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1. INTRODUCTION

Surface soil moisture (SM) is a decisive land criterion for understanding the physical interaction of
the land concerning the atmosphere. SM controls our daily lives, environmental factors, agricultural
practices, and climatic change. Traditional SM monitoring methods are labour-intensive and need more
spatial coverage wherehas satellite remote sensing helps in SM monitoring over a large scale [1], [2].
Agricultural yield is enhanced due to continuous innovations in technology. SM estimation can help in
scheduling irrigation which is considered to be a critical issue in agriculture [3]. In the literature, several
ways have been suggested for estimating SM, using optical and microwave remote sensing observations.
However, optical remote sensing data is masked by clouds as a result of the short wavelength. Microwave
remote sensing can get around these shortcomings of optical sensors [4]-[7]. Numerous studies have shown
how a ground-based scatterometer (GBS) can be used to monitor SM. Monitoring of soil parameters over
vegetation areas for an extensive period increasingly relies on GBS data based on microwave scattering.

For smooth bare soil surfaces, the measured backscatter intensity represents SM. However, for
vegetation areas, the SM estimation process becomes complicated due to the complexity of the interaction of
microwave signals with soil and vegetation. Hence SM estimation over vegetation soil surfaces is still a
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challenging task. Many earlier studies have tried to quantify SM using surface inversion models, vegetation
models, and coupling surface inversion models with vegetation models. However, surface inversion models
in vegetation areas produce highly uncertain results, which inspired various experiments to make up for the
backscatter response for vegetation components. Several methods have been suggested in the literature to
estimate SM from full polarimetric scatterometer data. The works in [8], [9] developed an empirical model
using multipolarized radar measurements to estimate bare soil’s surface SM content. Shi et al. [10] developed
a single scattering IEM model based on regression analysis for estimating SM from L-band measurements. In
[11], using an empirical scattering model, authors retrieved SM from measured backscattering coefficients
over vegetative fields. Oh [12] utilized the inversion technique for retrieving surface SM content from
multipolarized radar observations. Empirical model was developed for SM extraction over a soybean field
using full polarimetric radar data in [13]. In [14], [15], it was observed that using a polarimetric
discrimination ratio reduces surface roughness’s effect on SM estimation. The co-polarisation ratio’s
potential for estimating SM was explored using a neuro-fuzzy inference system in [16]. Wang and Mo [17]
used co-polarization phase difference (PPD) for corn and orchid fields. Haldar et al. [18] used PPD for wheat
crops using Sentinel-1 data. In this investigation, we have employed the polarization ratio (PR) and PPD for
SM estimation. Previously to the best of our knowledge no researchers have used PPD for GBS data to
retrieve SM. GBS installations furnish minute data of a target by modifying incident angle and polarization
configuration of the sensor. Hence there is need to research the competance of PPD and PR in SM estimation
using GBS data.

Machine learning allows a machine to learn on its own [19]. Machine learning algorithms are
capable of setting up a regression relationship between two parameters. Additionally, it serves as a predictive
model to forecast the outcome of fresh data [20]. In the proposed, research generalized regression neural
network (GRNN), random forest regression (RFR) and support vector regression (SVR) are utilized for soil
estimation on full polarimetric GBS data. The study presents an SM retrieval algorithm based on full
polarimetric data. The following are the goals of this paper: i) to probe the suitability of PPD and PR for
estimating SM; ii) asses the performance of GRNN, RFR and SVR for soil estimation; and iii) compare the
results obtained from full polarimetric GBS data with results obtained using Sentinel-1 data. The remaining
paper is as follows: section 2 details the study area and wheat plant phenology. Section 3 discusses the
methodology, results are discussed in section 4, and section 5 summarizes and concludes the work.

2. STUDY AREA

The farm (19.896536, 77.532668) is located near Pusad city in the Yavatmal District of
Maharashtra, India. The site is spread across 7 acres with a smooth topography. Wheat and chickpea are
major rabi crops grown in this area. Wheat is sown early in winter and grows from November to May. The
duration of wheat crop in India depends upon the type of wheat and environmental conditions. The wheat
growth period varies between 110-120 days. The wheat was planted in January 2022 and harvested in April
2022. Figure 1 shows pictures of the wheat crop at different stages during the study. A total of five
measurements were taken over the whole wheat growth cycle. The phenological cycle of the wheat crop can
be classified as emergence, tillering, stem elongation, boot, flowering, and ripening stages. Figure 1 depicts
the state of growth of wheat during field measurements.

Figure 1. Field photographs of wheat in various growth stages
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3. METHOD

In this paper, we have presented SM retrieval over the wheat field using a GRNN, RFR and SVR
with GBS data and compared the results with SM retrieved using Sentinel-1 data. The flow chart of the
presented algorithm for estimating SM is shown in Figure 2. The method consists of five steps: data
acquisition, finding optimum incidence angle and polarization, data preparation, SM retrieval and in the last
step comparion between results obtained with GBS data and with Sentinel-1 data is done. A detailed
explanation of each step is given below.

Ground Scatterometer Field Sentinel 1 SAR data
measurements measurements VWV and VH
polarization

Find optimum incidence angle and Polarization

’ Data Preparation ‘

‘ Train GRNN/SVR/RFR Model ‘ Iﬂra(i!n |GRNN/SVR/RFR ‘
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’ Retrieval of SM ‘

|

A
‘ Comparison ‘

Figure 2. Flowchart for soil estimation using GRNN, SVR, and RFR

Retrieval of SM \

3.1. Data acquisition

This section covers the data used in the presented study. The data include GBS data, field
measurements of SM and Sentinel-1 data. During the whole growth cycle of wheat crop, backscatter and
Sentinel-1 data was acquired from scatterometer and from GEE platform respectively. In situ SM was
measured for verification of extracted SM.

3.1.1. Ground scatterometer measurement

The multifrequency polarimetric GBS utilized in this investigation comprises of L and S-band horn
antennas having a gain of 20 db, a vector network analyzer (VNA, 1-4 GHz), radio-frequency cables and a
personal computer for data storage. The polarimetric scatterometer operates in a stepped frequency sweep
mode with all horizontal (H) and vertical (V) polarization combinations. The scatterometer is mounted on a
wooden platform to measure the backscattering coefficient, including two bands (L and S), full-polarizations
(VV, VH, HV, HH), and incidence angles from 0° to 70° in steps of 5°. From January to April 2022,
experimental data, including backscatter and ground data, were collected five times in synchronization with
satellite revisit time on the wheat field near Pusad, Maharashtra.

3.1.2. Field measurements

SM was measured using the direct method. Five random points were selected from the investigation
site during each data acquisition to collect soil samples. Soil specimens were gathered from a distance of 10
cm from the soil surface, and they were packed in air-tight polythene bags. The collected samples were
oven-dried in the laboratory. The SM was calculated by calculating the weight difference of the soil samples
before and after drying. The average value of five measurements was taken to calculate SM. The average
plant height, leaf length and stem width were calculated by measuring plant height, leaf length and stem
width at five different locations in the wheat crop bed. Figure 3 shows the temporal variation of crop growth
variables such as plant height, leaf length, and stem width of the wheat crop. All the crop growth variables of
the wheat crop were found to increase with the crop growth.
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3.1.3. Sentinel-1 data

We have used the data set consisting of Sentinel-1 data and field measurements of soil and
vegetation growth parameters collected over wheat crop in the Haouz plain in Morocco dataset [21] for
training GRNN/SVR and RFR algorithm. VH and VV backscattering coefficients at the study location on
data acquisition dates were acquired using Google Earth Engine to validate retrieved SM using Sentinel-1
data. Sentinel-1 is a synthetic aperture radar operating in interferometric wide (IW) swath mode at a
frequency of 5.33 GHz in the C band. The primary operational imaging mode is the (IW) swath mode
covering incidence angles between 31° and 46°.

Canopy height Leaf length stem width
80
s 70
e
5 60
E
<< 50
I
T a0
3
w
=5
Sz 20
[
T 10
g
I 0
35 0 20 40 60 80 100
=
g DAYS AFTER SOWING

Figure 3. Temporal variation of crop growth variables of wheat crop

3.2. Finding optimum system configuration

Correlation analysis was conducted to determine the ideal incidence angle and polarization of GBS
for estimating SM. The correlation coefficient’s value fluctuates between +1 and -1 depending on how strong
the association is between two variables. After applying correlation analysis between ground parameters and
backscattering value for different polarizations, HV polarization with 30° incidence angle is found optimal
for operation.

3.3. Data preparation

To estimate SM PR and PPD with backscattering coefficients are utilized in the algorithm. For data
preparation the PR and PPD were computed using (1) and (2). The data (backscattering coefficient, PR and
PPD) of the wheat crop at a 30° angle of incidence for the L band at HV polarization was interpolated in 91
data sets which were further divided into 63 and 28 data sets for training and testing respectively. The
detailed explanation about polarization ratio and polarization phase difference is given in following sections.

3.3.1. Polarization ratio

The polarization ratio is the ratio of VH and V'V polarized scattering coefficients. It is calculated by
(1) [22]. PR is more persistent than the backscattering coefficient for both polarizations, VV and VH.
Previous studies [18] have confirmed that PR reduces the effect of soil roughness and gives a more accurate
estimation of SM.

PR = ZVH_ 1)

oyy

3.3.2. Polarization phase difference
The co-polarization phase difference was calculated using (2) [23]:

Q)c = Q)HH - Q)VV (2)

where @c is the relative phase difference and is equal to the absolute phase difference between co-polarized
HH and VV polarization, the HH and VV phase difference consists of vital information at par with
cross-polarized phase difference in two polarization channels [18]. The investigation focuses on relating the
changes in phase difference to SM.
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3.4. Soil moisture retrieval

We implemented three regression models GRNN, SVR, and RFR based on machine learning for the
direct estimation of SM. To investigate the suitability of backscattering coefficients and various polarimetric
data-derived vegetation descriptors for estimating the SM of wheat GRNN, SVR, and RFR models were
tested for different combinations of polarization ratio and polarization phase difference with backscattering
coefficient.

3.4.1. Generalized regression neural network

GRNN was first developed by Specht, similar to radial basis function networks [24]. GRNN has
applications in different fields like time series prediction, adaptive control and pattern recognition. The key
benefit of this type of neural network is that iterative training is not required. Instead, direct computation of
functional estimates can be obtained from the training data. The architecture of GRNN is shown in Figure 4.
GRNN comprises four layers (the input layer, the pattern layer, the summation layer, and the output layer).
Each neuron in the pattern layer represents a training pattern and admits input from the input layer. The
output from each neuron measures how much the input deviates from the stored pattern.

Pattern Layer

Input Layer

Summation Layer

X1 —»
s)
Output Layer
X2 » )
& — vy
D
X6 —>'

Figure 4. GRNN architecture

In the summation layer, one type of neuron calculates the sum of the weighted output of pattern
neurons and the other type computes the unweighted results of the pattern layer. Finally, normalization is
performed by the output layer to calculate value of the output variable predicted by GRNN. In the proposed
work, the input vector x of the GRNNs used to retrieve SM includes backscattering coefficients, PPD and PR
for GBS and backscattering coefficients and PR of the Sentinel-1 dataset.

3.4.2. Support vector regression model

SVR is based on a support vector machine (SVM) and was first invented by Vapnik. SVM handles
both classification and regression tasks. The SVR performs the estimation task by input-output dataset
mapping. It focuses on class boundaries and applies a non-linear transformation to map the input space
created by independent variables using the kernel function [25]. Linear, polynomial and radial basis function
are different kernels available in SVM. The radial basis function kernel is the most frequently used in several
previous studies [26]. In high dimensional space, an ideal linear separator is found that optimizes the margin
between the classes [27], [28]. The generalized solution is obtained by maximizing the margin and reducing
overfitting. SVR is chosen in presented research since it is best suited for small input sampling sizes, has
limited complexity and high stability of the learning process.

3.4.3. Random forest regression model

Random forest (RF) is a machine learning model that efficiently performs classification and
regression functions. RF is developed by the bagging technique [29]. The RFR model operates by forming
regression trees and choosing the finest split at each node by applying predictor variables [29], [30]. Each
tree is created by repetitively separating the population based on optimising a split rule over the
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p-dimensional covariate space. At every split, each node is divided into two daughter nodes. Until the
terminal node is achieved, daughter nodes are split, and the terminal node is defined by stopping criteria
dependent on node purity or node member size. In regression tasks, mean square error is used, whereas for
classification applications Gini index is used for split rule. The final RF result for the regression task is
obtained by aggregating, averaging (regression) or voting (classification) of each terminal node [31].

3.5. Comparison

In this step the outcomes of the two suggested methods one based on the GBS data and others on
Sentinel-1 data, are compared. The metrics for comparison include the root mean squared error (RMSE). RMSE
is used to assess the performance of the developed algorithm for SM estimation. RMSE is defined as (3):

RMSE = J%zﬁzl(SMm — SM,)? (3)

Where SMy, is the estimated SM, SM, is the observed or original SM, and N stands for number of
observations.

4. RESULTS AND DISCUSSION
4.1. Variation of backscattering coefficients with polarization

Figure 5 shows temporal variation of backscattering coefficients at optimum incidence angle. It can
be observed that polarized backscattering coefficients are higher than the cross-polarized backscattering
coefficient. The range of the backscattering coefficient is from -60 to -40 db for L and S band. As wheat
grew, an initial rise in backscattering coefficients was observed till the heading stage which reduced until the
harvesting stage. The backscatter coefficients slightly increase with a decrease in frequency. During the
study, S-band showed lower backscatter coefficients than the L-band.
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Figure 5. Temporal variation of backscaterring at 30° incidence angles at L and S band

4.2. Optimum parameter selection of GBS

For selecting the optimum parameters of the GBS, correlation analysis was conducted between crop
variables and the backscattering coefficient to determine the most suitable incidence angle for the operation
of the scatterometer. Correlation analysis was done between ¢° and vegetation growth parameters to find the
correlation coefficient between them and determine the optimum parameters of the GBS, as summarized in
Tables 1 and 2 for Lband and Tables 3 and 4 for S band. After applying correlation analysis between ground
parameters and backscattering value for different polarization, HV polarization with 30° incidence angle is
optimal for operation.

4.3. Estimation of soil moisture

This section focuses on retrieving the SM throughout the growing season of the wheat crop. The SM
is estimated using both scatterometer and Sentinel-1 data using GRNN, SVR and RFR model. The outcomes
of the two suggested methods one based on the GBS data and others on Sentinel-1 data, are compared and
discussed in this section.
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Table 1. Correlation coefficients between backscatter coefficients and ground parameters at Lband for VV
and VH polarization

Correlation coefficient

Correlation coefficient

Incidence angle \AY VH

CH LL SW SM CH LL SW SM
10 014 035 -012 0.03 -053 -046 -08 0.68
15 -04 -017 -065 051 -059 -052 -0.82 0.74
20 -039 -0.16 -0.65 05 -0.67 -0.59 -0.82 0.82
25 -0.32 -0.09 -059 044 -069 -0.61 -0.84 0.83
30 -0.14 01 -042 027 -069 -0.61 -086 0.83
35 -0.14 009 -043 027 -066 -0.57 -0.83 0.82
40 -0.06 017 -033 018 -0.72 -0.66 -0.89 0.83
45 0 023 -025 011 -071 -064 -0.86 0.84
50 0 023 -025 011 -0.72 -0.64 -0.84 0.86
55 0 023 -024 011 -06 -061 -0.37 0.39
60 -0.01 022 -027 013 -062 -053 -085 0.77
65 -0.01 022 -027 013 -059 -051 -0.85 0.75
70 0 024 -027 012 -0.2 -006 -0.65 04

Table 2. Correlation coefficients between backscatter coefficients and ground parameters at Lband for HH
and HV polarization

Correlation coefficient

Correlation coefficient

Incidence angle HH HV

CH LL SW SM CH LL SW SM
10 019 -003 063 -031 -0.68 -0.78 -0.18 0.61
15 022 001 068 -037 -068 -0.78 -0.16 0.5
20 008 -013 039 -011 -067 -0.76 -0.14 0.54
25 022 001 068 -037 -067 -0.77 -0.15 054
30 0.14 -007 062 -03 -0.78 -0.68 -0.96 0.89
35 02 -0.01 067 -035 -066 -0.76 -0.13 0.51
40 0.08 -0.12 058 -023 -0.66 -0.77 -0.14 0.3
45 -0.08 -0.29 043 -0.06 -06 -0.73 -0.07 0.46
50 -0.08 -0.29 043 -0.07 -051 -0.66 0.03 0.39
55 -0.23 -042 031 008 -046 -0.62 0.09 0.34
60 -0.11 -032 04 -005 -038 -052 019 0.27
65 -0.15 -0.35 037 -0.02 -0.55 -0.67 -0.01 0.46
70 -019 -04 031 002 -0.64 -077 -012 051

Table 3. Correlation coefficients between backscatter coefficients and ground parameters at S band for VV

and VH band

Correlation coefficient

Correlation coefficient

Incidence angle \AY VH

CH LL SW SM CH LL SW SM
10 0.2 035 -0.12 003 -0.78 -0.63 -0.93 0.78
15 -04 -017 -065 051 -0.77 -063 -093 0.77
20 -0.39 -0.16 -065 05 -0.75 -0.61 -094 0.75
25 -0.32 -0.09 -059 044 -076 -0.62 -094 0.76
30 -0.14 0.1 -042 027 -078 -064 -093 0.79
35 -0.14 009 -043 027 -078 -063 -094 0.78
40 -0.06 017 -033 018 -0.71 -055 -091 0.73
45 0 023 -025 011 -0.72 -057 -091 0.74
50 0 023 -025 0.11 -0.76 -0.62 -0.94 0.76
55 0 023 -024 011 -06 -057 -049 042
60 -0.01 022 -0.27 013 -07 -0.52 -0.87 0.72
65 -0.01 022 -027 013 -072 -055 -091 0.74
70 0 024 -027 012 -076 -0.61 -0.93 0.77
75 0 023 -028 013 -0.78 -0.64 -0.94 0.79

4.3.1. Using scatterometer data

The proposed algorithm was tested on four different input configurations that is: i) backscattering
coefficient, ii) backscattering coefficient+PR, iii) backscaterring coefficients+PPD, and iv) backscattering
coefficient+PR+PPD to analyse the impact of various polarimetric features. Figures 6(a) to (c) shows the
relationship between measured SM and those predicted using GRNN, RFR and SVR respectively with five-
fold cross-validation. In Table 5, obtained RMSE and MSE for different combinations of GBS data using
GRNN, SVR, and RF is tabulated. With RMSE between 0.177 and 0.093, GRNN based estimation achieved
the best accuracy. For SVR, the RMSE values ranged between 0.931 and 0.785, for RF regression obtained,
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RMSE varies between 0.269 and 0.130. In all three cases, results indicate that the combination of
backscattering data, PR and PPD exhibits the best performance compared to the other two combinations. For
SM estimation all models were found suitable, but the performance of GRNN was best as compared to RFR
and SVR. Furthermore, the obtained results were better than [16] due to the addition of full polarimetric data-
derived vegetation descriptors PPD and PR for estimating SM.

Table 4. Correlation coefficients between backscatter coefficients and ground parameters at S band for HH

and HV polarization

Correlation coefficient

Correlation coefficient

Incidence angle HH HV
CH LL SW SM CH LL SW SM
10 0.7 057 098 -0.78 006 -0.15 034 -0.07
15 066 065 076 -077 -0.78 -0.87 -0.32 0.64
20 0.06 -0.14 035 -008 -079 -0.88 -0.34 0.65
25 063 067 068 -071 -0.79 -0.88 -0.34 0.65
30 062 068 066 -068 -0.75 -0.65 -0.96 0.86
35 054 055 065 -068 -0.79 -0.89 -0.36 0.65
40 049 043 053 -068 -0.78 -0.87 -0.31 0.65
45 069 068 075 -081 -079 -0.89 -0.34 0.67
50 075 078 071 -083 -08 -09 -035 0.67
55 -046 -033 -068 038 -078 -088 -0.32 0.65
60 -0.88 -083 -0.74 0.77 -077 -08 -03 0.62
65 -037 -041 015 023 -082 -09 -038 071
70 076 078 085 -076 -0.78 -0.88 -0.32 0.66
75 -081 -075 -061 069 -061 -0.74 -0.08 047
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Figure 6. Retrieved SM versus in situ soil measurements for; (a) GRNN, (b) RFR, and (c) SVR using GBS
data
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Table 5. RMSE and MSE for SM using GRNN, SVR, and RF regressor for GBS data

Data GRNN SVR RFR
RMSE MSE RMSE MSE RMSE MSE
Backscaterring coefficient 0.165 0.027 0.931 0.866 0.252 0.0637
Backscattering coefficient+PR 0.100 0.0099  0.909 0.82 0.269 0.072
Backscaterring coefficients+PPD 0.177 0.031 0.805 0.64 0.244  0.059

Backscattering coefficient+PR+PPD ~ 0.093  0.0087  0.785 0.61 0.130 0.016

4.3.2. Using Sentinel-1 data

Sentinel-1 datasets and in situ measurements of soil collected over the wheat crop in the Haouz plain
in Morocco dataset [19] are used for training the GRNN/SVM and RFR algorithm. VH and VV
backscattering coefficients at the study location on data acquisition dates are acquired using Google Earth
Engine. These backscattering coefficients are used for validation. Estimated SM is validated with field
measurements. The proposed algorithm was tested for two input configurations to analyze the impact of
various polarimetric features using GRNN, RFR, and SVR. In Table 6, obtained RMSE, MSE for GBS data
with vegetation descriptors PR are mentioned. The results conclude that GRNN gives the best accuracy with
an RMSE of 0.962 with a backscattering coefficient and polarization ratio. Figure 7 depicts comparison
between SM estimated using GBS and Sentinel-1 data. A correlation of 0.84 is obtained between SM
estimated using GBS and Sentinel-1 data.

Table 6. RMSE and MSE for SM using GRNN, SVR and RF regressor for Sentinel-1 data

Data GRNN SVM RF
RMSE MSE RMSE MSE RMSE MSE
Backscaterring coefficient 1.045 1.091 1.063 1129 1.082 1.17

Backscattering coefficient +PR ~ 0.962  0.9262  1.057 1.11 1.018 1.03

GBS sentinell

GBS AND SENTINELY ESTIMATED SM
w s own

0 20 40 60 80 100 120
DAYS AFTER SOWING

Figure 7. Comparison between SM estimated using Sentinel-1 and GBS data

5. CONCLUSION

The polarimetric radar backscatters of a wheat field were measured using the ground-based L and
S-band polarimetric scatterometer in an angular range from 10° to 70°. The suitable incidence angle for the
estimation of SM for vegetation was found to be 30° for HV polarization. First, the PPD and PR were
analyzed, and then the SM of the wheat field was retrieved using machine learning algorithms. All models
were found suitable, but the performance of GRNN was better compared to RFR and SVR’s estimation of
SM. Finally, the retrieved SM content was compared with the in-situ measured SM content. In future full
polarimetric data derived vegetation descriptors, PPD and PR can be used for monitoring conditions of crops
and yield predictions.
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