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 Successful prediction of ionospheric total electron content (TEC) data will 

help in correction of positioning errors in global navigation satellite systems 

(GNSS) caused by the ionosphere. This research paper proposes a prediction 

model for ionospheric TEC using a nonlinear autoregressive with exogenous 

inputs (NARX) neural network that utilizes past TEC data alongwith solar 

and geomagnetic indices namely F10.7, disturbed storm (Dst), Kp, Ap, and 

time of the day. We assess the prediction capability of our model at different 

latitudes during different solar activity years. We compare our results with 

another NARX model which uses previous TEC data along with time of the 

day, day of the year and season as exogenous parameters. The results show 

that for the solar minimum year the TEC prediction accuracy improves by 

35.71% and for the solar maximum year it improves by 31.20%. The results 

using root mean square error (RMSE), mean absolute error (MAE), 

correlation coefficient, and symmetric mean absolute percentage error 

(sMAPE) clearly indicate that solar and geomagnetic indices along with time 

of the day help in enhancing prediction accuracy of TEC across different 

latitudinal regions during both solar minimum and maximum years. 
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1. INTRODUCTION  

The signals from the global positioning system (GPS) satellites orbiting round the earth propagate 

through the ionosphere. Ionosphere is the ionized region of the earth’s upper atmosphere ranging from about 

60-1,000 km which contains significant amount of free electrons. The ionosphere is known for its dispersive 

nature and thus delays the electromagnetic signals and affects precise measurements in satellite navigation 

and communication. This influence is directly proportional to the density of electrons between the satellite 

transmitter and the receiver which quantifies the total electron content (TEC). Ionospheric TEC exhibits 

complex spatial and temporal fluctuations along with certain solar and geomagnetic related ionospheric 

disturbances [1]. The daily diurnal variations, seasonal variations, 27-day variations, 11-year solar cycle 

variations, geographic latitude, and some events like geomagnetic storms which generate sudden disturbances 

in the ionosphere are some obvious variations of ionospheric TEC [2]. Prediction of ionospheric TEC can 

thus help in improving the performance of GPS navigational systems. 

There are a number of empirical models like international reference ionosphere (IRI) [3],  

NeQuick [4], Klobuchar [5] which are available for reconstructing the state of the ionosphere. These models 

effectively predict the state of the ionosphere during quiet times but are not very accurate during periods of 

https://creativecommons.org/licenses/by-sa/4.0/
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high ionospheric activity. Several time-series models developed for prediction of TEC include fourier  

series [6], discrete cosine transform [7], and autoregressive distributed lag [8]. However, these models are not 

effective in predicting the non-stationary fluctuations present in the ionosphere. During last few decades, 

neural network techniques have been applied to predict the ionospheric TEC as well as model the various 

parameters in the ionospheric study [9]–[11]. These models consider the solar and geomagnetic factors in 

improving the prediction accuracy. Neural network models are found to outperform statistical methods. 

However, these models do not consider the temporal feature of TEC [12]. The TEC data exhibits  

non-stationarity which implies that the behavior of the ionosphere is extremely complex and nonlinear [13]. 

nonlinear autoregressive with exogenous inputs (NARX) neural network has been widely used for modeling 

non-linear dynamic systems [14]. Hence, in this paper we are proposing a NARX neural network model fed 

with time of the day, solar and geomagnetic indices as exogenous parameters to predict the TEC. Literature 

suggests number of applications modeled by NARX neural network. NARX model was tested on chaotic 

laser time series and traffic time series and it outperformed standard neural network architectures like time 

delay neural network (TDNN) and Elman architectures [14]. NARX gave better results over autoregressive 

integrated moving average (ARIMA) for wind speed prediction [15]. NARX was successfully tested for 

prediction of rainfall and showed improved results compared to linear algorithms like support vector 

machines [16]. NARX was used for traffic prediction and had superior prediction accuracy to RNN  

models [17]. The ability to predict symmetric horizontal (SYM-H) storm time index using NARX showed 

better accuracy compared to back propagation and recurrent Elman networks [18]. NARX has also been used 

for TEC prediction using time, day of the year and season as exogenous inputs [1].  

In this study, we discuss prediction of TEC using NARX neural network model using exogenous 

parameters such as solar index F10.7 and geomagnetic indices such as disturbed storm (Dst), Kp, and Ap 

along with local time. We have studied TEC prediction at different latitudinal regions namely equatorial  

(00-100 N), low-latitude (100-300 N), mid-latitude (300-600 N), and high-latitude (600-800 N), during both the 

minimum solar activity year (2008) and maximum solar activity year (2014). We compare the results of our 

NARX model (henceforth called NARX1) with the NARX model developed for TEC prediction by  

Guoyan et al. [1] (henceforth called NARX2).  

 

  

2. METHOD  

2.1.  Data and Input parameters 

The ionospheric TEC data is downloaded from IONOLAB (www.ionolab.org) [19]. To explore 

latitudinal influence on the prediction of ionospheric TEC, we selected four locations in the northern region, 

each situated at different latitudes. The selected stations are qaq1 (Greenland and Denmark), baie  

(Baie-Comeau and Canada), mas1 (Maspalomas and Spain), and bogt (Bogota and Columbia). The latitude 

and longitude co-ordinates of these stations is shown in Table 1.  

 

 

Table 1. Selected stations in the northern hemisphere 
Region Stations Latitude and longitude 

High latitude region (600 to 800) 

Mid latitude region (300 to 600) 
Low latitude region (100 to 300) 

Equatorial region (00 to 100) 

qaq1 (Greenland and Denmark)  

baie (Comeau and Canada) 
mas1 (Maspalomas and Spain) 

bogt (Columbia) 

60.7° N and 46.04 ° W 

49.18° N and 68.26° W 
27.76° N and 15.63° W 

4.64° N and 74.08 ° W 

 

 

The exogenous parameters for the NARX model were selected based on the factors influencing 

TEC. We calculated the Pearson correlation coefficient for various exogenous parameters and selected the 

ones that correlate well with TEC data. Table 2 shows the values of Pearson correlation coefficient for the 

various exogenous parameters with TEC data. From the table it is clear that Ap and Kp show high positive 

correlation, Dst shows high negative correlation and F10.7 shows moderate correlation with TEC. Time of 

the day was selected since TEC exhibits diurnal characteristics. Thus, we selected solar index F10.7 and 

geomagnetic indices Dst, Kp and Ap along with time of the day. 

 

 

Table 2. Pearson correlation coefficient 
Exogenous parameters Pearson correlation coefficient 

Ap 
Kp 

Dst 

F10.7 

0.67 
0.65 

-0.63 

0.37 

http://www.ionolab.org/
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The exogenous paramters were obtained from the space physics data facility at NASA's Goddard 

Space Flight Center, accessible through their website at https://omniweb.gsfc.nasa.gov/form/dx1.html [20]. 

The TEC data along with the solar and geomagnetic indices were sampled every one hour. We used the data 

from 1st July, 2008 to 26th July, 2008 (total samples=26 days*24= 624) for training the model and then tested 

the prediction capability of the model for unseen data from 27th July, 2008 to 31st July, 2008 (total samples= 

5 days*24=120). The same period was selected for training and testing the model for solar maximum year 

2014. The various exogenous parameters used are as follows: 

- Local time: TEC exhibits diurnal variation because the electron density progressively rises to a maximum 

value at noon before falling to a minimum value at midnight. We compute sin (
2𝜋

24
) ℎ and cos (

2𝜋

24
) ℎ 

where local time, ℎ ranges from 0-23. The sin and cos functions help in normalizing the time input in the 

range (-1,1) [1]. 

- Solar activity: solar activity significantly influences TEC values, with lower TEC during solar minimum 

years and higher TEC during solar maximum years [21]. F10.7, which correlates directly with the number 

of sunspots and solar radiation in the ultraviolet and visible spectrum, serves as a valuable predictor of 

solar activity [22].  

- Geomagnetic activity (Dst, Kp, and Ap index): the Dst, Kp, and Ap represent geomagnetic activity. 

- Dst index: the Dst is a metric utilized to gauge the intensity of geomagnetic storms. It quantifies the 

deviation of the Earth's horizontal magnetic field component from its typical variation during calm  

days [23]. Under tranquil conditions, the Dst ranges from 0 to -50 nT, but during the occurrence of a 

powerful storm, it can surpass -200 nT.  

- Kp index: the planetary index Kp is the average standardized K-index obtained from 13 geomagnetic 

observatories between 440 and 600 in either hemisphere [21]. This parameter serves as a measure of 

geomagnetic activity. The higher the Kp index, more severe the geomagnetic activity, and greater the 

impact on the TEC. 

- Ap index: the Ap index, also known as the planetary index, is a numerical scale that ranges from 0 to 400, 

with higher values signifying more intense geomagnetic activity. This index serves as a valuable tool for 

monitoring the effects of space weather on the earth's magnetic field and assessing potential impacts on 

critical systems such as power grids, satellites, and radio communications [21]. 

 

2.2.  Architecture of NARX1 model 

A NARX neural network is a dynamic model that incorporates recurrent feedback connections from 

the output layer to the input layer with time-delayed units. This unique architecture makes NARX networks 

an efficient tool for modeling and validation purposes, as they demonstrate better generalization and faster 

convergence compared to other conventional neural network models [24]. This can model nonlinear time-

series systems and can be mathematically represented by: 
  

𝑦̂(𝑡 + 1) = 𝑓(𝑦(𝑡), 𝑦(𝑡 − 1), . . . , 𝑦(𝑡 − 𝑛𝑦), 𝑥(𝑡), 𝑥(𝑡 − 1), . . . , 𝑥(𝑡 − 𝑛𝑥)) + 𝑒(𝑡) 𝐸𝑣 − 𝐸 =
ℎ

2.𝑚
 (𝑘𝑥

2 + 𝑘𝑦
2) (1) 

 

where 𝑦 ̂(𝑡 + 1) is the predicted TEC value at time (𝑡 + 1). This depends on historical TEC values 

𝑦(𝑡), 𝑦(𝑡 − 1), . . . , 𝑦(𝑡 − 𝑛𝑦) and historical values of the independent exogenous inputs  

𝑥(𝑡), 𝑥(𝑡 − 1), . . . , 𝑥(𝑡 − 𝑛𝑥) which in our case is time of the day, F10.7, Dst, Kp and Ap. nx and ny are the 

time delays for 𝑥(𝑡) and 𝑦(𝑡) respectively as shown Figure 1, 𝑒(𝑡) is residual value at a specific point in 

time, t [14]. 
 
 

 
  

Figure 1. NARX model with tapped delay line at the input and output, 𝑧−1 represents unit time delay 

https://omniweb.gsfc.nasa.gov/form/dx1.html
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The NARX neural network, like a multilayer perceptron (MLP), comprises an input layer, a hidden 

layer, and an output layer in its architecture. However, the key difference is that the NARX network includes 

recurrent feedback connections from the output layer to the input layer with time-delayed units, enabling it to 

model dynamic systems and time-dependent data more effectively. The past exogenous inputs along with the 

past predicted TEC values are fed at the input of the model. The feedback connections allow the network to 

take into account the previous behavior of the system and to capture any patterns that may exist between the 

input and output variables over time. Figure 2 depicts the framework of NARX neural network. The input 

layer takes in the exogenous inputs along with past predicted TEC values. The output of the intermediate 

hidden layer 𝐻𝑖(𝑡) is given by: 

 

Hi(t)=F1 [∑ wip x(t-p)nx
p=0 + ∑ wiq y(t-q)

ny

q=0 + ai] (2) 

 

where, each hidden layer node is activated by the function F1. The input neuron x(t-p) is connected to the ith 

hidden layer node with a connection weight of wip and the output feedback neuron y(t-q) is also connected to 

the ith hidden layer node with a connection weight of 𝑤𝑖𝑞 . Additionally, each hidden layer node is associated 

with a bias term ai. These connection weights and bias terms are learned during the training process and they 

determine the strength and direction of the connections between the neurons in the network [25]. The 

predicted TEC value at the output ŷ (t+1) is given by: 
 

ŷ (t+1)=F2 [∑ wi Hi(t)N
i=1 + bi] (3) 

 

where wi is the connection weight between the ith hidden layer node and output layer, bi is the bias of the 

network, 𝑁 is the number of hidden layer nodes. Therefore, the predicted TEC value at time t+1 is a function 

of the weighted sum of the inputs passed through a nonlinear activation function and is determined by the 

weights and biases of the neural network. NARX neural network can be used in open-loop mode and closed-

loop mode. The open-loop architecture and the closed-loop architecture of NARX neural network model is 

shown in Figures 3(a) and (b) respectively. 
 

 

 
 

Figure 2. NARX neural network structure 
 
 

  
(a) (b) 

  

Figure 3. NARX; (a) open-loop architecture and (b) closed-loop architecture 
 
 

In the open-loop architecture, as depicted in Figure 3(a), the NARX neural network predicts the 

output TEC ŷ (t+1) using historical values of both the exogenous data and the actual past TEC values. This 

configuration enables the model to utilize accurate information from the actual TEC time series, contributing 

to more precise inputs [26]. In the closed-loop configuration, as depicted in Figure 3(b), the NARX model 

feeds back the predicted TEC output to the input of the feedforward neural network. Consequently, the 
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prediction of ŷ (t+1) is based on the previous values of the exogenous data and the previously predicted TEC 

values. This closed-loop architecture allows the model to exploit its own predictions to make further 

estimations, potentially capturing dynamic dependencies and time-dependent patterns effectively. The 

mathematical expression for the NARX open-loop architecture is given by: 
 

y ̂(t+1)=f (y(t),y(t-1),…,y(t-ny), x(t), x(t-1),…,x(t-nx)) (4) 

 

and for the closed-loop architecture; 
 

y ̂(t+1)=f (ŷ(t),ŷ(t-1),…,ŷ(t-ny),x(t), x(t-1),…,x(t-nx)) (5) 

 

where f (.) is the mapping function of the neural network, y ̂(t+1) is the predicted TEC output of the NARX 

using either the past true TEC values y(t),y(t-1),…,y(t-ny) or the past predicted TEC values 

ŷ(t), ŷ(t-1),…,ŷ(t-ny) and the past values of the exogenous time series x(t),x(t-1)…,x(t-nx) and 𝑛𝑥 and 𝑛𝑦 are 

the input and output delays.  

 

2.3.  Implementation of NARX1 model in MATLAB 

We have simulated the NARX model using the neural net toolbox in MATLAB. The simulated 

model is shown in Figures 4 and 5. The number of hidden layer neurons was set to 20. The delays nx and ny 

was set to two. These hyperparameters were finalized after multiple simulations. The model was run with 

different number of network feedback delays and then finalized to two where the prediction model performed 

well.The neurons in the hidden layer determine the accuracy of the model. Less neurons in the hidden layer 

fail to establish relationship of the data but increasing the number of neurons leads to more computational 

time [27]. Initially we trained the model in open loop configuration as shown Figure 4. The advantage of 

doing this is that the NARX model uses the previous values of the actual TEC time series and hence it 

receives more precise input during the training phase. Then we converted the model into closed loop for 

making predictions into the future as shown Figure 5. We perform recursive multi-step forecasting in which 

we predict one-step TEC value and use this predicted value in the next step to make next prediction. This 

process is continued till we forecast TEC values for the next 5 days. 
 

  

 
 

Figure 4. NARX open loop architecture simulated in MATLAB during the training phase 
 
 

 
  

Figure 5. NARX closed loop architecture simulated in MATLAB for step ahead predictions 
 

 

Before training the network, the data was divided into three sets. 70% of the data was used for the 

training, 14% for validation, and 16% for testing. The network weights and biases were updated and the 
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gradient was calculated using the training data. The validation samples aid in fine-tuning the hyperparameters 

and the test samples help in computing the generalization performance of the model. The training algorithm 

used was Levenberg Marquardt. This algorithm updates weights and biases using less memory. Training 

stops when error starts increasing indicating that there is no further improvement in generalization. The 

output provides the predicted TEC values. The NARX model was developed using a hyperbolic tangent 

function in the hidden layer and a linear transfer function in the output layer. We calculate the root mean 

square error (RMSE), mean absolute error (MAE), correlation coefficient (r), and symmetric mean absolute 

percentage error (sMAPE) using the following formulas to evaluate the performance of the model.  
 

RMSE= √
1

N
∑ [yi - y

î
]

2N
i=1  (6) 

 

 MAE=
∑ |N

i=1 yi− yî|

N
 (7) 

 

𝑟 =
∑ (yi−y̅i

N
i=1 )(ŷi−y̅̂i)

√∑ (yi−y̅i)2 ∑ (ŷi−y̅̂i)2N
i=1

N
i=1

 (8) 

 

sMAPE=
100

N
 ∑

| yî-yi |

(|yi|+| yî |)/2 

N
i=1  (9) 

 

where y
î
 is the predicted TEC by the model and y

i
 is the actual TEC value, 𝑦̅𝑖 is the mean of the actual TEC 

values, y̅̂i is the mean of the predicted TEC values and 𝑁 is the frequency of observations. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Stability of the model 

After training the model we check the stability of the model by plotting the error autocorrelation 

function, error histogram, and regression coefficient. Figure 6 shows the error autocorrelation plot for qaq1 

station during the solar maximum year 2014. The error autocorrelation function is a valuable tool for 

validating the performance of a model. It helps describe the relationship between prediction errors over time, 

revealing how errors are correlated at different time lags. 
 

 

 

 
 

Figure 6. Error autocorrelation plot for qaq1 station during solar active year 2014 
 

 

An ideal prediction model is indicated by only one non-zero value in the autocorrelation function, 

which occurs at zero lag, signifying a perfect match between the model's predictions and the actual data [28]. 

The predicted errors are below 95% confidence limit (red dotted line) and thus are uncorrelated with each 

other. This also shows that the network has been trained satisfactorily and can be used for prediction. The 

error histogram plot in MATLAB is a graphical representation of the distribution of errors in a dataset. The 

plot shows the frequency of occurrence of errors, binned into intervals, with the x-axis representing the 

difference between predicted and actual TEC values and the y-axis representing the instances of those errors. 

Figure 7 shows a well-behaved error histogram plot which has a roughly symmetric distribution around the 

mean error value, with very few or no outliers. The plot clearly indicates that maximum samples from the 

training, validation and test dataset have a very small error equal to 0.01736.  
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The regression plot denotes an equation between the predicted TEC (output) and true (target) value 

of TEC. Figure 8 shows the regression line plot for baie station during training, validation and test phases 

during the solar maximum year 2014. Table 3 shows the slope and intercept values for the regression plot 

shown in Figure 8. The regression equation relating the predicted and the true TEC is shown on the y-axis. 

The coefficient of the equation shows proportionality between predicted TEC and the true TEC and is very 

close to 1. The constant term represents an error which should be added to the scaled target to make it as 

close as possible to the predicted output and is very close to 0 (see Figure 8). Overall, high values of R were 

achieved, specifically 99.75% for the training set, 99.04% for the validation set, 99.16% for the test data set 

and overall 99.54%. R values greater that 95% suggest excellent fit between true and predicted values [27]. 

Figures 6-8 clearly indicate that NARX network has been trained efficiently and can be effectively used for 

prediction of TEC data.  
 

 

 
 

Figure 7. Error histogram plot for qaq1 station during solar active year 2014 
 
 

 
 

Figure 8. Regression line plot for baie station during solar active year 2014 
 
 

Table 3. Slope and intercept values for the regression plot in Figure 8 
Training set Validation set Test set 

Slope Intercept Slope Intercept Slope Intercept 
0.99 0.16 0.96 0.58 1.00 0.14 

 

 

The validity of our model's results could not be meaningfully compared to existing literature due to 

variations in the methodologies used in each study. These differences include the use of different sets of stations, 

varying amounts of training data, and use of different solar minimum and active years. To accurately compare our 

results and validate our model, we simulated the NARX2 model using the identical architecture and parameters as 

described by Guoyan et al. [1] using time of the day, day of the year and season as exogenous inputs.  

 

3.2.  For the solar quiet year 2008 

We check the prediction capability of our model by testing it with unseen data from 26 th July to 31st 

July, 2008. The plots in Figure 9 show the observed and the predicted TEC at Figure 9(a) qaq1, Figure 9(b) 

baie, Figure 9(c) mas1, and Figure 9(d) bogt stations respectively during the solar minimum year 2008. The 
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graph illustrates how well the predictions align with the actual TEC values for each station during this 

specific time frame.  

 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 9. Observed and predicted TEC using NARX model for the period from 26th July 2008 to 31st July 

2008 for; (a) qaq1, (b) baie, (c) mas1, and (d) bogt stations during the solar minimum year 2008 

 

 

3.3.  Solar maximum year 2014 

We also check the prediction capability of our model by testing it with unseen data from 26 th July to 

31st July, 2014 for the solar maximum year 2014 (see Figure 10). The plots in Figure 10 show the observed 

and the predicted TEC at Figure 10(a) qaq1, Figure 10(b) baie, Figure 10(c) mas1, and Figure 10(d) bogt 

stations respectively during the solar maximum year 2014. Compared to solar minimum year 2008, there is a 

more deviation between the original and predicted TEC. This is specifically due to increased levels of 

ionization and increase solar activity and is consistent with the literature. 

 

 

  
(a) (b) 

 

  
(c) (d) 

  

Figure 10. Observed and predicted TEC using NARX model for the period from 26th July 2014 to 31st July 

2014 for; (a) qaq1, (b) baie, (c) mas1, and (d) bogt stations during the solar maximum year 2014 
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3.4.  Comparison with NARX2 model 

To validate our model, we compared our results with NARX2. NARX1 model was implemented 

using time, solar index (F10.7), and geomagnetic indices (Dst, Kp, and Ap). The literature used NARX2 

model for TEC prediction using time of the day, day of the year and season as exogenous inputs. This model 

was implemented for China region for low and mid latitude regions for the solar maximum year 2011 and 

quiet year 2017. To ensure a fair comparison, we implemented NARX2 for our regions and also for the same 

solar minimum (2008) and active years (2014). Using the same model architecture (NARX), we wanted to 

see the improvement in prediction accuracy using solar and geomagnetic indices as exogenous parameters at 

all latitudinal regions and for both the solar minimum and active years. The RMSE, MAE, correlation 

coefficient and sMAPE values obtained for each of the station for both the solar minimum and active years 

using both NARX1 and NARX2 model are plotted in Figures 11(a)-(d) respectively. 

  

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 11. Comparison of; (a) RMSE, (b) MAE, (c) correlation coefficient, and (d) sMAPE values for 

NARX1 and NARX2 model for qaq1, baie, mas1 and bogt stations during the year 2008 and 2014 

 

 

Both the RMSE and MAE metrics show that our NARX1 model can predict TEC with better 

accuracy during both the solar minimum and active years. The prediction accuracy for the solar minimum 

year 2008 shows an improvement of 35.71% (RMSE) and 42.14% (MAE) over NARX2. For the solar 

maximum year 2014, the prediction accuracy shows an improvement of 31.20% (RMSE) and 27.7% (MAE) 

over NARX2. A high correlation coefficient between true and predicted values using NARX1 model 

indicates that the predicted values are closely aligned with the true values. Further, low values of sMAPE for 

NARX1 model indicate a higher level of accuracy and better performance of the forecasting model compared 

with NARX2. A lower sMAPE suggests that the forecasted values are closer to the actual values, with 

smaller percentage errors. As anticipated, the RMSE increases as latitude decreases, implying better 

prediction performance in higher and mid-latitude regions compared to lower and equatorial regions. The 

challenging aspect of modeling and predicting ionospheric TEC in low-latitude regions is attributed to the 

presence of the equatorial ionization anomaly [29]. This anomaly introduces complex and variable 

ionospheric behavior, making accurate modeling and prediction more difficult in these specific areas. The 

RMSE and MAE values for solar maximum year are higher compared to solar minimum year. This is to 

increased solar radiation, ionization, and disturbances in the ionosphere during solar maximum year and is 

consistent with the literature. The RMSE, MAE, correlation coefficient and sMAPE metrics show that 
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NARX1 model can predict TEC with better accuracy even for solar maximum year. According to our study 

findings, the NARX1 model consistently demonstrated better predictive performance for TEC values 

compared to the NARX2 model.  

 

 

4. CONCLUSION 

This study examined the use of NARX neural network for prediction of TEC data during the solar 

minimum and active years using time of the day, solar, and geomagnetic indices as exogenous parameters. The 

NARX model's ability to capture nonlinear dynamics, incorporate autoregressive terms, and include exogenous 

inputs make it a powerful tool for predicting TEC data. The error analysis based on RMSE, MAE, correlation 

coefficient and sMAPE indicate that use of solar index (F10.7) and geomagnetic indices (Dst, Kp, and Ap) as 

exogenous data helps in effective prediction of TEC. These parameters deviate from their normal values with 

changes in the ionospheric TEC. Any fluctuations in TEC due to disturbance in the ionosphere is quickly 

captured by these exogenous parameters and are effective in TEC prediction. But, NARX2 uses time of the day, 

day of the year and season as exogenous parameters. These parameters cannot capture the sudden ionospheric 

disturbances and are only useful in TEC prediction during quiet stable ionospheric conditions. Further, the TEC 

data, the solar and the geomagnetic data are all used in raw form without normalizing indicating the suitability 

of this technique for real time TEC prediction. The prediction of TEC at different latitudinal regions is also 

consistent with the literature and shows increasing RMSE with decreasing latitudes. The error autocorrelation 

function, error histogram and regression line plots also indicate the best fit of the model for TEC prediction. The 

RMSE between 0.8212 TECU to 4.0277 TECU for the solar minimum year and between 1.8952 TECU to 

6.9822 TECU for the solar maximum year indicate the suitability of this model and correct selection of the 

exogenous parameters for ionospheric TEC prediction. All the evaluation metrics clearly showed that the 

NARX1 model outperformed the NARX2 model in accurately predicting TEC values. 
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