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Semantic interoperability has emerged as a key barrier amidst the major
developments and challenges brought about by the rapid expansion of
internet of things (IoT) applications. Establishing interoperability is essential
for 10T systems to function optimally, especially across diverse
organizations. Despite extensive research in achieving semantic
interoperability, dynamic interoperability, a vital facet, remains inadequately
addressed. This paper addresses this gap by presenting a fog-based
conceptual model designed to facilitate dynamic semantic interoperability in
lI0T. The model incorporates a single-tier fog layer, providing the necessary
processing capabilities to achieve this goal. The study conducts a
comprehensive literature review on semantic interoperability, emphasizing
latency, bandwidth, total cost, and energy consumption. Results demonstrate
the proposed double skin facade (DSF) model’s remarkable 88%
improvement in service delay over 10T-SIM and Open loT, attributed to its
efficient load-offloading mechanism and optimized fog layer, offering a 50%

reduction in service delay, power consumption, and 86% reduction in
network usage compared to existing approaches through data redundancy
elimination via pre-processing at the fog layer.
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1. INTRODUCTION

The internet of things (loT) refers to a network of interconnected and autonomous objects that
possess the ability to communicate data over a network, and function independently without direct human
interaction [1]. The loT encompasses a network system within the internet, designed to facilitate
instantaneous and seamless interaction among objects, machines, and humans through advanced
technological approaches [2]. As defined by the International Telecommunication Union (ITU), the loT
represents a global infrastructure for the knowledge society, interconnecting physical and virtual entities via
interoperable information and communication technologies, thereby enabling enhanced services [3]. The loT
concept has gained widespread acceptance and application in a variety of fields [2], such as smart agriculture
[4], smart supply chains [5], smart medical care [6], smart transportation [6]-[9], and smart cities [10], [11].
Consequently, interoperability between diverse and heterogeneous entities becomes critical for loT systems
to achieve their objectives [12].

The results of a comprehensive survey conducted by Bain Company highlight interoperability as the
foremost barrier to widespread adoption of the 10T in the United States (US) [13]. Recognizing the criticality
of interoperability, a recent collaborative effort involving European industrial and academic partners has
emerged with the aim of constructing 10T frameworks specifically targeted at addressing this challenge [14],
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[15]. Notably, semantic interoperability, which strives to establish a unified comprehension of information
exchanged among heterogeneous 10T devices across diverse domains, emerges as the pinnacle of
interoperability measures [16]-[18]. The management of vast volumes of data generated by loT devices,
alongside the inherent data heterogeneity, diverse capabilities of the devices, and the array of services they
offer, represents a paramount concern within the 10T landscape [19]. Data collected from multiple sources
exhibit a multitude of semantic representations, rendering semantic interoperability a critical challenge in
facilitating seamless communication and harmonized functionalities across diverse 10T systems [20].

The scholarly community has presented a plethora of research studies and proposed solutions aimed
at mitigating the challenges posed by heterogeneity in 10T environments. Nevertheless, real-time applications
within the 10T domain continue to encounter obstacles in enhancing latency, bandwidth, and dynamism,
primarily due to the intricate task of transferring substantial data volumes across multiple interconnected
systems. The remainder of this article is structured as follows. Section 2 presents the motivation, semantic
interoperability in 10T, semantic web, ontology enrichment, fog computing, and research problems. Section 3
discusses about related research work in this field. Section 4, shows the design of the proposed model.
Section 5, provides the expected result of this paper. Finally, this paper will conclude in section 6.

2. BACKGROUND
2.1. Motivation

The recent global pandemic has significantly amplified the demand for l1oT services, resulting in a
remarkable surge in the deployment of 10T devices [21]. The adoption of smart city initiatives, intelligent
classrooms, interconnected campuses, and advanced transportation systems has further propelled the
utilization of lIoT devices [22]. Consequently, the exponential growth of 10T installations has become a
primary driver of the unprecedented proliferation of global data [23]-[25].

The staggering increase in data volume, accompanied by its heterogeneity and interconnectedness,
necessitates efficient data management solutions that account for scalability, data gravity, and integration
challenges [26]. Many enterprises have turned to cloud computing as a means of managing their data, drawn
by its cost-effectiveness, flexibility, availability, scalability, and other inherent benefits [27]. However,
establishing a cohesive data management framework remains a formidable task due to the disparate nature of
data originating from a multitude of loT devices. Hence, it becomes crucial for 1oT devices within the
ecosystem to possess the capability to share and leverage data, emphasizing the importance of data
interoperability, commonly referred to as semantic interoperability. The processing of massive data volumes
necessitates robust computing power, which can be provided by existing cloud architectures. However, the
centralized nature of cloud infrastructures introduces challenges related to latency, bandwidth, and reliability.

To address these challenges, we propose a fog-based solution to facilitate dynamic semantic
interoperability within 10T applications. By leveraging the fog computing paradigm, our approach aims to
overcome the limitations of centralized architectures, offering enhanced processing capabilities and reducing
latency issues. The fog layer acts as an intermediary between the cloud and 10T devices, enabling efficient
data management, real-time analytics, and seamless communication. Our proposed solution seeks to bridge
the gap in achieving dynamic semantic interoperability, thereby empowering 10T applications with improved
performance, reliability, and efficiency.

2.2. Semantic interoperability in internet of things

The term “interoperability” within computer systems refers to the ability of multiple applications or
components to share information and effectively utilize data [28]. Extensive research conducted by Andocec
and Noura through a systematic literature review underscores the growing recognition of the interoperability
challenges posed by IoT frameworks, particularly in recent years [28], [29]. Figure 1 a visual representation
is provided to illustrate the fundamental aspects of interoperability in a four-dimensional framework. The
four pillars of 10T interoperability encompass technical, syntactical, semantic, and organizational dimensions.
Given the dynamic and intricate nature of data in cross-domain IoT applications, advanced data modeling and
management techniques are imperative [28]. In this context, the concept of semantic interoperability has
emerged, denoting the ability of diverse applications and entities to interpret exchanged data with a clear and
consistent understanding of its meaning [30]. Semantic interoperability encompasses the ability of multiple
IoT devices, systems, or applications to exchange information or knowledge in a manner that is both
meaningful and accurately interpreted automatically, surpassing the scope of data transfer and clear data
definition across 10T devices [31], [32]. Achieving semantic interoperability involves a streamlined process
that eliminates the need for intricate programming, configuration, or human intervention in locating specific
data [33].
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Figure 1. Four dimensions of interoperability

The implementation of ontology in information exchange processes serves as a critical enabler of
semantic interoperability [34]. The term “ontology” derives its origins from Greek and was introduced by
Johannes Clauberg, a distinguished German theologian and philosopher. It denotes a structured knowledge
representation comprising a collection of interrelated concepts within a specific domain. The essence of
ontology lies in explicitly representing knowledge for a conceptual domain through the logical constructs
conveyed by semantic web languages [35]. While a significant portion of ontologies employed to address
semantic interoperability in 10T remains static, the advent of real-time services and the influx of voluminous
data necessitates the incorporation of dynamicity to cater to evolving requirements, device capability
changes, and application mobility [36]. Even with the ontologies, it is still challenging to accomplish
semantic interoperability in diverse 10T contexts with reduced computing time, quick annotation, low
complexity, and dynamic semantics.

2.3. Semantic web

The semantic web represents an extension of the world wide web aimed at enhancing the meaning
and interconnectedness of online information by providing semantic context [37]. It empowers machines with
the ability to comprehend and intelligently process data. At it is core, the Semantic Web endeavours to enrich
the existing structure of the web by incorporating additional metadata and ontologies that establish
meaningful connections between diverse pieces of information [38].

The semantic web comprises several essential components, including the resource description
framework (RDF), ontologies, SPARQL, and web ontology language (OWL), which collaboratively facilitate
the organization, integration, and comprehension of web data [39]. RDF serves as a framework for
representing knowledge on the web, establishing a standardized approach for expressing data through
subject-predicate-object triples that form the core of the semantic data model [40]. Ontologies play a vital
role by defining the language and connections between concepts within a specific domain. By offering a
formal and structured representation of knowledge, ontologies enhance data interpretation and foster
improved interoperability [41].

SPARQL serves as a powerful query language designed to retrieve and manipulate RDF data,
enabling the search and extraction of specific information from the semantic web [42]. OWL, on the other
hand, serves as a language specifically designed for the development of ontologies. It offers a rich set of
constructs that allow for the specification of classes, properties, and relationships between entities, enhancing
the robustness and expressiveness of ontologies [43]. Through the collaboration of these components, a web
of data is constructed that not only caters to human readability but also facilitates machine understanding.
This machine-understandable web enables intelligent search capabilities, seamless data integration, and
automation of information on the web [37].

In the realm of 10T, the semantic web plays a vital role in facilitating seamless integration and
interoperability among the vast array of interconnected devices [33]. By harnessing semantic technologies,
the 10T can achieve enhanced levels of data interoperability and automation [44]. Devices gain the ability to
comprehend and analyze the contextual information of the data they collect, leading to more informed
decision-making and process automation. The rapid growth of the 10T industry underscores the necessity for
standardized data models, vocabularies, and ontologies that enable devices to collaborate and communicate
effectively. This standardization ultimately fosters the development of loT applications that are more
efficient and intelligent in their operations [33].
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2.4. Ontology enrichment

An ontology serves as a formal representation of knowledge, capturing the concepts, relationships,
and attributes within a specific domain [45]. With the increasing volume of data generated by loT devices, it
becomes crucial to ensure that ontologies evolve effectively to accommodate and articulate this growing
knowledge [46]. Ontology enrichment is a subset of ontology evolution. Ontology evolution encompasses a
wider range of activities that include ontology enrichment as well as others such as ontology refinement and
restructuring to maintain the ontology’s relevance and usefulness over time. Ontology enrichment is the
process of enhancing an existing ontology to improve its expressiveness and coverage by adding new
concepts, relationships, or attributes [47]. By incorporating ontology enrichment, the dynamic and evolving
nature of the 10T domain can be effectively addressed, ensuring that the ontology remains relevant and
valuable over time.

Ontology enrichment plays a pivotal role in enhancing interoperability and providing a robust
representation of loT data [48]. It enables improved data integration across diverse 10T platforms and
applications, leading to a deeper understanding of data and enhanced analysis capabilities [49]. By
introducing new concepts and relationships, the ontology can effectively capture the complexities and
interdependencies within the 10T ecosystem, enabling more meaningful and context-aware interpretation of
data [48]. Moreover, in the context of the 10T, ontology enrichment facilitates information discovery and
empowers advanced analytics. Researchers and practitioners gain the ability to extract valuable insights from
10T data by leveraging evolving ontologies that encompass a broader range of ideas and relationships. Richer
ontologies facilitate advanced reasoning and inference processes, enabling the identification of hidden
patterns, correlations, and trends amidst the vast volume of loT data [48].

The increasing magnitude of data generated by the IoT underscores the importance of ontology
enrichment [49]. By enriching ontologies, we can achieve a more comprehensive representation of the loT
domain, enhance data integration and interoperability, and enable sophisticated knowledge discovery and
analytics. Ontology enrichment empowers us to unlock the full potential of 10T data and explore new
avenues for innovation, decision-making, and optimization across various industries and applications. It
paves the way for leveraging the richness of 10T data to drive advancements and unlock valuable insights in
an interconnected world [48].

2.5. Fog computing

Fog computing is a computer architecture advancement with a resource pool where one or more
universal and distributed nodes are enabled to interact and communicate at the extreme edge level instead of
being supported by cloud computing [50]. Fog computing was coined to define the computational paradigm
that tries to bring the benefits of the cloud closer to end devices, similar to how fog is seen whenever a cloud
is near the ground [51]. Figure 2 illustrates the fog computing architecture.

Cloud/ —
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Figure 2. Fog computing architecture

4

Fog nodes operate autonomously and collaborate within a hierarchical environment to provide
computational agility, enhanced communication, increased storage capacity, and a wide range of novel
market services. They eliminate the need for third-party intervention and cater to the growing number of
devices, clients, and end-users, offering a seamless and efficient infrastructure for distributed computing and
service provisioning. The National Institute of Standards and Technology (NIST) summarised six basic
properties of fog computing, as illustrated in Figure 3 [52].
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Figure 3. Summarised six basic properties of fog computing

Fog computing offers low-latency services by placing the fog nodes in close proximity to end users.
This proximity enables faster analysis and response to user-generated data compared to traditional cloud
services. The distributed deployment of fog computing creates a decentralized support system, allowing for
geographically distributed services, and applications to operate on the fog computing infrastructure. This
decentralized approach enhances performance, scalability, and reliability, enabling efficient data processing
and real-time interactions in diverse locations [52].

The heterogeneous nature of fog computing enables the collection and analysis of data from diverse
sources obtained through multiple network communication methods. Given the time-sensitive and
heterogeneous characteristics of 10T, fog computing offers crucial features such as interoperability,
federation, scalability, and real-time interaction support. These capabilities facilitate seamless integration and
collaboration among different devices, systems, and applications within the 10T ecosystem. Fog computing
acts as a bridge between edge devices and centralized cloud services, enabling efficient data processing,
resource management, and dynamic adaptation in a distributed and diverse environment [51].

The prominent characteristics of fog computing offer solutions that have the potential to
significantly enhance revenues, reduce costs, and expedite product rollouts in the loT industry. By
minimizing request-response time from loT devices and providing local computational power, fog computing
addresses key challenges of cloud computing such as latency, storage limitations, resource constraints, and
high bandwidth requirements. This enables more efficient and responsive processing of data at the edge,
closer to the source of generation. The capabilities of fog computing contribute to improved system
performance, enhanced user experiences, and increased overall productivity in 10T deployments [50].

2.6. Research problem

To ensure an efficient and interconnected loT framework, devices must be able to effectively
communicate and share data within heterogeneous systems. This facilitates the creation of a cost-effective
and easily implementable application chain [53]. When one device can utilize data collected by another
device, it reduces the need for redundant information gathering and optimizes resource utilization [54].
Seamless data availability is crucial for new devices integrated into the framework. However, traditional
centralized semantic systems are less practical for real-time 0T applications as they introduce delays in
services due to data transfer and processing to a centralized system [55]. High response time is not tolerable
in time-sensitive loT applications [56]. Cloud-based semantic interoperability systems also incur high
bandwidth usage for real-time data transfer, leading to increased network utilization [20]. Additionally,
existing solutions often fail to provide dynamic semantic interoperability processing due to resource
limitations in 10T gateways, which lack the necessary energy and processing capability [55], [57]. To address
these challenges, we propose a fog-based conceptual model that leverages the capabilities of fog computing
to tackle dynamic semantic interoperability issues in loT. This approach offers a more efficient and
responsive solution for achieving real-time interoperability in 10T applications.

Proposed fog computing-enabled conceptual model for semantic ... (Devamekalai Nagasundaram)
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3. RELATED WORK

This section discusses the semantic interoperability solution contributed for 10T systems. In order to
address the crucial need for semantic interoperability in 10T systems, various solutions have been proposed
[58]. The loT domains are advancing with ongoing research and concepts for re-utilizing, fusing, and
abstracting current technology to attain interoperability semantically [59]. One prominent approach is the
utilization of ontologies, which are widely employed to facilitate semantic interoperability. Additionally, fog
computing has gained attention as a potential enabler of semantic interoperability in 1oT.

A study conducted by Chen and Smys [55] focused on using fog computing to achieve 10T semantic
interoperability. They developed a two-layer hierarchical fog network, where data was mapped and then
transmitted to the cloud for comprehensive processing. The architecture employed a single-owl file ontology,
and a series of operations including screening, consolidation, composing, modeling, and data mapping was
performed within the fog layers. The proposed model aimed to reduce processing costs, improve energy
efficiency, minimize latency, and optimize network utilization [55].

Rahman and Hussain [60] has presented a comprehensive solution for achieving semantic
interoperability in 10T through the utilization of the fog computing framework. In their model, certain
semantic tasks are offloaded from the cloud to the fog nodes, leading to reduced job execution time and
energy consumption. An efficient offloading technique is employed to facilitate communication between fog-
to-fog and fog-to-cloud devices [60]. The fog nodes in the system are organized hierarchically based on their
roles. The L1-fog nodes are responsible for operations such as composing, modeling, and connecting,
utilizing the high-quality aggregated data obtained. The generated data is semantically annotated using a
single-owl ontology. However, it should be noted that the static nature of the deployed ontology restricts the
introduction of new components into the system. In contrast to the traditional semantic paradigm where
computations are solely performed in the cloud, the fog computing architecture allows for pre-processing of
data packets by the fog devices. This approach eliminates delays, energy waste, network utilization, and
computation costs. However, it has been observed that service delays may increase as the number of fog
nodes grows [60]. One significant advantage of this method is the reduction in energy consumption since
semantic operations take place in nearby fog nodes rather than in the cloud. Additionally, the system benefits
from improved network bandwidth utilization, leading to decreased service delays, lower energy
consumption, and overall cost reduction [60]. Overall, Rahman’s approach demonstrates the potential of the
Fog computing framework in enhancing semantic interoperability in 10T systems by offloading semantic
tasks and optimizing data processing and communication within the fog infrastructure, but using multiple
layers of fog nodes introduces prominent delay and additional cost.

In another research paper, Rahman and Hussain [57] introduces the concept of a “lightweight
ontology” as a means to achieve semantic interoperability in 10T systems. They emphasizes the use of radio
frequency identification (RFID), sensors, and actuators as elements of the loT framework. The main
objective is to develop a lightweight ontology, referred to as light-weight ontology (LiO-10T), that facilitates
semantic interoperability in a simplified manner. The proposed solution focuses on utilizing widely used and
readily available ontologies to achieve semantic interoperability. The ontology employed in the research is
designed to be lightweight, prioritizing simplicity and efficiency [57]. However, Rahman and Hussain [20]
suggests that further enhancements can be made by incorporating a lightweight dynamic ontology using a
machine learning approach, which would further improve the capabilities of the proposed solution for lIoT
semantic interoperability.

This lightweight dynamic ontology using a machine learning approach introduces the capability to
automatically discover and incorporate new individuals and concepts into the ontology, thereby enhancing its
dynamic nature [20]. The primary objective of dynamic ontology is to facilitate real-time information
exchange and dynamic interaction among multiple 10T devices. Machine learning techniques are employed to
leverage the wealth of data within the ontology, enabling the identification of hidden patterns and unexpected
knowledge [20]. The clustering approach significantly accelerates the search and concept discovery process
within the loT infrastructure. However, the introduction of dynamic ontologies also introduces a delay in
clustering, leading to increased response time and processing time. Additionally, delays have been observed
in detecting and integrating new concepts into the ontology [20]. On the other hand, the lightweight dynamic
ontology demonstrates superior performance and resource efficiency in large-scale networks. Despite a
slightly higher average response time compared to solutions without a dynamic ontology, the benefits of
incorporating a dynamic ontology outweigh the minimal increase in response time. The clustering
mechanism and the process of identifying and including new nodes contribute to this response time
difference.

Overall, the use of a lightweight dynamic ontology offers a promising approach to achieving
real-time and dynamic semantic interoperability in 10T systems, enabling efficient information exchange and
knowledge discovery while considering the resource constraints of large-scale networks. By utilizing existing
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ontologies and exploring machine learning techniques for dynamic ontology development, Rahman’s work
presents a promising approach for achieving efficient and effective semantic interoperability in lightweight
IoT environments. However high response time and clustering delay are present in the method proposed in

[20]. Table 1 indicates the differences between each reviewed related work.

Table 1. Critical review of related work

Ref. bFog Dynamic/static Pros Cons

ased

[55] Yes Static i) medium latency, energy usage; ii) lightweight i) the inclusion of a new feature
design; iii) two level of fog enables strong processing;  was not possible; ii) a multi-layer
and iv) processing occurred at the fog device; as a  approach requires an extra device,
result, network utilization and computational costs which would raise the cost; and iii)
were reduced. dynamic data mapping not

supported by the single owl model.

[57] No Static i) lightweight; ii) concentrate on RFID, actuators, and ~ Static ~ ontology and  cannot
sensors; iii) low computational cost; and iv) high introduce a new component into the
delay. framework.

[20] No Dynamic i) lightweight; ii) identify new ideas automatically i) clustering delay is present; ii)
and include them in the ontology; iii) implement a high response time; and iii)
real-time framework; iv) use a machine learning compared to non-dynamic
approach to accelerate the process of searching for  networks, there is a longer latency
and learning new ideas; and v) suitable for large- for new node recognition and
scale. inclusion.

[60] Yes Static i) using lightweight ontology; ii) reduce execution Static ontology and could not add a

time and energy consumption; and iii) edge
processing at the fog nodes helps reduce network
usage and response time.

new component to the system.

4. DESIGN OF PROPOSED MODEL

IoT devices by their very nature are compact and constrained, they have limited processing
capability. As a result, 10T devices have limited resources in the processing capacity to process real-time data
and make it interoperable across various devices. We proposed a methodology for 1oT apps to update
ontology automatically in real-time to accomplish dynamic semantic interoperability. As time-sensitive
processing power is required, fog computing architecture is applied to provision processing capabilities.

The proposed fog-based semantic interoperability model effectively manages ontology with real-
time 10T data processing. Processing data from 10T devices to be interoperable requires multiple tasks such
as data mapping, data parsing, RDF transformation, and ontology enrichment. Therefore, the fog nodes
provide processing power to carry out all these tasks. The proposed model of real-time automatic ontology
update to achieve dynamic semantic interoperability contains three layers:

— Edge layer-comprises end devices from the 10T framework. The data and attributes from the end devices
in the edge are passed to the fog layer to be processed and analyzed.

— Fog layer-is responsible for providing processing capabilities to enable real-time automatic ontology
enrichment to achieve dynamic semantic interoperability. This layer receives data from the edge layer and
regularly uploads data to the cloud. Data is constantly transferred between the edge and fog layers, while
data is only transferred from fog to the cloud when needed.

— Cloud layer-comprises a centralized database in which an ontology is stored. Only when necessary, do
uploads and downloads from a centralized cloud ontology take place. For example, the cloud ontology
was uploaded when new data was contributed to the fog ontology.

The fog layer handles data procurement, RDF transformation, and ontology enrichment processes.
Figure 4 shows the functional architecture of the model proposed. The architecture consists of 3 primary
phases: Data procurement, comma-separated values (CSV) to RDF transformation, and ontology enrichment.
The data procurement phase provides a method for obtaining structured and unstructured data from loT
devices. The information gathered will be parsed and filtered. The data parser is responsible for collecting
data and converting it into CSV format. Then the data filtration will check the availability of the data in the
ontology. This phase helps to improve ontology to become dynamic.

CSV to RDF transformation phase uses the CSV to RDF engine to create the RDF from the data
acquired in the procurement phase. This phase is crucial as the RDF triples generated from this phase are the
ontology enrichment phase benchmark. Ontology enrichment is the final phase responsible for enhancing and
improvising the ontology by including additional data. The proposed model’s ontology is implemented using
the learn-and-grow technique. Ontology requires constant evolution due to the massive amount of data and
the heterogeneity of 10T devices, therefore the process of enhancing and enriching the ontology is performed
for real-time 10T data. Each phase is discussed in detail in the following section.

Proposed fog computing-enabled conceptual model for semantic ... (Devamekalai Nagasundaram)
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Figure 4. Process flow diagram of proposed model

4.1. Data procurement

Processing and analyzing large volumes of structured and unstructured IoT data in real-time has
posed significant challenges. Extracting critical contextual information from real-time data streams is
particularly difficult due to factors such as heterogeneity, complexity, dynamism, and inadequate data
representation. In our research, we propose a novel approach where data from 10T devices is directly received
into the fog device, which is located in close proximity to the information source within the network. The fog
node’s data procurement agent is responsible for gathering the raw data and performing analyses to identify
any new outliers.

To differentiate between outlier and typical data, a data parser is employed. Outlier data is identified
as a potential new data set within the system, while data deemed typical undergoes real-time annotation using
sensor metadata. This annotation process enhances the understanding of the data and its context. To better
illustrate the data flow within the system, we provide a figure depicting the data procurement module. This
module showcases the seamless flow of data from 10T devices to the fog node, where preliminary analysis
and outlier detection take place. It highlights the importance of efficient data handling and the role of fog
computing in facilitating real-time data processing and analysis. By implementing this approach, we aim to
address the challenges associated with processing and extracting valuable insights from real-time sensor data,
ultimately enabling more effective decision-making and utilization of loT-generated data. Figure 5 illustrates
the data flow of the data procurement module.

Raw
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_ WiFi v | RD1 | e | Database
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Figure 5. Data procurement modal process flow

4.1.1. Data procurement agent

The data procurement agent plays a crucial role in the data flow process within the fog computing
environment. It receives the raw data streams transmitted from 10T devices, which can include various types of
sensory information such as temperature, humidity, pressure, and more. The agent’s primary function is to
process this incoming data and identify any potential outliers. To identify outliers, the data procurement agent
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utilizes algorithms and statistical techniques that compare the received data with expected values or predefined
thresholds. If the obtained data significantly deviate from the anticipated range or show abnormal patterns, they
are classified as outliers. Outlier data can arise from various factors such as sensor malfunction, environmental
anomalies, or unexpected events. When an outlier is detected, the data procurement agent flags it as new data
that requires further analysis. This identification of outliers helps in capturing unusual or unexpected events,
anomalies, or trends in the data, which may hold significant insights or pose potential risks.

4.1.2. Data parser

The data parser module receives the raw data streams from the data procurement agent and performs
essential preprocessing tasks to transform the data into a structured format. It converts the raw data streams
into a semi-structured CSV format, which is widely used for data representation and interoperability. During
the parsing process, the data parser extracts relevant information from the raw data, such as sensor readings,
timestamps, and metadata. It organizes this information into appropriate fields and columns within the CSV
file, ensuring that the data is properly labelled and structured for further processing. The CSV file generated
by the data parser contains valuable properties and tags associated with the data. These properties provide
essential context and characteristics of the data, while the tags, such as outlier or usual, serve as indicators for
subsequent stages in the data flow pipeline.

4.1.3. Data clarification

The data clarification module focuses on establishing the novelty of the data that has been identified as
outliers in the previous stage. It aims to validate the outliers by comparing them with existing data in the local
database maintained by the fog nodes. To achieve this, the data clarification module employs a search algorithm
that queries the local database for similar or related data instances. This comparison enables the module to
determine if the identified outliers are indeed unique or represent known patterns within the dataset. By
confirming the novelty of the outlier data, redundancy, and duplication in the data collection process can be
minimized, ensuring efficient utilization of storage resources and maintaining data integrity. Once confirmation
is obtained and the outlier data is validated as unique, the data clarification module proceeds to forward this data
to the subsequent component in the data flow pipeline. This confirmation step ensures that only relevant and
distinct outlier data is further processed, preventing unnecessary redundancy or duplication in subsequent
analysis and interpretation stages. The combination of the data procurement agent, data parser, and data
clarification modules establishes a systematic and efficient approach to handling raw data in fog computing
environments. These modules collectively contribute to data refinement, organization, and validation, enhancing
the accuracy and reliability of subsequent data analysis and decision-making processes.

4.2. CSV to RDF transformation

This phase uses the CSV to RDF engine to create the RDF from the data acquired in the
procurement phase. This phase is crucial as the RDF triples generated from this phase are the ontology
enrichment phase benchmark. Data from the data clarification is received using RDF transformation. As was
already indicated, this area only accepts data marked as an outlier, indicating that it is a new entry into the
system and requires updating in the ontology. The three primary components of the CSV to RDF
transformation step are the CSV parser, metadata annotation, and generate RDF. The RDF generating part is
vital to the framework’s ability to be dynamic since the output from this module serves as a guide for adding
new data to the ontology. The output from this part contributes to achieving the second research goal, which
is to enable the addition of new data to the ontology.

— CSV parser: the CSV parser module in the transformation phase processes the CSV files and extracts the
embedded metadata. It scans each row and column in the CSV table to gather relevant metadata
associated with the data. This metadata includes information such as column names, data types, and
constraints. The CSV parser ensures that the metadata is captured accurately and serves as a foundation
for subsequent processing steps.

— Metadata annotation: the metadata annotation module takes the extracted metadata from the CSV Parser
and creates an annotated tabular data model. It annotates the tables with additional information, such as
names, titles, descriptions, and semantic annotations. This step adds semantic meaning to the data by
enriching it with metadata that describes it is structure, semantics, and relationships. The annotated
tabular data model enhances the understanding and interpretation of the data during further processing.

— RDF generator: the RDF generator module receives the annotated tabular data from the metadata
annotation module and transforms it into RDF triples. It leverages the annotated information to create
RDF representations of the data, which consist of subject-predicate-object triple statements. The RDF
triples capture the semantic relationships and attributes of the data, enabling interoperability and
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integration with other semantic systems. The RDF generator ensures that the generated RDF triples
adhere to the ontology’s structure and semantics.
The CSV to RDF transformation phase serves as a pivotal step in the ontology enrichment process.
By converting CSV data into RDF triples, it enables the integration of heterogeneous data sources, enhances
data interoperability, and facilitates advanced reasoning and knowledge discovery. The resulting RDF triples
become a key resource for dynamic and context-aware applications in the 10T domain, supporting efficient
data integration, analysis, and decision-making.

4.3. Ontology enrichment

The proposed model incorporates an ontology enrichment phase using the learn-and-grow technique
to ensure the ontology remains up-to-date and relevant in the context of the 10T ecosystem. This phase is
essential to accommodate the ever-increasing volume of data and the diverse nature of 10T devices. It focuses
on dynamically incorporating new terms, concepts, and relationships into the ontology through a combination
of search and update techniques. Figure 6 illustrates the stages of the ontology enrichment module.

Search Triple Query Result

Receive RDF - Query » el

Ontology Class
L

Figure 6. lllustrates the process flow of the update ontology module

— Search triple query: the search triple query module plays a crucial role in identifying the appropriate class
within the ontology to classify the new data. When RDF triples are received, a keyword identification
process is initiated. The subject of the RDF triple is used as the initial keyword, and a search operation is
performed within the ontology to find a matching class. If a matching class is found, it is details are
passed to the next stage. In cases where the initial search is unsuccessful, subsequent keywords derived
from the subject are sequentially searched until a suitable class is identified. The search process is
considered complete when both the subject and object keywords fail to find a match.

— Query result analysis: the query result analysis module analyzes the results obtained from the search
operation to determine the accuracy of the identified class. A comparison and lookup process is
performed, leveraging existing database resources, to validate and refine the selection of the correct class
to be updated in the ontology. In situations where multiple classes are identified, an additional step of
referring to the ontology is carried out to ensure the most appropriate class is chosen.

— Class verification: the query result analysis module analyzes the results obtained from the search
operation to determine the accuracy of the identified class. A comparison and lookup process is
performed, leveraging existing database resources, to validate and refine the selection of the correct class
to be updated in the ontology. In situations where multiple classes are identified, an additional step of
referring to the ontology is carried out to ensure the most appropriate class is chosen.

— Ontology enrichment: the ontology enrichment module receives the identified class details from the
previous stages and utilizes this information to update the ontology. The new data is added to the
ontology as either a class, subclass, or relation, based on the keyword used during the search operation in
the search triple query module. For instance, if the keyword used for detecting the class is the subject, the
object and predicate of the RDF triple will be added as a subclass and relation, respectively, within that
class in the ontology.

The ontology enrichment phase is a critical component of the proposed model, ensuring the
ontology remains adaptable and reflects the evolving nature of the 10T ecosystem. By incorporating new
terms, concepts, and relationships dynamically, the ontology becomes more comprehensive and capable of
capturing the semantics and relationships of the 10T data, enabling effective knowledge discovery, reasoning,
and decision-making within 10T applications.

5. EXPECTED RESULT
The projected outcomes for the analysis and functionality of the proposed fog-based conceptual
model are described in this section. First, we perform theoretical analysis by comparing semantic-fog,
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10T-Sim, and Open-loT performance in terms of network usage, service latency, power consumption, and
total cost. Then we will evaluate the expected performance of the proposed mechanism. Then we will
evaluate the expected performance of the proposed mechanism. These parts will be described as follows.

5.1. Performance metrics
5.1.1. Service delay

The period of time between when an 0T device submits a service request and when it receives the
response to that request is referred to as service delays in the 1oT. The sum of the processing, propagation,
and transmission times for the request and answer is the service delay. The 10T devices send their data
packets to fog nodes for immediate processing and to the cloud for additional processing as needed.

5.1.2. Power consumption

The computation and data transmission from IoT nodes to fog nodes and from fog nodes to the
cloud account for the majority of the power consumption in the proposed method. The sum of the energies
needed to process each unit data packet at the fog nodes and cloud, along with the energy needed to transmit
this data, is used to compute the overall amount of power consumed by this mechanism.

5.1.3. Network usage

The bandwidth utilization of an 10T network is the quantity of bandwidth needed to send packet data
from a source point to a destination. The transfer of redundant and meaningless data packets between the
cloud and the loT layer via fog device, and vice versa, results in bandwidth being wasted in 10T systems. The
sum of bandwidth used to send data from the 10T device to the fog node and the fog node to the cloud is used
to compute the total bandwidth used one way.

5.1.4. Total cost

Calculating the combined cost of storage, computing, and connectivity allows an loT system to
evaluate it is overall cost. The entire cost of each cloud and fog component is included in the 10T system’s
overall computing cost. Instead of using dollars or rupees, the entire cost is defined in the form of million
instructions per second (MIPS).

5.2. Performance analysis

This section discusses about the overall comparative performance analysis of all the solutions
discussed based on network usage, service latency, power consumption, and total cost. Based on our
expected result, overall the proposed double skin facade (DSF) model performed around 88% better in terms
of service delay compared to 10T-SIM and Open 10T, as shown in Table 2. The total processing time of DSF
model improved significantly compared to 10T-SIM and Open IoT due to the load-offloading mechanism
introduced in the DSF, which helps reduce the processing time by managing the load. DSF model has a
reduced fog layer compared to semantic fog which results in a 50% reduction in service delay of the DSF
model. The power consumption and network usage of DSF mechanism are expected to reduce by 50% and
86% compared to 10T-SIM and Open IoT due to pre-processing of information in the fog layer which
removes the redundancy of data transmitted. While there is a slight improvement which is 2% for power
consumption and 30% in network usage compared to the semantic fog model as there is a lesser fog node
processing level in the DSF model. While the total cost of implementing DSF was around 80% reduced
compared to the 10T-SIM and Open loT model while 30% reduction compared to the semantic fog model.
Making use of single-layer fog nodes with the load offloading mechanism helps in improving the
performance of semantic interoperability in 10T.

Table 2. The comparison between the proposed DSF model and existing semantic interoperable solution

[55] [57] [20] [60] DSF
Service delay Medium  High High Medium  Low
Power consumption  Medium  High High Medium  Low
Network usage Medium High Medium Medium Low
Total cost High Low High High Low

6. CONCLUSION

In this paper, we address the important issue of semantic interoperability in 10T applications. Our
study underlines the critical requirement for establishing semantic interoperability among various businesses
in order to fulfil the goals of 10T systems. Despite significant research efforts in this area, the issue of
dynamic interoperability has only received scant attention in the literature so far. We have presented a
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fog-based conceptual approach to close this gap and help the 10T interoperability industry advance. Our
methodology intends to promote dynamic semantic interoperability in 10T by using the characteristics of fog
computing. The processing power required to achieve dynamic semantic interoperability is made possible by
our model’s single-tier fog layer. The constraints of static interoperability approaches are overcome by this
innovative method, enabling 10T devices to adapt and effortlessly exchange information in real-time.

While our study makes an important contribution to the subject of 10T semantic interoperability, we
must accept it is limits. First, the suggested fog-based conceptual model has been verified through simulation
and small-scale experimentation; nevertheless, additional real-world implementations are required to evaluate
its scalability and performance in different 10T scenarios. The efficacy of the approach is also dependent on
the availability of dependable fog computing infrastructure, which may not always be available depending on
the deployment scenario. These restrictions offer priceless information for upcoming studies and
advancements. There are many chances to improve and build upon our work as the 10T industry continues to
develop. Future research projects can concentrate on carrying out thorough empirical analyses of the
fog-based model in various 10T scenarios, examining optimizations to improve its scalability, and
researching methods to deal with the difficulties of fog infrastructure availability.

Finally, by introducing a fog-based conceptual paradigm, our paper contributes to the growth of
dynamic semantic interoperability in 10T applications. We stress the need for dynamic interoperability in
maximizing the potential of 10T systems as well as the necessity for complete semantic interoperability
solutions. In order to encourage additional developments in the area of 10T interoperability and ultimately
promote a more interconnected and effective 0T ecosystem, we strive to address the restrictions and open up
new research directions.
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