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 This research paper uses the golden jackal optimization (GJO), a novel meta-

heuristic algorithm, to address power system economic load dispatch (ELD) 

problems. The GJO emulates the hunting behavior of golden jackals. GJO 

algorithm uses the cooperative attacking behavior of golden jackals to tackle 

complicated optimization problems efficaciously. The objective of ELD 

problem is to distribute power system load requirement to the different 

generators with a minimum total fuel cost of generation. ELD problems are 

highly complex, non-linear, and non-convex optimization problems while 

considering constraints namely valve point loading effect (VPL) and 

prohibited operating zones (POZs). The proposed GJO algorithm is applied 

to solve complex, non-linear, and non-convex ELD problems. Six different 

test systems having 6, 10, 13, 40, and 140 generators with various 

constraints are used to validate the usefulness of the suggested GJO method. 

Simulation outcomes of the test system are compared with various 

algorithms reported in the algorithms such as particle swarm optimization 

(PSO), ant colony optimization (ACO), and backtracking search algorithm 

(BSA). Results show that the proposed GJO algorithm produces minimal 

fuel cost and has good convergence in solving ELD problems of power 

system engineering. 
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1. INTRODUCTION 

The design and operation of power systems become more complex day by day. One of the primary 

key optimization challenges for the efficient and error-free functioning of power systems are economic load 

dispatch (ELD) problem. A power system's overall load demand is distributed across various generating units 

using the ELD problem to increase operational efficiency. ELD problem is a non-convex, non-linear complex 

optimization problem in power engineering. Traditionally, quadratic fuel functions are used in ELD 

formulation. While considering various real-time constraints such as valve point loading (VPL) effect and 

prohibited operating zone (POZ) the ELD problem complexity increases. Due to VPL effects and POZ, the 

search space for the answer will have discontinuities and the number of minimum points. Therefore, the ideal 

problem for the ELD issue is non-linear with discontinuities and calls for suitable solution methods. 

Numerous optimization strategies, including mathematical programming techniques such as lamda 

iteration method, Lagrange multiplier method, newton method, gradient method, dynamic programming 

method, and heuristic algorithms such as simulated annealing, artificial bee colony algorithm, have been used 

to address the issue of economic load dispatch. Due to the problem's extremely non-linear characteristics, the 

https://creativecommons.org/licenses/by-sa/4.0/
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traditional calculus-based approaches fail to provide satisfactory results for solving ELD problems. At the 

same time, different artificial intelligence-based approaches have been formed and these methods do not 

depend upon the characteristics of the fuel cost curve so effectively used to tackle the ELD problem to get 

around challenges raised by conventional methodologies and attain the best results.  

Gaing [1] suggested the particle swarm optimization (PSO) algorithm for optimizing the ELD 

problem. Firefly algorithm (FA), which imitates the social behavior of a firefly, was employed to ELD 

formulation [2]. Dubey et al. [3] used the modified flower pollination algorithm (MFPA), cuckoo search 

algorithm (CSA) [4] to address the ELD issues. An iterative variant of quick group search optimizer (QGSO) 

[5] was suggested for implementing ELD problems with VPL impact, POZs, ramp rate restrictions, and losses 

in power transmission lines. Ghorbani and Babaei [6] used exchange market algorithm [EMA] method to solve 

the ELD issues under realistic constraints. The stock exchange trading strategies served as the basis for the 

EMA strategy. Researchers have presented simulated annealing (SA) [7], grey wolf optimization (GWO) [8], 

crow search algorithm (CSA) [9], to solve the non-convex ELD problem with cost as the objective function. 

Srivastava and Das [10] advanced class topper optimization [ACTO] and class topper optimization [CTO] were 

used to solve both combined economic emission dispatch (CEED) and ELD. Rizk-Allah et al. [11] suggested a 

new parallel hurricane optimization algorithm [PHOA] and turbulent flow of water optimization [TFWO] [12] 

algorithm for resolving CEED and ELD. A unique hybrid algorithm was proposed to solve various ELD 

problems based on franklin's and coulomb's law [13]. Al-Betar et al. [14] hybridized hill climbing with a sine 

cosine algorithm (SCA) to increase global searching ability and applied it to solve ELD issues. Tariq et al. [15] 

have used an upgraded version of the bat-inspired algorithm (BA) to solve ELD in the existence of renewable 

energy Sources. Srivastava and Sigh [16] have utilized ant colony optimization (ACO), an enhanced chameleon 

swarm algorithm (ECSA) [17] to resolve ELD problems. Salp swarm algorithm (SSA) and β-hill climbing 

optimization technique is hybridized (HSSA) for solving ELD problem with valve point effect [18]. A hybrid 

sine cosine algorithm (SCA) known as SCA-β hill climbing (SCA-βHC) [14], Harris Hawks optimizer (HHO) 

with hill-climbing optimization [19] is used solve ELD problems with various constraints. Although numerous 

heuristic algorithms are available in the literature, these algorithm performances face some difficulties, such as 

trap in the local optimum and early convergence in solving power system ELD problems many times. The “no 

free lunch” theorem [20] exhibits that all optimization methods could not find best solution for all kinds of 

optimization problems. This problem motivates the researchers to explore further to find better solution 

methods. Recently, a new meta-heuristic algorithm, named golden jackal optimization (GJO) algorithm, was 

proposed by Chopra et al. [21] to solve various optimization problems. The GJO algorithm showcases the 

forging activities of golden jackals. The cooperative attacking nature of the golden jackals helps to find the 

optimal global solutions for various optimization problems. The main contribution of the research work is 

summed up as: i) the ELD problems are formulated by considering various realistic constraints such as VPL, 

POZ, transmission loss, and multiple fuel options (MFO); ii) a new Meta heuristic method called GJO algorithm 

is used for obtaining the best optimal generation scheduling by considering the practical ELD problem; and iii) 

six test cases have been evaluated to show the superiority of the recommended GJO technique, and the findings 

have been compared to those of the state-of-the-art approach described in the literature. 

The paper is organized as follows: the ELD problem formulation is described in section 2. Section 3 

elaborates GJO algorithm and its implementation to the ELD problems. Simulation of various test cases and 

their outcomes are discussed in section 4. The conclusion of the research work is presented in section 5.  

 

 
2. ELD PROBLEM FORMULATION 

The main aim of the ELD problem is to optimize the output of the generators in the power system to 

meet the system load demand under various system constraints. This section explains the objectives and 

various system constraints in ELD problem. 

 

2.1.  Objective function 

Traditionally, the fuel cost relation for a thermal generator is denoted by the quadratic and 

represented by (1): 
 

𝐹𝑖(𝑃𝑖) = 𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 (1) 

 

Where: a, b, c: the coefficient of fuel cost functions. 

Minimization of the fuel cost is the main objective of the ELD problem, and it is represented as (2): 
 

𝐶 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐹𝑖(𝑃𝑖)
𝑁
𝑖=1  (2) 

 

Where C is the scheduling cost of the system, 𝐹𝑖(𝑃𝑖) is the fuel cost function of 𝑖𝑡ℎ unit, N is the total number 

of generating units in the system, and 𝑃𝑖  is the power output of the 𝑖𝑡ℎ unit. 
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The consecutive valve opening in multivalve steam turbines ripples the generator's fuel cost curve. 

The fuel cost function should take this VPL effect to simulate a real and valuable ELD problem. Figure 1 

shows the fuel cost function of a thermal generator for the two different cases.  
 

 

 
 

Figure 1. Thermal generator’s fuel cost function 
 
 

Consideration of VPL in thermal generator fuel cost function becomes non-convex, and (3) represents it. 
 

𝐹𝑖(𝑃𝑖) = 𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 + |𝑑𝑖 ∗ 𝑠𝑖𝑛 (𝑒𝑖 ∗ (𝑃𝑖

𝑚𝑖𝑛 − 𝑃𝑖))| (3) 

 

here d and e are the coefficients related to the VPL effects of the thermal generators. In some cases, there are 

few generating units with different fuel sources. In (4) describes the fuel cost equation for such generating units. 
 

𝐹𝑖(𝑃𝑖) =

{
 

 
𝑎𝑖1𝑃𝑖

2 + 𝑏𝑖1𝑃𝑖 + 𝑐𝑖1          𝑓𝑢𝑒𝑙 1        𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 < 𝑃𝑖1

𝑎𝑖2𝑃𝑖
2 + 𝑏𝑖2𝑃𝑖 + 𝑐𝑖2    𝑓𝑢𝑒𝑙 2       𝑃𝑖1 ≤ 𝑃𝑖 < 𝑃𝑖2

⋮
𝑎𝑖𝑘𝑃𝑖

2 + 𝑏𝑖𝑘𝑃𝑖 + 𝑐𝑖𝑘          𝑓𝑢𝑒𝑙 𝑘       𝑃𝑖 𝑘−1 ≤ 𝑃𝑖 < 𝑃𝑖
𝑚𝑎𝑥

 (4) 

 

The cost curve for a generator with k fuel alternatives is segregated into k discrete sections between 

upper and lower limits. In this, 𝑎𝑖𝑘 , 𝑏𝑖𝑘 , 𝑎𝑛𝑑 𝑐𝑖𝑘 are the cost coefficients of the 𝑖𝑡ℎ unit using fuel type k. Fuel 

cost function with many fuel alternatives and no VPL impacts and with VPL impacts depicted in Figure 2 

and Figure 3 respectively. 
 

 

  
  

Figure 2. Fuel cost function with multiple fuels Figure 3. Fuel cost function with multiple fuels and 

valve point effect 

 

 

2.2.  System constraints 

2.2.1. Power balance restriction 

The total summation of power output from the generators must be equal to the sum of the power 

needed and any transmission losses. This condition is given by (5): 
 

∑ 𝑃𝑖
𝑁
𝑖=1 = 𝑃𝐷 + 𝑃𝐿 (5) 

 

Here 𝑃𝐿  is the system loss and 𝑃𝐷 is the total load requirement. The transmission losses are expressed as (6): 
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𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗
𝑁
𝑗=1 +∑ 𝐵𝑜𝑖𝑃𝑖

𝑁
𝑖=1 + 𝐵𝑜𝑜

𝑁
𝑖=1  (6) 

 

The method-based B coefficient formula is adopted to calculate the system loss. 𝐵𝑖𝑗 , 𝐵𝑜𝑖 , 𝐵𝑜𝑜 are the 

generator’s loss coefficients.  

 

2.2.2. Generator capacity constraints 

Generators in the power system network can generate power between two extreme capacities. It is 

an inequality constraint. The limitation is depicted by (7): 
 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥 (7) 
 

Where 𝑃𝑖
𝑚𝑎𝑥and 𝑃𝑖

𝑚𝑖𝑛 are the upper and lower limits of the power generated by the ith generator. 

 

2.2.3. Ramp rate limit constraints 

Ramp rate constraints limit the operating range of generating units such that they can only operate 

continuously between two neighboring defined operating regions. The ramp rate limitation regulates all 

generating units' power output, which appears in (8): 
 

𝑃𝑖 − 𝑃𝑖
𝑜 ≤ 𝑈𝑅𝑖  ;  𝑃𝑖

𝑜 − 𝑃𝑖 ≤ 𝐷𝑅𝑖 (8) 
 

Where URi, and DRi, denotes upper and lower end of the generator limits. 𝑃𝑖
𝑜 is the initial power output of 

the ith generating unit. 

 

2.3.4. Prohibited operating zone 

The prohibited operating zones are caused by the working of the steam valves or vibrations in the 

shaft bearings. The practically feasible areas of unit i can be shown (9): 
 

𝑃𝑖 ∈  {

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖.1

𝐿

𝑃𝑖,𝑘−1
𝑈 ≤ 𝑃𝑖 ≤ 𝑃𝑖.𝑘

𝐿

𝑃𝑖,𝑛𝑧
𝑈 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥

   𝑘 = 2,3…𝑛𝑧 (9) 

 

Where 𝑃𝑖.
𝐿  and 𝑃𝑖.

𝑈 are the lower and upper limits of prohibited operating zones of ith generator, k is the 

number of prohibited zones. 

 

2.3.5. Constraint handling mechanism 

Constraint violations are handled using penalty-based approach. Thus, the overall fitness function 

combines both equality constraints and objective function and it can be defined as (10): 
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ 𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖

𝑁
𝑖=1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∗ 𝑎𝑏𝑠(∑ 𝑃𝑖 − 𝑃𝐿 − 𝑃𝐷

𝑁
𝑖=1 ) (10) 

 

When objective function includes VPL effect then the overall fitness function can be mentioned as (11): 
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ 𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 + |𝑑𝑖 ∗ 𝑠𝑖𝑛 (𝑒𝑖 ∗ (𝑃𝑖

𝑚𝑖𝑛 − 𝑃𝑖))|
𝑁
𝑖=1 . +𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∗ 𝑎𝑏𝑠(∑ 𝑃𝑖 − 𝑃𝐿 − 𝑃𝐷

𝑁
𝑖=1 ) (11) 

 

Penalty factor in the above mentioned equations is a constant value and it is taken as 500. 

 

 

3. GOLDEN JACKAL ALGORITHM 

Chopra et al. [21], devised the swarm intelligence algorithm known as the golden jackal optimization 

algorithm; it imitates golden jackals' natural hunting techniques. Usually, male and female golden jackals hunt 

together. Three steps make up the golden jackal's hunting habit: i) searching and moving toward the prey; ii) 

getting close to the prey and agitating it until stops moving; and iii) bouncing towards the prey. 

A set of prey position matrices with random distributions are constructed during the initialization phase. 
 

𝑝𝑟𝑒𝑦 =

[
 
 
 
 
 
𝑌1,1 … 𝑌1,𝑗 … 𝑌1,𝑛
𝑌2,1 … 𝑌2,𝑗 … 𝑌2,𝑛
… … … … …
⋮ ⋮ ⋮ ⋮ ⋮

𝑌𝑁−1,1 … 𝑌𝑁−1,𝑗 … 𝑌𝑁−1,𝑛
𝑌𝑁,1 … 𝑌𝑁,𝑗 … 𝑌𝑁,𝑛 ]

 
 
 
 
 

 (12) 
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here N indicates the prey population numbers, and n indicates dimension. The following mathematical (13) 

and (14) give a mathematical illustration of the hunting behavior of golden jackals. 

Exploration phase 
 

(|E| ≥ 1) 
𝑌1(𝑡) = 𝑌𝑚(𝑡) − 𝐸|𝑌𝑚(𝑡) − 𝑟𝑙. 𝑝𝑟𝑒𝑦(𝑡)| (13) 

𝑌2(𝑡) = 𝑌𝑓𝑚(𝑡) − 𝐸|𝑌𝑓𝑚(𝑡) − 𝑟𝑙. 𝑝𝑟𝑒𝑦(𝑡)| 
 

Exploitation phase 
 

(|𝐸| < 1) 
𝑌1(𝑡) = 𝑌𝑚(𝑡) − 𝐸|𝑟𝑙. 𝑌𝑚(𝑡) − 𝑝𝑟𝑒𝑦(𝑡)| (14) 

𝑌2(𝑡) = 𝑌𝑓𝑚(𝑡) − 𝐸|𝑟𝑙. 𝑌𝑓𝑚(𝑡) − 𝑝𝑟𝑒𝑦(𝑡)| 
 

here t shows the current iteration, 𝑌𝑓𝑚(𝑡) shows the location of the female, 𝑌𝑚(𝑡) depicts the location of the 

male golden jackal. 𝑝𝑟𝑒𝑦(𝑡) shows the prey location vector, and 𝑌1(𝑡) and 𝑌2(𝑡) are the upgraded locations 

of both jackals. 

The prey escaping energy E is obtained as (15): 
 

𝐸 = 𝐸1 ∗ 𝐸0 (15) 
 

where 𝐸1 expresses the diminishing energy of the prey. 
 

𝐸1 = 𝐶1 ∗ (1 −
𝑡

𝑇
) (16) 

 

where T represents the maximum iteration, 𝐶1 represents a constant of 1.5, and 𝐸0 represents the starting state 

of the energy. 
 

𝐸0 = 2 ∗ 𝑟 − 1 (17) 
 

where 𝑟 represents a random value in [0,1]. 𝑟𝑙 expresses a random vector based on the levy distribution. 
 

𝑟𝑙 = 0.05 ∗ 𝐿𝐹(𝑦) (18) 
 

The LF expresses the levy flight fitness function (19): 
 

𝐿𝐹(𝑦) = 0.01 ×
𝜇×𝜎

|𝑣
1
𝛽⁄ |
𝜎 = (

Γ(1+𝛽)×𝑠𝑖𝑛(
𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×(2

𝛽−1
2 )

)

1

𝛽

 (19) 

 

where μ and 𝑣 represent the random values between (0, 1) and β is 1.5. 
 

𝑌(𝑡 + 1) =
𝑌1(𝑡)+𝑌2(𝑡)

2
 (20) 

 

where 𝑌(𝑡 + 1) is the revised location of the prey according to both golden jackals. The element rl used in 

the algorithm provides random movement and helps to avoid local optimal. 
 
Implementation steps of the GJO algorithm in ED problems 

Initial stage: Max number of iterations T, population size N and dimension n 

Final stage: Outputs best prey and its fitness value 

Initialize prey population randomly 

While (t<T) 

   Obtain the objective value for each prey 

   𝑌𝑚= (Male jackal position)indicates best prey  

   𝑌𝑓𝑚= (Female jackal position) indicates Second best prey 
   For (every prey) 

        Revise prey’s evading energy E using the equation. (15) 

        If (Exploration Phase) (|E|≥1)  

              Revise the location 𝑌1 and 𝑌2 using the equation. (13) 
        End if 

        If(Exploitation Phase) (|E|<1)  

             Revise the location 𝑌1 and 𝑌2 using the equation. (14) 
       End if 
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       Revise the location using the equation. (20) 

   End for 

   Increment t by 1  

end while 

output 𝑌𝑚 

 

 

4. SIMULATION RESULTS AND DISCUSSIONS 

The effectiveness of the proposed GJO algorithm is analyzed on six test systems with 6-unit,  

13-unit, 10-unit, 40-unit, and 140-unit systems with different complex constraints of power systems such as 

transmission loss, POZ, VPL effects, ramp rate limit, and MFO. The program is developed on MATLAB 21a 

software and implemented on a personal computer with an Intel i7 processor and 4GB RAM. The efficacy of 

GJO on specified cases of ELD is compared with numerous algorithms in literatures. Constraints considered 

for the test system is shown in Table 1. For the simulation of GJO, the population size of 100 and maximum 

iterations of 500 are considered. 
 
 

Table 1. Test cases and considered constraints 

Case 

study 

Test 

system 
(Unit) 

Constraints Load 

demand 
(MW) 

Transmission 
loss 

Valve point 
effect 

Ramp 
rate limit 

Multi fuel 
option 

Prohibited 
operating zone 

1 6 ✓  ✓  ✓ 1263 

2 13  ✓    2520 
3 10    ✓  2700 

4 10  ✓  ✓  2700 

5 40 ✓ ✓    10500 
6 140  ✓    49342 

 

 

4.1.  Case study 1 

In this research case, a test system with six thermal generators with a load demand of 1263 MW is 

considered. Different power system constraints, such as transmission loss, generator capacity constraints, 

POZ, and ramp rate limits are considered. Various fuel cost coefficients and generator constraints are taken 

from [1]. The developed GJO algorithm is applied for this 6-unit test case, and results are tabulated in  

Table 2. Results show that the proposed algorithm gives better optimal generation scheduling without 

violating the power system constraints considered.  
 
 

Table 2. Best generation schedule of different methods for case study 1 
Unit power 

output (MW) 

PSO 

method [1] 
CFA [14] EMA [6] KHA [20] BSA [18] GJO 

P1 447.4970 446.8623 447.3872 447.4150 447.4902 447.057 

P2 173.3221 173.2990 173.2524 173.2917 173.3308 173.171 

P3 263.4745 264.0771 263.3721 263.3559 263.4559 263.912 
P4 139.0594 139.0329 138.9894 138.9646 139.0602 139.41 

P5 165.4761 165.6988 165.3650 165.3759 165.4804 165.566 

P6 87.1280 86.4471 87.0781 87.0417 87.1409 86.6066 
Total output 1276.01 1275.4172 1275.4443 1275.4448 1275.9583 1275.36 

Loss (MW) 12.9584 12.4172 12.4430 12.4449 12.9583 12.36 

Total cost ($/h) 15450 15,442.6553 15443.0749 15443.0752 15449.8995 15441.9 

 
 

A comparison of obtained results with the other heuristic algorithms such as coulomb-franklin’s 

algorithm (CFA), exchange market algorithm (EMA), krill herd algorithm (KHA), backtracking search 

algorithm (BSA), is shown in Figure 4. GJO algorithm gives the best optimal cost of 15441.9 ($/hr.), which is 

lower than the other algorithms. A convergence characteristic of the GJO algorithm for this test case is shown in 

Figure 5, and it can be seen that the GJO algorithm gives the best optimal solution in the early stage of iteration. 

 

4.2.  Case study 2 

A case study was conducted on a 13-thermal unit system with valve-point loading effect. The 

system simulation data were taken from [7]. The required power demand was 2520 MW [7]. Table 3 

compares the results obtained using the proposed GJO algorithm and other state-of-the-art algorithms namely 

hybrid stochastic search (HSS), tabu search algorithm (TSA), hybrid evolutionary programming-sequential 

programming (EP-SQP), and hybrid particle swarm optimization-sequential programming (PSO-SQP). 
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Figure 4. Performance of different heuristic approaches for 

case study 1 

 Figure 5. Convergence curve for 6 unit 

 

 

Table 3. Best generation schedule of various algorithms for case study 2 
Unit power 

output (MW) 

HSS 

[23] 

TSA 

[24] 

EP-SQP 

[25] 

PSO-SQP 

[25] 
GJO 

P1 628.2300 628.319 628.3136 628.3205 628.3185 

P2 299.2200 299.1993 299.1715 299.0524 299.1993 
P3 299.1700 331.8975 299.0474 298.9681 294.4639 

P4 159.1200 159.7305 159.6399 159.4680 159.7331 

P5 159.9500 159.7331 159.6560 159.1429 159.7331 
P6 158.8500 159.7306 158.4831 159.2724 159.7331 

P7 157.2300 159.7334 159.6749 159.5371 159.7331 

P8 159.9300 159.7308 159.7265 158.8522 159.7331 
P9 159.8600 159.7316 159.6653 159.7845 159.7331 

P10 110.7800 40.0028 114.0334 110.9618 77.3999 

P11 75.0000 77.3994 75.0000 75.0000 77.3999 

P12 60.0000 92.3932 60.0000 60.0000 92.3999 

P13 92.6200 92.3986 87.5884 91.6401 92.3999 

Total cost ($/h) 24275.71 24313 24266.44 24261.05 24164.02 

 

 

From Figure 6, it can be observed that the minimum optimal cost attained by GJO method is lower than 

that of the other alternative algorithms. The GJO algorithm yielded a minimum fuel cost of 24164.02 ($/hr), next 

best fuel cost is obtained by the PSO-SQP algorithm which is 24261.05 $/hr. Figure 7 shows the convergence 

curve for the GJO method in simulation of test case 2 and it shows the robustness of the GJO method. 
 

 

  
  

Figure 6. Performance of different heuristic 

approaches for case study 2 

Figure 7. Convergence curve for 13 unit 

 

 

4.3.  Case study 3 

In this test case, challenging test system having 10-units along with MFO is considered. Total power 

system load demand of 2700 MW is considered. Transmission loss, VPL effects and other constraints are not 

considered in this case. Various parameters and fuel types are considered from [22]. ELD problem for this 

test case is simulated using GJO algorithm and results are tabulated in Table 4. 
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Table 4. Best generation schedule of different algorithms for case study 3 

Unit 
HM [26] HNN [27] HGA [28] CGA-MU [29] GJO 

FT Gen FT Gen FT Gen FT Gen FT Gen 

P1 2 218.4 2 224.5 2 218.2559 2 218.4572 2 218.2446 

P2 1 211.8 1 215.0 1 211.6816 1 211.5140 1 211.6633 

P3 1 281.0 1 291.8 1 280.7359 1 280.8987 1 280.7030 
P4 3 239.7 3 242.2 3 239.6298 3 239.6241 3 239.6341 

P5 1 279.0 1 293.3 1 278.4819 1 278.5036 1 278.4998 

P6 3 239.7 3 242.2 3 239.6508 3 239.6390 3 239.63 
P7 1 289.0 1 303.1 1 288.5721 1 288.6201 1 288.5954 

P8 3 239.7 3 242.2 3 239.6280 3 239.6211 3 239.6319 

P9 3 429.2 1 355.7 3 428.5175 3 428.5760 3 428.5214 
P10 1 275.2 1 289.5 1 274.8466 1 274.5462 1 274.8755 

Total cost ($/hr.) 625.18 626.12 623.8092 623.8095 623.8086 

 

 

Obtained best fuel cost by GJO algorithm is contrasted with best results of other algorithms namely 

hopfield neural network (HNN), hybrid real coded genetic algorithm (HGA), multiplier updating method is 

combined with conventional genetic algorithm multiplier updating (CCGA-MU) in Figure 8. The fuel cost 

calculated using the GJO technique is 623.8086 $/hr, with no limitation violations, indicating the suggested 

approach's excellent accuracy. 

 

4.4.  Case study 4 

This system considers the test case 3 along with VPL effects. Coefficients of the VPL effects and 

other data are referred from [22]. The power requirement of 2700 MW is considered. The suggested GJO 

algorithm's simulated best results are tabulated in Table 5. Results given by the other methods namely 

improved genetic algorithm with multiplier updating method (IGA-MU), CCGA-MU method, BSA, and 

coulomb-franklin’s algorithm (CFA) are compared with the outcome of GJO method as shown in Figure 9. 

The GJO algorithm yielded a minimum fuel cost of 623.849 ($/hr), and it is lower than the results of other 

compared algorithms. 
 
 

Table 5. Best generation schedule of different algorithms for case study 4 

Unit 
IGA-MU [30] BSA [31] CFA [13] CGA-MU [30] GJO 

FT Gen FT Gen FT Gen FT Gen FT Gen 

P1 2 219.1261 2 218.5777 2 219.1757 2 222.0108 2 219.341 
P2 1 211.1645 1 211.2153 1 213.7436 1 211.6352 1 212.8096 

P3 1 280.6572 1 279.5619 1 280.6243 1 283.9455 1 282.1951 

P4 3 238.4770 3 239.5024 3 238.5002 3 237.8052 3 239.6801 
P5 1 276.4179 1 279.9724 1 278.5722 1 280.4480 1 277.7275 

P6 3 240.4672 3 241.1174 3 238.4946 3 236.0330 3 239.9062 

P7 1 287.7399 1 289.7965 1 288.9525 1 292.0499 1 287.7275 
P8 3 240.7614 3 240.5785 3 238.4906 3 241.9708 3 239.6801 

P9 3 429.3370 3 426.8873 3 428.1783 3 424.2011 3 425.8501 

P10 1 275.8518 1 272.7907 1 275.2681 1 269.9005 1 275.0821 
Total cost ($/hr.) 624.5178 623.9016 623.9576 624.7193 623.8498 

 

 

  
  

Figure 8. Performance of different heuristic 

approaches for case study 3 

Figure 9. Performance of different heuristic 

approaches for case study 4 
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4.5.  Case study 5 

In this analysis, a 40-unit system with valve-point loading effect and transmission loss is considered. 

The total load demand for this case study is 10,500 MW. The system's fuel cost, VPL, and loss coefficients 

are taken from [32]. Table 6 shows the optimal power generation schedule obtained from different 

algorithms, including the proposed GJO algorithm. The simulation results indicate that the GJO algorithm 

produces the best feasible solution for this 40-unit test system. To validate the superiority and robustness of 

the GJO algorithm, its numerical results are compared with those of other algorithms, including GA-API 

[33], quasi-oppositional teaching learning based optimization (QTLBO) [34], oppositional real coded 

chemical reaction optimization (ORCCRO) [35], invasive weed optimization (OIWO) [32], teaching learning 

based optimization (TLBO) [34], shuffled differential evolution (SDE) [36], KHA [37]. The comparison is 

shown graphically in Figure 10. The results show that the GJO algorithm produces better results than the 

others. Figure 11 shows the convergence characteristics of the fuel cost graph for the GJO algorithm. The 

graph shows that the GJO algorithm converges quickly and achieves the best optimal generator scheduling in 

the early stages of iteration. 
 

 

Table 6. Best generation schedule of different algorithms for case study 5 
Unit GA-API ORCCRO QOTLBO TLBO OIWO KHA SDE GJO 

1 114 111.68 114 114 113.9908 114 110.06 114 
2 114 112.16 114 114 114 114 112.41 114 

3 120 119.98 107.8221 120 119.9977 120 120 120 
4 190 182.18 190 182.4448 182.5131 190 188.72 182.4003 

5 97 87.28 88.3702 90.6923 88.4227 88.5944 85.91 87.7999 

6 140 139.85 140 140 140 105.5166 140 140 
7 300 298.15 300 300 299.9999 300 250.19 300 

8 300 286.89 300 296.0682 292.0654 300 290.68 300 

9 300 293.38 300 288.8518 299.8817 300 300 300 
10 205.25 279.34 211.2071 281.952 279.7073 280.6777 282.01 279.5997 

11 226.3 162.35 317.2766 238.1293 168.8149 243.5399 180.82 243.5997 

12 204.72 94.12 163.7603 251.012 94 168.8017 168.74 94 
13 346.48 486.44 481.5709 483.1175 484.0758 484.1198 469.96 484.0392 

14 434.32 487.02 480.5462 481.9042 484.0477 484.1662 484.17 484.0392 

15 431.34 483.39 483.7683 488.2883 484.0396 485.2375 487.73 484.0392 
16 440.22 484.51 480.2998 396.3448 484.0886 485.0698 482.3 484.0392 

17 500 494.22 489.2488 494.2577 489.2813 489.4539 499.64 489.2794 

18 500 489.48 489.5524 408.3826 489.2966 489.3035 411.32 489.2794 
19 550 512.2 512.5482 510.5206 511.3219 510.7127 510.47 511.2794 

20 550 513.13 514.2914 521.2217 511.335 511.304 542.04 511.2794 

21 550 543.85 527.0877 540.57 549.9412 524.4678 544.81 523.2794 
22 550 548 530.1025 522.1852 549.9999 535.5799 550 550 

23 550 521.21 524.2912 526.1804 523.2804 523.3795 550 523.2794 

24 550 525.01 524.6512 521.1967 523.3213 523.1553 528.16 523.2794 
25 550 529.84 525.0586 525.801 523.5804 524.1916 524.16 523.2794 

26 550 540.04 524.4654 526.0022 523.5847 523.5453 539.1 523.2794 

27 11.44 12.59 10.8929 13.0804 10.0086 10.1245 10 10 
28 11.56 10.06 17.4312 11.0397 10.0068 10.1815 10.37 10 

29 11.42 10.79 12.7839 12.9373 10.0123 10.0229 10 10 

30 97 89.7 88.8119 89.7412 87.8664 87.8154 96.1 87.7999 
31 190 189.59 190 190 190 190 185.85 190 

32 190 189.96 190 190 189.9983 190 189.54 190 

33 190 187.61 190 190 190 190 189.96 190 

34 200 198.91 200 200 199.994 200 199.9 200 

35 200 199.98 168.0873 200 200 164.9199 196.25 200 

36 200 165.68 165.5072 164.7435 164.8283 164.9787 185.85 164.7998 
37 110 109.98 110 110 110 110 109.72 110 

38 110 109.82 110 110 109.994 110 110 110 

39 110 109.88 110 110 110 110 95.71 110 
40 550 548.5 511.5313 547.9677 550 512.0678 532.47 511.2794 

Cost ($/hr.) 139865 136,855.19 137329.9 137814.2 136,452.68 136670.4 138157.5 136446.5 

Loss 1045.06 958.75 1008.96 1002.63 957.2965 978.9251 974.43 972.9496 

 

 

4.6.  Case study 6 

To assess the efficacy of the suggested GJO method in solving large-scale power systems, this case 

study considers a system with 140 power-generating stations. The fuel cost characteristic coefficients and 

other data for thermal, gas, nuclear, and oil power plants are cited from [38]. In this test case, VPL effects are 

taken into consideration for the thermal generating units. The total load demand required to be met for the 

test system is 49342 MW. The best power generation scheduling for the case study with the GJO techbique is 
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shown in Table 7 (in Appendix). It can be noticed that the best total fuel cost obtained using GJO for the 

large-scale power system is 1559703.40 ($/hr), which is the lowest among the other heuristic approaches 

compared such as shuffled differential evolution (SDE) [36], improved particle swarm optimization (IPSO) 

[38], grey wolf optimization (GWO) [39], artificial algae algorithm (AAA) [40], opposition-based krill herd 

algorithm (OKHA) [41] and KHA [41]. It is graphically compared in the Figure 12. The convergence 

behaviour for the 140 unit power system is exhibited in Figure 13, and it depicts the robustness of the 

proposed GJO method. 
 
 

  
  

Figure 10. Performance of different heuristic 

approaches for case study 5 

Figure 11. Convergence curve for 40 unit 

 

 

  
  

Figure 12. Performance of different heuristic 

approaches for case study 6 
Figure 13. Convergence curve for 140 unit 

 

 

5. CONCLUSION 

In this research work, a comparatively new and an efficient algorithm named GJO which is based on the 

cooperative hunting nature of golden jackals is developed to solve ELD problems. The developed algorithm is 

applied to six different ELD problems in the power system with various real time complex constraints, such as 

VPL, POZs, MFO, and transmission loss. The outcomes show that the suggested GJO can ensure better quality 

solutions and has good robustness in optimizing generation scheduling of ELD problems while meeting the 

different constraints rather than the other compared algorithms. The overall research shows that the GJO algorithm 

is a competing algorithm for finding the best optimal generation scheduling for ELD problems. Further, 

performance of proposed GJO algorithm for DEED and economic emission dispatch problem, hybridization of 

GJO along with other algorithms can be explored to further improve the search ability in future works. 
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APPENDIX 

 

Table 7. Best generation schedule of GJO algorithms for case study 6 
Unit Gen Unit Gen Unit Gen 

1 115.2621 48 250 95 978 

2 189 49 250 96 682 

3 190 50 250 97 720 
4 190 51 165 98 718 

5 168.5398 52 165 99 720 

6 190 53 165 100 964 
7 490 54 165 101 958 

8 490 55 180 102 1007 

9 496 56 180 103 1006 
10 496 57 103 104 1013 

11 496 58 198 105 1020 

12 496 59 312 106 954 
13 506 60 281.5004 107 952 

14 509 61 163 108 1006 

15 506 62 95 109 1013 
16 505 63 160 110 1021 

17 506 64 160 111 1015 

18 506 65 490 112 94 
19 505 66 196 113 94 

20 505 67 490 114 94 
21 505 68 490 115 244 

22 505 69 130 116 244 

23 505 70 234.7198 117 244 
24 505 71 137 118 95 

25 537 72 325.4956 119 95 

26 537 73 195 120 116 
27 549 74 175 121 175 

28 549 75 175 122 2 

29 501 76 175 123 4 
30 501 77 175 124 15 

31 506 78 330 125 9 

32 506 79 531 126 12 
33 506 80 531 127 10 

34 506 81 397.5959 128 112 

35 500 82 56 129 4 
36 500 83 115 130 5 

37 241 84 115 131 5 

38 241 85 115 132 50 
39 774 86 207 133 5 

40 769 87 207 134 42 

41 3 88 175 135 42 
42 3 89 175 136 41 

43 248.8904 90 175 137 17 

44 246.4609 91 175 138 7 
45 250 92 580 139 7 

46 250 93 645 140 26 

47 241.5353 94 984 Total fuel cost ($/hr) 1559703.4 
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