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 Stereo matching algorithm is crucial for applications that rely on three-

dimensional (3D) surface reconstruction, producing a disparity map that 

contains depth information by computing the disparity values between 

corresponding points from a stereo image pair. In order to yield desirable 

results, the proposed stereo matching algorithm must possess a high degree 

of resilience against radiometric variation and edge inconsistencies. In this 

article convolutional neural network (CNN) is employed in the first stage to 

generate the raw matching cost, which is subsequently filtered with a 

bilateral filter (BF) and applied with cross-based cost aggregation (CBCA) 

during the cost aggregation stage to enhance precision. Winner-take-all 

(WTA) strategy is implemented to normalise the disparity map values. 

Finally, the resulting output is subjected to an edge-aware smoothing filter 

(EASF) to reduce the noise. Due to its resistance to high contrast and 

brightness, the filter is found to be effective in refining and eliminating noise 

from the output image. Despite discontinuities like adiron's lost cup handle 

or artl's shattered rods, this approach, based on experimental research 

utilizing a Middlebury standard validation benchmark, yields a high level of 

accuracy, with an average non-occluded error of 6.79%, comparable to other 

published methods. 

Keywords: 

Computer vision 

Deep learning 

Disparity map 

Edge-aware filter 

Stereo matching 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Shamsul Fakhar Abd Gani 

Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik  

Universiti Teknikal Malaysia Melaka 

Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia  

Email: shamsulfakhar@utem.edu.my 

 

 

1. INTRODUCTION 

Light detection and ranging (LIDAR) is a remote sensing approach that employs a pulsed laser to 

detect distances and build three-dimensional (3D) discrete surfaces of the real world. Stereo vision addresses 

LIDAR's hardware, interface, and power issues using left and right cameras to take images of the same target 

from various angles and match pixels to calculate depth. Stereo vision estimates depth via triangulation. By 

knowing the distance between the cameras and the angle between their optical axes, the depth of any point in 

the scene that matches in both images can be found by using trigonometry as shown in (1): 

 

𝑧 =
𝑓.𝑏

𝑑
 (1) 

 

https://creativecommons.org/licenses/by-sa/4.0/
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where z is the depth, f is the camera focal length, b is the baseline space in the middle of cameras' optical 

centre, with d as disparity. Stereo vision has many applications in fields such as robotics, 3D object/face 

recognition [1]-[7], and virtual reality. Stereo vision struggles with occlusion, illumination, noise, calibration 

errors, and computing complexity. Many methods and approaches have been developed to increase stereo 

vision system accuracy and efficiency. Scharstein et al. [8] suggested a common outline which was executed 

by utilizing a sequenced multi-stage system shown in Figure 1. Rectified image pairs are fed to the 

framework. Then, calculate the cost function to quantify patch similarity in the input image pair. The second 

step aggregates costs and filters noise [9]-[11]. Then, winner-take-all (WTA) strategy is employed to select 

the disparity with the lowest cost while discarding the others. Finally, disparity refinement is achieved by 

applying optical low-pass filter among other refinement methods. 

 

 

 
 

Figure 1. The stages of the stereo vision framework [8] 

 

 

Local approaches utilise disparity based on the relationship between pixel intensities (grayscale, 

RGB colours, texture patterns) inside a certain local support window based on the connections between 

pixels in close proximity to one another in the corresponding image [12]. These methods are sometimes 

referred to as window-based or region-based approaches. Locally established techniques include sum of 

absolute differences (SAD) [13], sum of squared differences (SSD) [14], and normalised cross-correlation 

(NCC) [15]. Local stereo matching techniques estimate the disparity by comparing the surroundings of a 

pixel p in the left image to the surroundings of a pixel q in the right image, where q has been translated across 

a potential disparity p. Local method evaluation leads in a quick runtime, but unfortunately, the quality is 

compromised, particularly in the region of depth discontinuities. 

Global optimization methods on the other hand address the disparity problem as a reduction of a 

predetermined global energy function [16]. It typically requires additional resources and is less susceptible to 

local variance. The evaluation is computed using global data and a smoothing threshold for neighbouring 

pixels. Markov random field (MRF) has generated a variety of answers to the problem of global energy 

reductions. These approaches can either be classified as graph cut (GC) or belief propagation (BP) methods. 

GC generates the lowest energy solution by integrating the smallest cutoff and maximum flow of the 

retrieved MRF graph. In contrast, the BP technique reduces the energy function by continually transmitting 

signals from the present node to neighbouring nodes within the MRF network [17]-[20]. 

Since [21] introduction of convolutional neural network (CNN) trained on pairs of tiny image 

patches with known real disparity, interest in a deep learning-based stereo vision system has increased 

substantially. Some post-processing tweaks are still required for these approaches. Several deep-learning 

based stereo matching algorithms, like DispNets [22], GCNet [23], PSMNet [24], Gwc [25], EdgeStereo 

[26], LEAStereo [27], HITNet [28], and EAI-Stereo [29] minimise post-processing stages and improves 

stereo matching performance. 

 

 

2. METHOD 

Figure 2 is a block diagram of the proposed method for the experiment, with the 4 boxes 

representing the adapted 4 stages from Figure 1. Edge-aware smoothing filter (EASF) [30] is performed to 

remove noise created from filling in process. 

− Matching cost computation: the stereo matching method starts by extracting the height, width, and 

number of disparities from the calibration file. The left and right images are then loaded using the 

OpenCV library, and pre-processing techniques like scaling, grayscale conversion, and normalisation are 

applied. The image is then processed by a trained CNN model implemented with tensorflow to obtain the 

cost volume, a 3D matrix containing the matching cost for each pixel and disparity level. 

As shown in Figure 3, a series of square-shaped kernels make up the convolution layer, and despite 

their small size, these filters can fit the whole depth of the volume. Each kernel reads the input region, adds 

the dot product, and stores the result in the activation layer. The input volume for the succeeding network 

layer is then constructed by integrating the feature map layer. The computing cost of adding more rectified 
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linear unit (ReLU) layers to a CNN grows linearly [31], [32]. Pooling layer gradually reduces the input 

dimension, reducing system parameters and processing, and aiding in the prevention of fitting problems. 
 

 

 
 

Figure 2. The proposed method 
 

 

 
 

Figure 3. The structure of MC-CNN [13] 
 

 

The cost of matching may therefore be simply computed based on the CNN output. Based on [25], 

CCNN reflects the cost value as (2): 
 

CCNN(p, d) = −s(< PL(p), PR(p − d) >) (2) 
 

where P is the patch for L (left) and R (right), p is the (x, y) position, and d is the disparity. The output of 

layers L1, L2, and L3 need to be computed only once per location p and need not be recomputed for every 

disparity d. Using a patch-based technique, features for both the left and right images are computed, utilising 

the left and right images as inputs along with the patch height and patch width. From there, the cost volume is 

computed by taking the left and right feature matrices along with the expected maximum disparity (ndisp) 

and calculating the matching cost for each potential disparity level by comparing the left and right features 

and iterating over all possible disparities, which range from 0 to ndisp-1. For each disparity, the function 

calculates the dot product of the features at each pixel in the left image and the corresponding pixel in the 

right image shifted by the disparity. 

− Cost aggregation: in cost aggregation stage, cost filtering is first done using BF which is useful for 

removing noise while preserving edges [33]. The BF takes in three arguments: the input image, the size of 

the filter kernel (diameter of each pixel neighborhood), and two parameters controlling the filter's range 

of influence: sigma color and sigma space. Sigma color controls how much the pixel values can differ 

while still being considered neighbors, and sigma space controls how far away the pixels can be while 

still being considered neighbors. The function loops over each disparity level d and applies the bilateral 

filter to the 2D slice of the cost volume at that disparity level. The filtered slice is then stored in the 

corresponding slice of a new 3D array with the same dimensions as the raw cost volume. 

Cross-based cost aggregation (CBCA) shown in Figure 4 [34] is applied to the filtered cost volume 

to further refine the disparity map by computing the cross region of the image. The cross region is 

constructed into vertical and horizontal regions for efficiency, and the function returns a numpy array 

representing the cross union region and a numpy array representing the number of elements in each position 

of the cross union region. CBCA aggregates the matching costs of neighboring pixels and disparities to 

reduce errors caused by occlusions and noise. First the disparity map is initialized with the minimum cost 

disparity for each pixel. Then, for each pixel, the algorithm selects the disparity with the minimum cost and 
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applies a weighted median filter to the neighboring pixels and disparities that have a similar cost. This 

process is repeated for several iterations to refine the disparity map further. 
 
 

 
 

Figure 4. Cross-based cost aggregation 

 

 

In (3) shows the BF function used in this paper. 
 

𝐵𝐹[𝐼]𝑝 =
1

𝑊𝑝
∑ 𝐺𝜎𝑠(|𝑝 − 𝑞|)𝐺𝜎𝑟(𝐶𝑁𝑁𝑝 − 𝐶𝑁𝑁𝑞)𝐼𝑞𝑞∈𝑠  (3) 

 

where Gσs is ‘space’ parameter which determines the positive effect of faint pixels, Gσr is  ‘range’ parameter 

which determines the impact of pixel q having a concentration amount varying from Ip.  

− Disparity computation: disparity computation determines the specific combination of disparities for which 

normalisation of disparity values occurs. In this stage, the most common local technique, WTA 

optimization, is implemented which is shown in (4): 
 

𝑑𝑝 = argmin𝑑∈𝐷 𝐶(𝐵𝐹[𝐼]𝑝, 𝑑) (4) 
 

where dp is the disparity with the least expensive quantity selected, C(BF[I]p,d) is the cumulative cost 

applied with CBCA and BF in the second stage, D is the set of all acceptable individual disparity. The index 

of the minimum matching cost is obtained using the np.argmin() function and assigned as the label for the 

pixel in the respective label map. WTA labels each pixel with the disparity with the lowest matching cost 

without considering neighbouring pixels, which can produce noisy results in textureless or occluded regions. 

− Disparity refinement: in the last stage of the framework, standard approaches for post-processing and 

disparity refinement were implemented. Peng et al. [35] integrated the mean shift and super-pixel with 

segmentation (SEG) approach which clusters the disparity map according to colour. 
− Weighted median filter (WMF) is implemented where it essentially combines box aggregation with a 

weighted median, effectively eliminates noise from outliers while conserving the edges [36]. Median 

filter (MF) was utilised in [35]. MF is accurate at the edges but inaccurate in low-textured regions. BF 

was used to enhance the edge quality, despite the fact that its computation took longer than that of other 

filters [37]. Disparity maps may have missing pixels due to occlusions, depth discontinuities, or noise. 

Interpolation fills these gaps using left-right consistency check and median filtering. Mismatches are 

interpolated with median value of nearest matching neighbors, while occlusions use disparity value of 

nearest matching neighbor on right (or left) or raw disparity value if no match found. The quality of the 

disparity map is enhanced further through the application of EASF which is a modification of the 

traditional edge-preserving filter [38], [39] that iteratively applies the filter, smoothing the image while 

preserving its edges [40]. The idea is that the amount of smoothing between two pixels should depend on 

how far apart they are. The further apart they are, the less smoothing should occur between them. This 

can be expressed mathematically using a distance metric in a 5D space. If a transformation is applied that 

preserves these distances, then the edge-preserving property of the filter will also be maintained even if 

the image is represented in a lower-dimensional space. The recursive nature of this filter allows it to 

better preserve the edges in an image while still removing noise. This is because the filter is able to refine 

its output over multiple iterations, gradually removing noise while preserving the important features of 

the image. 
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3. RESULTS AND DISCUSSION 

Experiment is run on Windows 10 computer with Intel Xeon 2.80 GHz CPU, Nvidia Quadro P1000, 

and 8 GB DDR4 RAM. Project is written in python, utilizing libraries such as tensorflow, pytorch, and keras, 

making it easy to construct and train deep learning models. Middlebury v3 benchmarking system is used to 

evaluate the error percentage and determine the accuracy. The deep learning component maintains the same 

default parameters as in the experiment done by [21]. Table 1 compared shelvs, jadepl and recyc images 

before and after the introduction of EASF. It was demonstrated that EASF generated disparity maps with a 

lower mean error, and the images displayed an increase in edge preservation while removing salt and pepper 

noise, particularly in textureless regions. The chance of a mismatch is considerable in these places since their 

pixel values are identical in many different places. 

 

 

Table 1. Comparison of images before and after the introduction of EASF 
Image Ground truth No EASF With EASF 

Shelvs 

   
Error (%) 0.0 15.0 13.5 

Jadepl 

   
Error (%) 0.0 22.8 21.8 

Recyc 

   
Error (%) 0.0 2.92 2.82 

 

 

The quantitative evaluation findings for non-occluded error (NON-OCC) are displayed in Table 2 

and for all error (ALL) in Table 3. Images of adirondack chair, motorcycle, are captured and reconstructed 

according to the disparity levels. The proposed method obtains the lowest error for NON-OCC error in Table 2 

for the recyc and teddy images, with 2.82% and 2.92% errors, respectively. This is followed by motor at 

3.94%, and motore at 3.98%. Some complex images, like shelvs and jadepl, had the lowest accuracy at 

13.5% and 21.8%, respectively, due to the system's inability to recognise repeated patterns, such as the 

textureless regions in the shelvs image or the small repetitive leaf clusters in the jadepl image. The method 

outlined in this article pinpointed the exact location of the disparity, despite the fact that in certain cases it 

may reconstruct a disparity map with noticeable discontinuities, such as the missing mug handle in adiron or 

the fractured rods in ArtL. Nevertheless, the disparity level is applied precisely when the distance contours 

are constant and correct matching is possible. The suggested technique reduces salt-and-pepper noise while 

maintaining the margin separating lines. The performance of the proposed work is illustrated in Tables 2 and 

3 examining it comparatively with a number of established and published methods. Table 4 compares the 

Middlebury ground truth to the output disparity map of the proposed system, along with the signed error for 

qualitative observation. The Middlebury investigation reveals that the recommended stereo corresponding 

approach may produce proper findings with an average non-occluded error of 6.79%. It demonstrates that the 

suggested method is comparable with recently published techniques and can be implemented to form an 

entire algorithm. 

 

 

Table 2. Comparative results for NON-OCC error using Middlebury v3 evaluation platform 
Method AvgErr (%) Adiron ArtL Jadepl Motor Piano Pipes Playrm Playt Recyc Shelvs Teddy Vintge 

MANet [41] 2.77 1.29 1.44 14.10 1.61 1.87 2.68 2.88 1.42 1.12 2.87 0.94 3.94 

SGMEPi [42] 4.57 1.72 3.36 9.72 1.79 3.20 3.66 3.48 2.78 2.09 8.04 1.75 26.40 

Proposed 6.79 4.36 7.08 21.80 3.94 4.84 7.52 4.85 6.22 2.82 13.50 2.92 8.46 
PSMNet_ROB [24] 9.60 7.32 9.69 44.50 5.55 5.01 9.86 7.33 4.40 3.73 11.10 3.44 8.07 

Z2ZNCC [43] 10.10 3.43 8.19 30.80 4.36 4.55 8.42 7.78 10.30 3.85 12.90 3.84 47.80 
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Table 3. Comparative results for ALL error using Middlebury v3 evaluation platform 
Method AvgErr (%) Adiron ArtL Jadepl Motor Piano Pipes Playrm Playt Recyc Shelvs Teddy Vintge 

MANet [41] 3.30 1.48 1.75 14.90 2.11 2.13 4.95 3.83 1.67 1.28 2.99 1.23 4.69 
Proposed 12.90 8.68 13.10 52.70 8.80 6.32 16.00 8.79 11.10 5.79 14.70 4.83 11.70 

PSMNet_ROB [24] 13.30 8.83 13.90 68.40 8.26 5.89 14.40 9.38 5.54 4.98 11.60 3.87 9.66 

SGMEPi [42] 13.40 5.65 18.20 30.80 9.18 8.49 15.80 21.00 10.70 5.80 11.00 10.70 31.90 
Z2ZNCC [43] 18.00 7.65 22.30 49.30 11.70 7.96 20.10 22.80 17.70 8.04 15.40 11.60 49.80 

 

 

Table 4. Ground truth of Middlebury v3 dataset compared to proposed algorithm output and error 
Image Adiron ArtL Jadepl Motor MotorE 

Ground truth 

     
Proposed 

     
Signed error 

     
Image Piano PianoL Pipes Playrm Playt 

Ground truth 

     
Proposed 

     
Signed error 

     
Image PlaytP Recyc Shelvs Teddy Vintge 

Ground truth 

     
Proposed 

     
Signed error 

     

 

 

4. CONCLUSION 

This article presents a technique for stereo matching that combines a convolutional neural network 

(CNN) with an edge-aware smoothing filter (EASF). CNN learn features and cost functions from dataset to 

produce initial disparity maps. A smoothing filter preserves depth discontinuities and smooths homogeneous 

zones on these maps. Stereo matching in ill-posed regions is improved by integrating the benefits of both 

approaches. Experimental results demonstrate the effectiveness of the proposed framework. When evaluated 

using Middlebury benchmarking, the system delivers accurate results with an average NON-OCC error of 

6.79%. EASF is a class of nonlinear filter that can be used to smooth an image while reducing edge blurring 

effects such as halos and phantom edges. These filters preserve edge information while blurring an image, 

making them useful for improving depth estimation accuracy in stereo vision research by addressing 

challenges such as lighting, image complexity and pixel noise. In conclusion, this article presents a technique 

for stereo matching that combines CNN with EASF to improve matching accuracy in certain challenging 

regions. The proposed technique shows promising results and can be explored further to advance the field of 

stereo vision research. A more extensive discussion of the system's limitations and the nature of these 
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challenges is crucial. Understanding under what conditions the method may fail or perform suboptimally is 

essential for potential users and researchers. 
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