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1. INTRODUCTION

In future communication networks, increasing data rate while maintaining an acceptable error rate is
one of the main goals to be achieved. Other factors are also considered while optimizing the system
performance such as delay, encoding and decoding complexity, and network coverage. On the other hand, the
system performance of these networks can be impacted by different factors such as multipath fading and
interference. These factors limit the throughput and reduce the error performance [1]-[10]. Several spatial
diversity methods have been suggested to eliminate the aforementioned impairments, e.g., relay selection
methods [5], [7], beamforming methods [11], [12], and space-time coding (STC) methods [10], [13]-[20].
Recently, distributed spatial diversity methods for cooperative communication networks have been suggested
to increase the overall throughput and network coverage, and to reduce the effects of these channel
impairments [21]-[25]. Those methods can remarkably improve the performance of wireless relaying
systems by increasing the data rate and reducing the bit-error rate (BER). Also, receiving different versions
of the transmitted signal via various relays with different amplitudes and phases increases the system
diversity. In particular, applying efficient techniques to combine the various received signals could lead to a
remarkable improvement in system performance.

The relay node, as an intermediate point that: i) obtains the signal through the source-node link,
ii) processes the signal, and iii) transmits the signal to the receiver-node. Many processing protocols could be
applied at the relay such as amplify and forward (AF) protocol, combine and forward (CF) protocol, and
decode and forward (DF) protocol. These techniques enhance the obtained signal to noise ratio (SNR),
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throughput, and the performance in terms of BER, however different level of complexity is associated with
each technique. Therefore, complexity-performance tradeoff is a major concern in such systems that requires
to be optimized along with the number of deployed relays. Intuitively, increasing the number of relays
distributed between the source and the destination improve the overall system performance in terms of BER
and throughput [26]-[32]. Several spatial-diversity methods have been recently suggested considering that
the channel state information (CSI) is available at every node in the whole system [5], [7]. In these methods,
a slow fading channel model is considered. However, other methods assume that CSI is only available at the
destination [8], [17]-[19]. Unlike the previous methods, both blind and differential diversity methods
[10], [11], [13]-[15], [22]-[25] provide an increase in the diversity gain without the need to have the CSI at
any transmitting or receiving nodes. Unfortunately, the latter methods suffer from several issues such as low
error performance, large delay, and low throughput when compared to other methods.

Recently, two-directional communication techniques have been suggested as a way to enhance the
overall error performance and achievable data rate [6], [10], [14]. Two-directional techniques are categorized
according to the number of phases required for the terminals to exchange their data into two-phase [10],
three-phase [6], and four-phase [11] protocols. Note that the number of phases required to exchange the
information highly affect the overall performance and the achievable data rate. Moreover, the relay nodes
distributed randomly between the terminals are utilized to process and forward the data using a certain coding
scheme. The relay nodes can process and encode the received signals using orthogonal, e.g., STC, or
non-orthogonal coding techniques. STC is considered as an efficient way to send the information symbols
during several phases and using several relay nodes to achieve high performance in terms of BER and high
data rate with low encoding and decoding complexity [10], [14]. Non-orthogonal schemes have high
diversity and coding gain. However, these schemes suffer from very high decoding complexity which
increases exponentially with the number of relay nodes or constellation size in some cases, especially due to
channel estimation. Recently, several distributed special diversity schemes have been suggested to offer full
diversity and high coding gain without needing CSI at any node in the whole network to reduce the overall
encoding and decoding complexity and overhead due to channel estimation [10], [11], [13]-[15], [22]-[25].
More recent techniques and types related to wireless relay and sensor networks have been studied [33]-[37].

In this paper, a novel technique for wireless relay networks is proposed and verified via
mathematical analysis and numerical simulations. Unlike current state-of-the-art research where it is assumed
that CSI is available at both transmitter-and-receiver or only at the receiver, the proposed technigque does not
require any CSI neither at transmitter nor at the receiver. The proposed technique for wireless relay network
has shown a remarkable improvement in the system’s performance compared to existing systems in terms of
BER. This paper is organized as follows: in section 2 the system model is discussed and detailed
mathematical analysis is provided. In section 3, numerical analysis and results are provided showing the
performance improvements. In section 4, conclusion and future directions are investigated.

2. METHOD

In this work, a novel optimal bi-directional AF multi-antenna method for wireless sensor network is
proposed. Unlike current state-of-the-art methods which require the channel knowledge at both transmitting
and receiving antennas or at least at the receiving antennas, the proposed method does not require channel
knowledge at any antenna. Moreover, the proposed method enjoys high error performance with high diversity
and coding gain, and has a very low encoding and decoding complexity.

2.1. System model

The communication system model is shown in Figure 1. It consists of two transmitting nodes
7, and T, that are communicating in a half-duplex mode in the presence of R intermediate relays denoted as
R, Ry, ..., Rg. It is assumed that there is no direct link between the two transmitting nodes. Moreover, each
intermediate relay R; has a single antenna that is utilized for both transmission and reception. The relays can
only communicate through the transmitting nodes, and they do not share the received data symbols internally.
Let xr(ll) and xT(LZ) be the transmitted symbols by terminal-1 (z;) and terminal-2 (t,) respectively, where i
represents the transmission time slot index. The channel coefficients between 7, and the R relays are given
by the vector f € CR*1 where f = (fi, fo,.....,fz) and f; represents the channel coefficient between
7, and i relay R;. Similarly, the channel coefficients between t, and the R relays are given by the vector
g € C®** where g = (g1, g2 ..., gr) and g; represents the channel coefficient between 7, and i" relay R;.
Let ygf and yg; be the vectors received by an intermediate relay from the first and the second transmitters
respectively which are given as (1) and (2):
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¥ = [P fad+n) @
V) = P gxsy) +n) @)

where P, and P, are the transmitted power of terminal-1 (z,) and terminal-2 (z,), respectively and the relay

noise vectors nl(;l), ngz) have a circularly symmetric Gaussian distribution with variance 2. Let yr(i) represents

the received signal at terminal-1 from all relays and yr(? represents the received signal at terminal-2 from all
relays, then:

¥ = \Pef Txg) ) ©)
Vi = Peg'xg) +ng) @

where Py defines the relays transmitting power, xf{l) and xf{z) define symbol vectors retransmitted by relays to

terminal-1 and terminal-2 correspondingly, and the node noise ng? and nglz) have a circularly symmetric
Gaussian distribution with variance o2 The channel vectors f and g follow the same Gaussian distribution

with unity variance.

Figure 1. System model

2.1.1. Distributed differential space time coding

In this system, it is assumed that there is no CSI at either nodes or relays and the differential
technique for two-way communication [9]-[15] is considered for signal transmission. The transmission
scheme is arranged in terms of blocks in time domain and during this interval, each node transmits T=R

symbols. In particular, let us define s,(? and sr(? as the symbol vectors to be transmitted in it block as (5):

@ — [¢® NOR BENORN O NORN

T
71— P10t rl,T] » 0Ty T21 12,T (5)

Also define the differentially encoded vectors x(” and x{" as (6):

) = diag(xf])si) ) = ding (el )st) ©

1

where diag(*) is a function that takes T elements and generates a T by T diagonal matrix. The symbol
vectors received during i block by r" array are then defined as (7):

@ _ mpof.O @ @O _ ® @
lel,r - P‘Elf‘rxtll +nR11,r' lez,r - ergrx'r; +anz,r (7)

D}

,r

Consider the operator cb,g that is used to perform a transformation for the vectors y,g?,r and y,gi),r as (8):

Yer = o0 (2, O L)) ®)

i)

ne

where © stands for kronecker product and qblg is a power scaling matrix of diagonal form that is defined

as (9):
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, N -1
oy = diag(|yL, © i |) ©)

i.e. c,b() ensures equal power elements in y(l) Consider the following relation in terms of the input signal

where x(l) x!) © x{. Recalling the above procedure, then the received signal could be written as (10):
%) = 0 ([PPafogrel) + ) (10)
where n() is a corresponding noise term. Now, let us use space-time block code methodology in

reformulating the problem from relays transmission perspective for the vectors y . @ Therefore, we define a

space time code structure by a set of permutation matrices A4, ..., Ar and By, ...,BT. Then, restrict possible
codes to ones, for which permutation matrices possess mutual exclusivity property i.e., either Ai=0 or Bi=0.

After that, we define code matrix of r relay Xg?r € CT*R corresponding to the vector received at r' relay

y,(;)r This code matrix formation can then be represented by applying operator :

X0 =08 = [Ay@ + By - Ay® +By@] (11)

Let then each relay R transmit r™" column of its correspondent code matrix X(L) Signal vector received at
second node y,2 can then be then written as (12):

(s“) @ s(;) o X(;l‘) O xEM)APAPg + nd (12)

where,
Xe = x(xg), S = x(s)), St = x(s0), XD = x(xE), x5V = x(x&") (13)

Ag) and A}i) being diagonal matrices defined as (14) and (15):

@ _ [ exp(j&gy),ifB; =0
B = {exp — (jag,),ifA; =0 (14)
e \exp(—j4fi), if Ay = 0
Now, decoding of s(l) can then be performed using (16):
1
sgl) = argmln | yiz (S(l) (l) O KEMRED™ (l 2 || (16)

7-'1
Similarly, an estimate for s(l) is obtained.

2.1.2. Simple distributed differential beamforming
This scheme performs transmission in four time slots [11], [24]. We start by defining symbols

transmitted by first and second relays x ) and x ) as differentially encoded as (17):
2O = DO O _ -1 0 (17)

‘L'1 x‘l.'1 S‘E1 > x‘l.'z x s‘l.'z

Now, define the signals received by the r™ relay from the first terminal in i and (i-1)™ blocks as y(?r, }/;gll rl),

and similarly from the second node as y,§;>r and y,gg rl) respectively. In this analysis, M-phase shift keying
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(M-PSK) is considered for transmission. Then, the definition of the signals transmitted by the r-th relay

xfff‘r and xffz)'r as (18) and (19):

%1, = \Prexp(—jayss, — jaVio, +i8Yroy) (18)
xl(?LZ),r = PR exp(_]é'y}glz),r - jé{y}glljrl) + ]Aylgll),r) (19)

The same precoding procedure is performed at all relays. Hence, the estimated symbols at terminal nodes can
be calculated using as (20) and (21):

555 = argmin [exp(jayy) — exp (j(8y3 " — 45 — 8357 + 33| (20)
St2
5 = argmin [exp(jayy)) — exp (j(8y5 " + 453 + 8357V + 337))| (21)

T1

2.1.3. General rank beamformer (GRB)
Suppose now for vectors f and g known covariance matrices are Ry and Ryg. Define filter matrices
®,, and @, to maximize the SNR at the receivers [12]. Introduce supplementary vectors wq and wy:

— / Pr —
Wa = (1+Amax) v Rpp bWy =V (22)

where v is a normalized eigenvector of R; Ry, for maximum eigenvalue Amax and u is principal eigenvector
of Rgg. Matrices @, and &, are then defined as (23):

(th = dellil' (D‘I:l = WSW;{ (23)

2.1.4. The proposed differential beamforming scheme using maximum ratio combining

Now, suppose that relays are able to exchange received data symbols. This can be thought as a
substitution of single antenna relay array of size R by a single relay with R antennas. Assume using AF
approach, i.e., relay does not decode received symbols. Relay performs array processing of multiplying by
matrices @, and ®.,. Then received signals at first and second nodes are defined as (24):

Y = @y 40l 3 = 0y 4 0l @4

T2 R»
Using maximum ratio combining (MRC) approach @, and @, are to be defined as (25):

V= Peyg, e v = Py, +ng) (25)

Decoding at receivers then can be performed using (25).

3. RESULTS AND DISCUSSION

In this section, we introduce the simulation results of the system model discussed in section 2.
Figures 2 and 3 show the BER versus the SNR of a cooperative communication system composed of two
terminals 7, and 7, and two relay nodes (R=2). In our simulations, Rayleigh flat-fading channels are
considered, and the transmission was simulated for 105 channel realizations. For each channel realization
48 time slots were simulated. In the transmission from t; to 7,, the total transmitted power is divided equally
among the source terminal P, and the relay node P, such that P, = B. where the total relay power Py is also
equally divided among all its transmitting antennas. For Figure 2, 16-PSK modulation was used for four
phase schemes such as simple distributed differential beamforming scheme, differential MRC scheme, and
GRB scheme. For the three phase schemes such as differential space time coding scheme 8-PSK modulation
was used to equalize spectral efficiency. For the two-phase schemes such as differential space time coding
scheme [10], 4-PSK modulation was used to equalize spectral efficiency. The AF protocol is performed using
one bit per channel use (bpcu).

Two-way differential strategy for wireless sensor networks (Samer Alabed)
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By inspecting Figure 2, the BER performance ranking of the schemes explained in section 2 from
the worst to the best will be, differential space time coding scheme explained in subsubsection 2.1.1 has the
worst performance, then GRB scheme explained in subsubsection 2.1.3, followed by simple distributed
differential beamforming scheme explained in subsubsection 2.1.2 and finally the proposed differential MRC
scheme explained in subsubsection 2.1.4, where MRC scheme has a superior performance. This is due to the
fact that MRC scheme allows received symbol exchange between individual relays. GRB scheme has the best
performance in low SNR region, due to the knowledge of correlation properties of channels and received
symbol exchange between relays. At high SNR region, differential MRC scheme however, has a better
performance, due to instantaneous channel information usage.

107

BER

107

107

GRB in Sec. 2.3
Distributed DB in Sec. 2.2
Proposed DB in Sec. 2.4 ]
DD-STC in Sec. 2.1

10 0 5 10 15 20 25 30 35 40
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Figure 2. Performance comparison for relay transmission schemes using the AF protocol with 1 bpcu and R=2

In Figure 3 the suggested scheme explained in subsubsection 2.1.4 is compared to the
state-of-the-art coherent and non-coherent schemes suggested in [10]-[14] using the AF protocol and two
bpcu. Figure 3 clearly shows that the performance of the suggested scheme outperforms the best known
two-there and four-phase distributed space time coding schemes suggested in [10], [13], [14], as well as the
distributed beamforming schemes suggested in [11], [12]. Note that the diversity gain is related to the slope
of the BER curve at high SNR values while the coding gain is related to the shift of the BER curve to the left,
e.g., by doubling the power, the BER curve will be shifted 3 dB to the left without any change to the slope of
the BER curve which means that the added coding gain is 3 dB in this case. From Figure 3, we can observe
that the proposed method is steeper and shifted horizontally more to the left than the other methods. This is
why the proposed method has high diversity and coding gain.
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Figure 3. Performance comparison for relay transmission schemes using the AF protocol with 2 bpcu and R=2
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In Figure 4 the proposed method suggested in subsubsection 2.1.4 is compared with the
state-of-the-art coherent and non-coherent methods suggested in [10], [12]-[14], [33], [36] using the AF
protocol and one bpcu. Figure 4 clearly shows that the performance of the proposed method outperforms the
best known two-there and four-phase distributed space time coding schemes proposed in
[10], [13], [14], [33], as well as the distributed beamforming method proposed in [12]. It is clearly observed
that the BER difference between the optimal beamforming method proposed in [36], which require all CSI at
all transmitting and receiving antennas, and the proposed method, which does not require CSI at any
transmitting or receiving antenna, is just 3 dB. Note that the optimal difference between coherent and
non-coherent method is 3 dB.
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— <t —Scheme in [12] AN
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Figure 4. Performance comparison for relay transmission schemes using the AF protocol with 1 bpcu and
R=2

4. CONCLUSION

This paper proposes a new cooperative communication system technique that operates in a
bi-directional manner. The technique is validated through mathematical analysis and numerical simulations.
Unlike existing methods, which require the availability of CSI at either the transmitter, receiver, or both, the
proposed method eliminates the need for CSI at any transmitting or receiving antenna. The results
demonstrate that the suggested cooperative communication system technique significantly enhances system
performance, particularly in terms of BER, outperforming the current state-of-the-art methods.
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