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 Soil moisture (SM) is a crucial criterion for agronomics and the management 

of water resources, particularly in areas where the socio-economic status and 

significant source of income depend upon agriculture and related sectors. 

This paper intends to estimate SM over the vegetative area using a 

generalized regression neural network (GRNN) and ground scatterometer 

and compare the results with SM retrieved using Sentinel-1 data. At the 

same time, random forest regression (RFR) and support vector regression 

(SVR) models are used for SM estimation. Correlation analysis results 

concluded that L-band HV-polarization at 300 incidence angle showed the 

highest correlation with the measured field parameters. This study 

investigated backscattering coefficients, VV/VH polarization ratio and 

polarization phase difference over wheat’s entire growth phase to estimate 

SM. The results indicate that the GRNN with backscattering coefficients and 

polarization ratio provided the highest accuracy compared to the random 

forest (RF) and SVR with the root mean square error of 0.093 over the 

Yavatmal District, Maharashtra, India. 
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1. INTRODUCTION 

Surface soil moisture (SM) is a decisive land criterion for understanding the physical interaction of 

the land concerning the atmosphere. SM controls our daily lives, environmental factors, agricultural 

practices, and climatic change. Traditional SM monitoring methods are labour-intensive and need more 

spatial coverage wherehas satellite remote sensing helps in SM monitoring over a large scale [1], [2]. 

Agricultural yield is enhanced due to continuous innovations in technology. SM estimation can help in 

scheduling irrigation which is considered to be a critical issue in agriculture [3]. In the literature, several 

ways have been suggested for estimating SM, using optical and microwave remote sensing observations. 

However, optical remote sensing data is masked by clouds as a result of the short wavelength. Microwave 

remote sensing can get around these shortcomings of optical sensors [4]–[7]. Numerous studies have shown 

how a ground-based scatterometer (GBS) can be used to monitor SM. Monitoring of soil parameters over 

vegetation areas for an extensive period increasingly relies on GBS data based on microwave scattering. 

For smooth bare soil surfaces, the measured backscatter intensity represents SM. However, for 

vegetation areas, the SM estimation process becomes complicated due to the complexity of the interaction of 

microwave signals with soil and vegetation. Hence SM estimation over vegetation soil surfaces is still a 

https://creativecommons.org/licenses/by-sa/4.0/
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challenging task. Many earlier studies have tried to quantify SM using surface inversion models, vegetation 

models, and coupling surface inversion models with vegetation models. However, surface inversion models 

in vegetation areas produce highly uncertain results, which inspired various experiments to make up for the 

backscatter response for vegetation components. Several methods have been suggested in the literature to 

estimate SM from full polarimetric scatterometer data. The works in [8], [9] developed an empirical model 

using multipolarized radar measurements to estimate bare soil’s surface SM content. Shi et al. [10] developed 

a single scattering IEM model based on regression analysis for estimating SM from L-band measurements. In 

[11], using an empirical scattering model, authors retrieved SM from measured backscattering coefficients 

over vegetative fields. Oh [12] utilized the inversion technique for retrieving surface SM content from 

multipolarized radar observations. Empirical model was developed for SM extraction over a soybean field 

using full polarimetric radar data in [13]. In [14], [15], it was observed that using a polarimetric 

discrimination ratio reduces surface roughness’s effect on SM estimation. The co-polarisation ratio’s 

potential for estimating SM was explored using a neuro-fuzzy inference system in [16]. Wang and Mo [17] 

used co-polarization phase difference (PPD) for corn and orchid fields. Haldar et al. [18] used PPD for wheat 

crops using Sentinel-1 data. In this investigation, we have employed the polarization ratio (PR) and PPD for 

SM estimation. Previously to the best of our knowledge no researchers have used PPD for GBS data to 

retrieve SM. GBS installations furnish minute data of a target by modifying incident angle and polarization 

configuration of the sensor. Hence there is need to research the competance of PPD and PR in SM estimation 

using GBS data. 

Machine learning allows a machine to learn on its own [19]. Machine learning algorithms are 

capable of setting up a regression relationship between two parameters. Additionally, it serves as a predictive 

model to forecast the outcome of fresh data [20]. In the proposed, research generalized regression neural 

network (GRNN), random forest regression (RFR) and support vector regression (SVR) are utilized for soil 

estimation on full polarimetric GBS data. The study presents an SM retrieval algorithm based on full 

polarimetric data. The following are the goals of this paper: i) to probe the suitability of PPD and PR for 

estimating SM; ii) asses the performance of GRNN, RFR and SVR for soil estimation; and iii) compare the 

results obtained from full polarimetric GBS data with results obtained using Sentinel-1 data. The remaining 

paper is as follows: section 2 details the study area and wheat plant phenology. Section 3 discusses the 

methodology, results are discussed in section 4, and section 5 summarizes and concludes the work. 

 

 

2. STUDY AREA 

The farm (19.896536, 77.532668) is located near Pusad city in the Yavatmal District of 

Maharashtra, India. The site is spread across 7 acres with a smooth topography. Wheat and chickpea are 

major rabi crops grown in this area. Wheat is sown early in winter and grows from November to May. The 

duration of wheat crop in India depends upon the type of wheat and environmental conditions. The wheat 

growth period varies between 110-120 days. The wheat was planted in January 2022 and harvested in April 

2022. Figure 1 shows pictures of the wheat crop at different stages during the study. A total of five 

measurements were taken over the whole wheat growth cycle. The phenological cycle of the wheat crop can 

be classified as emergence, tillering, stem elongation, boot, flowering, and ripening stages. Figure 1 depicts 

the state of growth of wheat during field measurements. 

 

 

    
 

Figure 1. Field photographs of wheat in various growth stages 
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3. METHOD 

In this paper, we have presented SM retrieval over the wheat field using a GRNN, RFR and SVR 

with GBS data and compared the results with SM retrieved using Sentinel-1 data. The flow chart of the 

presented algorithm for estimating SM is shown in Figure 2. The method consists of five steps: data 

acquisition, finding optimum incidence angle and polarization, data preparation, SM retrieval and in the last 

step comparion between results obtained with GBS data and with Sentinel-1 data is done. A detailed 

explanation of each step is given below. 

 

 

 
 

Figure 2. Flowchart for soil estimation using GRNN, SVR, and RFR 

 

 

3.1.  Data acquisition 

This section covers the data used in the presented study. The data include GBS data, field 

measurements of SM and Sentinel-1 data. During the whole growth cycle of wheat crop, backscatter and 

Sentinel-1 data was acquired from scatterometer and from GEE platform respectively. In situ SM was 

measured for verification of extracted SM. 

 

3.1.1. Ground scatterometer measurement 

The multifrequency polarimetric GBS utilized in this investigation comprises of L and S-band horn 

antennas having a gain of 20 db, a vector network analyzer (VNA, 1-4 GHz), radio-frequency cables and a 

personal computer for data storage. The polarimetric scatterometer operates in a stepped frequency sweep 

mode with all horizontal (H) and vertical (V) polarization combinations. The scatterometer is mounted on a 

wooden platform to measure the backscattering coefficient, including two bands (L and S), full-polarizations 

(VV, VH, HV, HH), and incidence angles from 0° to 70° in steps of 5°. From January to April 2022, 

experimental data, including backscatter and ground data, were collected five times in synchronization with 

satellite revisit time on the wheat field near Pusad, Maharashtra. 

 

3.1.2. Field measurements 

SM was measured using the direct method. Five random points were selected from the investigation 

site during each data acquisition to collect soil samples. Soil specimens were gathered from a distance of 10 

cm from the soil surface, and they were packed in air-tight polythene bags. The collected samples were  

oven-dried in the laboratory. The SM was calculated by calculating the weight difference of the soil samples 

before and after drying. The average value of five measurements was taken to calculate SM. The average 

plant height, leaf length and stem width were calculated by measuring plant height, leaf length and stem 

width at five different locations in the wheat crop bed. Figure 3 shows the temporal variation of crop growth 

variables such as plant height, leaf length, and stem width of the wheat crop. All the crop growth variables of 

the wheat crop were found to increase with the crop growth. 
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3.1.3. Sentinel-1 data 

We have used the data set consisting of Sentinel-1 data and field measurements of soil and 

vegetation growth parameters collected over wheat crop in the Haouz plain in Morocco dataset [21] for 

training GRNN/SVR and RFR algorithm. VH and VV backscattering coefficients at the study location on 

data acquisition dates were acquired using Google Earth Engine to validate retrieved SM using Sentinel-1 

data. Sentinel-1 is a synthetic aperture radar operating in interferometric wide (IW) swath mode at a 

frequency of 5.33 GHz in the C band. The primary operational imaging mode is the (IW) swath mode 

covering incidence angles between 31º and 46º. 

 

 

 
 

Figure 3. Temporal variation of crop growth variables of wheat crop 

 

 

3.2.  Finding optimum system configuration 

Correlation analysis was conducted to determine the ideal incidence angle and polarization of GBS 

for estimating SM. The correlation coefficient’s value fluctuates between +1 and -1 depending on how strong 

the association is between two variables. After applying correlation analysis between ground parameters and 

backscattering value for different polarizations, HV polarization with 300 incidence angle is found optimal 

for operation. 

 

3.3.  Data preparation 

To estimate SM PR and PPD with backscattering coefficients are utilized in the algorithm. For data 

preparation the PR and PPD were computed using (1) and (2). The data (backscattering coefficient, PR and 

PPD) of the wheat crop at a 30° angle of incidence for the L band at HV polarization was interpolated in 91 

data sets which were further divided into 63 and 28 data sets for training and testing respectively. The 

detailed explanation about polarization ratio and polarization phase difference is given in following sections. 

 

3.3.1. Polarization ratio 

The polarization ratio is the ratio of VH and VV polarized scattering coefficients. It is calculated by 

(1) [22]. PR is more persistent than the backscattering coefficient for both polarizations, VV and VH. 

Previous studies [18] have confirmed that PR reduces the effect of soil roughness and gives a more accurate 

estimation of SM. 

 

𝑃𝑅 =
𝜎𝑉𝐻  

𝜎𝑉𝑉
 (1) 

 

3.3.2. Polarization phase difference 

The co-polarization phase difference was calculated using (2) [23]: 

 

∅𝑐 = ∅𝐻𝐻 − ∅𝑉𝑉  (2) 

 

where ∅𝑐 is the relative phase difference and is equal to the absolute phase difference between co-polarized 

HH and VV polarization, the HH and VV phase difference consists of vital information at par with  

cross-polarized phase difference in two polarization channels [18]. The investigation focuses on relating the 

changes in phase difference to SM. 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Soil moisture estimation using ground scatterometer and Sentinel-1 data (Geeta T. Desai) 

1711 

3.4.  Soil moisture retrieval 

We implemented three regression models GRNN, SVR, and RFR based on machine learning for the 

direct estimation of SM. To investigate the suitability of backscattering coefficients and various polarimetric 

data-derived vegetation descriptors for estimating the SM of wheat GRNN, SVR, and RFR models were 

tested for different combinations of polarization ratio and polarization phase difference with backscattering 

coefficient. 

 

3.4.1. Generalized regression neural network 

GRNN was first developed by Specht, similar to radial basis function networks [24]. GRNN has 

applications in different fields like time series prediction, adaptive control and pattern recognition. The key 

benefit of this type of neural network is that iterative training is not required. Instead, direct computation of 

functional estimates can be obtained from the training data. The architecture of GRNN is shown in Figure 4. 

GRNN comprises four layers (the input layer, the pattern layer, the summation layer, and the output layer). 

Each neuron in the pattern layer represents a training pattern and admits input from the input layer. The 

output from each neuron measures how much the input deviates from the stored pattern. 

 

 

 
 

Figure 4. GRNN architecture 

 

 

In the summation layer, one type of neuron calculates the sum of the weighted output of pattern 

neurons and the other type computes the unweighted results of the pattern layer. Finally, normalization is 

performed by the output layer to calculate value of the output variable predicted by GRNN. In the proposed 

work, the input vector x of the GRNNs used to retrieve SM includes backscattering coefficients, PPD and PR 

for GBS and backscattering coefficients and PR of the Sentinel-1 dataset. 

 

3.4.2. Support vector regression model 

SVR is based on a support vector machine (SVM) and was first invented by Vapnik. SVM handles 

both classification and regression tasks. The SVR performs the estimation task by input-output dataset 

mapping. It focuses on class boundaries and applies a non-linear transformation to map the input space 

created by independent variables using the kernel function [25]. Linear, polynomial and radial basis function 

are different kernels available in SVM. The radial basis function kernel is the most frequently used in several 

previous studies [26]. In high dimensional space, an ideal linear separator is found that optimizes the margin 

between the classes [27], [28]. The generalized solution is obtained by maximizing the margin and reducing 

overfitting. SVR is chosen in presented research since it is best suited for small input sampling sizes, has 

limited complexity and high stability of the learning process.  

 

3.4.3. Random forest regression model 

Random forest (RF) is a machine learning model that efficiently performs classification and 

regression functions. RF is developed by the bagging technique [29]. The RFR model operates by forming 

regression trees and choosing the finest split at each node by applying predictor variables [29], [30]. Each 

tree is created by repetitively separating the population based on optimising a split rule over the  
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p-dimensional covariate space. At every split, each node is divided into two daughter nodes. Until the 

terminal node is achieved, daughter nodes are split, and the terminal node is defined by stopping criteria 

dependent on node purity or node member size. In regression tasks, mean square error is used, whereas for 

classification applications Gini index is used for split rule. The final RF result for the regression task is 

obtained by aggregating, averaging (regression) or voting (classification) of each terminal node [31]. 

 

3.5.  Comparison 

In this step the outcomes of the two suggested methods one based on the GBS data and others on 

Sentinel-1 data, are compared. The metrics for comparison include the root mean squared error (RMSE). RMSE 

is used to assess the performance of the developed algorithm for SM estimation. RMSE is defined as (3): 

 

RMSE = √
1

𝑁
∑ (𝑆𝑀𝑚 − 𝑆𝑀𝑜)2 𝑁

𝑖=1  (3) 

 

Where SMm is the estimated SM, SMo
 is the observed or original SM, and N stands for number of 

observations. 

 

 

4. RESULTS AND DISCUSSION 

4.1. Variation of backscattering coefficients with polarization 

Figure 5 shows temporal variation of backscattering coefficients at optimum incidence angle. It can 

be observed that polarized backscattering coefficients are higher than the cross-polarized backscattering 

coefficient. The range of the backscattering coefficient is from -60 to -40 db for L and S band. As wheat 

grew, an initial rise in backscattering coefficients was observed till the heading stage which reduced until the 

harvesting stage. The backscatter coefficients slightly increase with a decrease in frequency. During the 

study, S-band showed lower backscatter coefficients than the L-band.  

 

 

 
 

Figure 5. Temporal variation of backscaterring at 30º incidence angles at L and S band 

 

 

4.2.  Optimum parameter selection of GBS 

For selecting the optimum parameters of the GBS, correlation analysis was conducted between crop 

variables and the backscattering coefficient to determine the most suitable incidence angle for the operation 

of the scatterometer. Correlation analysis was done between σº and vegetation growth parameters to find the 

correlation coefficient between them and determine the optimum parameters of the GBS, as summarized in 

Tables 1 and 2 for Lband and Tables 3 and 4 for S band. After applying correlation analysis between ground 

parameters and backscattering value for different polarization, HV polarization with 30º incidence angle is 

optimal for operation. 

 

4.3.  Estimation of soil moisture 

This section focuses on retrieving the SM throughout the growing season of the wheat crop. The SM 

is estimated using both scatterometer and Sentinel-1 data using GRNN, SVR and RFR model. The outcomes 

of the two suggested methods one based on the GBS data and others on Sentinel-1 data, are compared and 

discussed in this section. 
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Table 1. Correlation coefficients between backscatter coefficients and ground parameters at Lband for VV 

and VH polarization 

Incidence angle 
Correlation coefficient Correlation coefficient 

VV VH 
CH LL SW SM CH LL SW SM 

10 0.14 0.35 -0.12 0.03 -0.53 -0.46 -0.8 0.68 
15 -0.4 -0.17 -0.65 0.51 -0.59 -0.52 -0.82 0.74 
20 -0.39 -0.16 -0.65 0.5 -0.67 -0.59 -0.82 0.82 
25 -0.32 -0.09 -0.59 0.44 -0.69 -0.61 -0.84 0.83 
30 -0.14 0.1 -0.42 0.27 -0.69 -0.61 -0.86 0.83 
35 -0.14 0.09 -0.43 0.27 -0.66 -0.57 -0.83 0.82 
40 -0.06 0.17 -0.33 0.18 -0.72 -0.66 -0.89 0.83 
45 0 0.23 -0.25 0.11 -0.71 -0.64 -0.86 0.84 
50 0 0.23 -0.25 0.11 -0.72 -0.64 -0.84 0.86 
55 0 0.23 -0.24 0.11 -0.6 -0.61 -0.37 0.39 
60 -0.01 0.22 -0.27 0.13 -0.62 -0.53 -0.85 0.77 
65 -0.01 0.22 -0.27 0.13 -0.59 -0.51 -0.85 0.75 
70 0 0.24 -0.27 0.12 -0.2 -0.06 -0.65 0.4 

 

 

Table 2. Correlation coefficients between backscatter coefficients and ground parameters at Lband for HH 

and HV polarization 

Incidence angle 
Correlation coefficient Correlation coefficient 

HH HV 
CH LL SW SM CH LL SW SM 

10 0.19 -0.03 0.63 -0.31 -0.68 -0.78 -0.18 0.61 
15 0.22 0.01 0.68 -0.37 -0.68 -0.78 -0.16 0.55 
20 0.08 -0.13 0.39 -0.11 -0.67 -0.76 -0.14 0.54 
25 0.22 0.01 0.68 -0.37 -0.67 -0.77 -0.15 0.54 
30 0.14 -0.07 0.62 -0.3 -0.78 -0.68 -0.96 0.89 
35 0.2 -0.01 0.67 -0.35 -0.66 -0.76 -0.13 0.51 
40 0.08 -0.12 0.58 -0.23 -0.66 -0.77 -0.14 0.53 
45 -0.08 -0.29 0.43 -0.06 -0.6 -0.73 -0.07 0.46 
50 -0.08 -0.29 0.43 -0.07 -0.51 -0.66 0.03 0.39 
55 -0.23 -0.42 0.31 0.08 -0.46 -0.62 0.09 0.34 
60 -0.11 -0.32 0.4 -0.05 -0.38 -0.52 0.19 0.27 
65 -0.15 -0.35 0.37 -0.02 -0.55 -0.67 -0.01 0.46 
70 -0.19 -0.4 0.31 0.02 -0.64 -0.77 -0.12 0.51 

 

 

Table 3. Correlation coefficients between backscatter coefficients and ground parameters at S band for VV 

and VH band 

Incidence angle 

Correlation coefficient Correlation coefficient 

VV VH 

CH LL SW SM CH LL SW SM 

10 0.2 0.35 -0.12 0.03 -0.78 -0.63 -0.93 0.78 
15 -0.4 -0.17 -0.65 0.51 -0.77 -0.63 -0.93 0.77 

20 -0.39 -0.16 -0.65 0.5 -0.75 -0.61 -0.94 0.75 
25 -0.32 -0.09 -0.59 0.44 -0.76 -0.62 -0.94 0.76 

30 -0.14 0.1 -0.42 0.27 -0.78 -0.64 -0.93 0.79 

35 -0.14 0.09 -0.43 0.27 -0.78 -0.63 -0.94 0.78 
40 -0.06 0.17 -0.33 0.18 -0.71 -0.55 -0.91 0.73 

45 0 0.23 -0.25 0.11 -0.72 -0.57 -0.91 0.74 

50 0 0.23 -0.25 0.11 -0.76 -0.62 -0.94 0.76 
55 0 0.23 -0.24 0.11 -0.6 -0.57 -0.49 0.42 

60 -0.01 0.22 -0.27 0.13 -0.7 -0.52 -0.87 0.72 

65 -0.01 0.22 -0.27 0.13 -0.72 -0.55 -0.91 0.74 
70 0 0.24 -0.27 0.12 -0.76 -0.61 -0.93 0.77 

75 0 0.23 -0.28 0.13 -0.78 -0.64 -0.94 0.79 

 

 

4.3.1. Using scatterometer data 

The proposed algorithm was tested on four different input configurations that is: i) backscattering 

coefficient, ii) backscattering coefficient+PR, iii) backscaterring coefficients+PPD, and iv) backscattering 

coefficient+PR+PPD to analyse the impact of various polarimetric features. Figures 6(a) to (c) shows the 

relationship between measured SM and those predicted using GRNN, RFR and SVR respectively with five-

fold cross-validation. In Table 5, obtained RMSE and MSE for different combinations of GBS data using 

GRNN, SVR, and RF is tabulated. With RMSE between 0.177 and 0.093, GRNN based estimation achieved 

the best accuracy. For SVR, the RMSE values ranged between 0.931 and 0.785, for RF regression obtained, 
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RMSE varies between 0.269 and 0.130. In all three cases, results indicate that the combination of 

backscattering data, PR and PPD exhibits the best performance compared to the other two combinations. For 

SM estimation all models were found suitable, but the performance of GRNN was best as compared to RFR 

and SVR. Furthermore, the obtained results were better than [16] due to the addition of full polarimetric data-

derived vegetation descriptors PPD and PR for estimating SM. 
 

 

Table 4. Correlation coefficients between backscatter coefficients and ground parameters at S band for HH 

and HV polarization 

Incidence angle 

Correlation coefficient Correlation coefficient 

HH HV 

CH LL SW SM CH LL SW SM 

10 0.7 0.57 0.98 -0.78 0.06 -0.15 0.34 -0.07 
15 0.66 0.65 0.76 -0.77 -0.78 -0.87 -0.32 0.64 

20 0.06 -0.14 0.35 -0.08 -0.79 -0.88 -0.34 0.65 

25 0.63 0.67 0.68 -0.71 -0.79 -0.88 -0.34 0.65 

30 0.62 0.68 0.66 -0.68 -0.75 -0.65 -0.96 0.86 

35 0.54 0.55 0.65 -0.68 -0.79 -0.89 -0.36 0.65 

40 0.49 0.43 0.53 -0.68 -0.78 -0.87 -0.31 0.65 
45 0.69 0.68 0.75 -0.81 -0.79 -0.89 -0.34 0.67 

50 0.75 0.78 0.71 -0.83 -0.8 -0.9 -0.35 0.67 

55 -0.46 -0.33 -0.68 0.38 -0.78 -0.88 -0.32 0.65 
60 -0.88 -0.83 -0.74 0.77 -0.77 -0.86 -0.3 0.62 

65 -0.37 -0.41 0.15 0.23 -0.82 -0.9 -0.38 0.71 
70 0.76 0.78 0.85 -0.76 -0.78 -0.88 -0.32 0.66 

75 -0.81 -0.75 -0.61 0.69 -0.61 -0.74 -0.08 0.47 

 

 

    
(a) 

 

    
(b) 

 

    
(c) 

 

Figure 6. Retrieved SM versus in situ soil measurements for; (a) GRNN, (b) RFR, and (c) SVR using GBS 

data 
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Table 5. RMSE and MSE for SM using GRNN, SVR, and RF regressor for GBS data 

Data 
GRNN SVR RFR 

RMSE MSE RMSE MSE RMSE MSE 
Backscaterring coefficient 0.165 0.027 0.931 0.866 0.252 0.0637 
Backscattering coefficient+PR 0.100 0.0099 0.909 0.82 0.269 0.072 
Backscaterring coefficients+PPD 0.177 0.031 0.805 0.64 0.244 0.059 
Backscattering coefficient+PR+PPD 0.093 0.0087 0.785 0.61 0.130 0.016 

 

 

4.3.2. Using Sentinel-1 data 

Sentinel-1 datasets and in situ measurements of soil collected over the wheat crop in the Haouz plain 

in Morocco dataset [19] are used for training the GRNN/SVM and RFR algorithm. VH and VV 

backscattering coefficients at the study location on data acquisition dates are acquired using Google Earth 

Engine. These backscattering coefficients are used for validation. Estimated SM is validated with field 

measurements. The proposed algorithm was tested for two input configurations to analyze the impact of 

various polarimetric features using GRNN, RFR, and SVR. In Table 6, obtained RMSE, MSE for GBS data 

with vegetation descriptors PR are mentioned. The results conclude that GRNN gives the best accuracy with 

an RMSE of 0.962 with a backscattering coefficient and polarization ratio. Figure 7 depicts comparison 

between SM estimated using GBS and Sentinel-1 data. A correlation of 0.84 is obtained between SM 

estimated using GBS and Sentinel-1 data. 

 

 

Table 6. RMSE and MSE for SM using GRNN, SVR and RF regressor for Sentinel-1 data 

Data 
GRNN SVM RF 

RMSE MSE RMSE MSE RMSE MSE 
Backscaterring coefficient 1.045 1.091 1.063 1.129 1.082 1.17 
Backscattering coefficient +PR 0.962 0.9262 1.057 1.11 1.018 1.03 

 

 

 
 

Figure 7. Comparison between SM estimated using Sentinel-1 and GBS data 

 

 

5. CONCLUSION  

The polarimetric radar backscatters of a wheat field were measured using the ground-based L and  

S-band polarimetric scatterometer in an angular range from 10º to 70º. The suitable incidence angle for the 

estimation of SM for vegetation was found to be 30º for HV polarization. First, the PPD and PR were 

analyzed, and then the SM of the wheat field was retrieved using machine learning algorithms. All models 

were found suitable, but the performance of GRNN was better compared to RFR and SVR’s estimation of 

SM. Finally, the retrieved SM content was compared with the in-situ measured SM content. In future full 

polarimetric data derived vegetation descriptors, PPD and PR can be used for monitoring conditions of crops 

and yield predictions. 
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