibbs entropy linear programming
model that incorporates both optimistic and pessimistic perspectives of the original game cross-efficiency
technique. This advancement enables the ranking of all DMUs. Furthermore, the model proficiently
quantifies uncertainty when dealing with interval data during DMU ranking. Through the examination of
three numerical examples involving six nursing home, numerical example 2, and twenty Thai provinces, we
have demonstrated the efficacy of the proposed method in accurately ranking all DMUs. Moreover, the
proposed method exhibits a strong correlation with the classical game cross-efficiency method and introduces
a novel approach for DEA ranking problems by integrating Gibbs entropy with the traditional game cross-
efficiency method. The obtained results, with Spearman’s correlation coefficient (rs) values of 0.998, 0.998,
and 0.986 for the proposed method and the classical game cross-efficiency method in the cases of six nursing
homes, numerical example 2, and the application involving twenty Thai provinces, respectively, provide
compelling evidence of the efficiency and reliability of the proposed method. It offers a more comprehensive
rating procedure that leads to sensible and practical conclusions compared to earlier research. Additionally,
the proposed Gibbs entropy linear programming model brings added benefits in terms of simplicity and
convenience when compared to the original Gibbs entropy optimization model (Lu and Liu’s model).
Furthermore, we anticipate that our proposed Gibbs entropy linear programming model, developed in this
study, can be effectively employed to handle imprecise data. It holds the potential to address problems related
to interval data envelopment analysis, fuzzy data envelopment analysis, and multi-criteria decision-making.
In summary, the proposed method contributes significantly to DEA ranking methodologies, providing a
robust and adaptable framework for decision-making across various domains where uncertainty and
imprecise data are prevalent. It offers a more comprehensive and practical approach to ranking, ultimately
yielding more dependable and meaningful outcomes compared to prior research.
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