
Bulletin of Electrical Engineering and Informatics
Vol. 13, No. 1, February 2024, pp. 559∼571
ISSN: 2302-9285, DOI: 10.11591/eei.v13i1.6590 ❒ 559

Self-adaptive differential evolution algorithm with dynamic
fitness-ranking mutation and pheromone strategy

Pirapong Singsathid, Jeerayut Wetweerapong, Pikul Puphasuk
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand

Article Info

Article history:

Received Apr 27, 2023
Revised Jul 11, 2023
Accepted Aug 30, 2023

Keywords:

Continuous optimization
Differential evolution
Mutation strategy
Pheromone strategy
Self-adaptation

ABSTRACT

Differential evolution (DE) is a population-based optimization algorithm widely
used to solve a variety of continuous optimization problems. The self-adaptive
DE algorithm improves the DE by encoding individual parameters to produce
and propagate better solutions. This paper proposes a self-adaptive differen-
tial evolution algorithm with dynamic fitness-ranking mutation and pheromone
strategy (SDE-FMP). The algorithm introduces the dynamical mutation opera-
tion using the fitness rank of the individuals to divide the population into three
groups and then select groups and their vectors with adaptive probabilities to
create a mutant vector. Mutation and crossover operations use the encoded scal-
ing factor and the crossover rate values in a target vector to generate the cor-
responding trial vector. The values are changed according to the pheromone
when the trial vector is inferior in the selection, whereas the pheromone is in-
creased when the trial vector is superior. In addition, the algorithm also employs
the resetting operation to unlearn and relearn the dominant pheromone values
in the progressing search. The proposed SDE-FMP algorithm using the suitable
resetting periods is compared with the well-known adaptive DE algorithms on
several test problems. The results show that SDE-FMP can give high-precision
solutions and outperforms the compared methods.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Pikul Puphasuk
Deparment of Mathematics, Faculty of Science, Khon Kaen University
Khon Kaen, 40002, Thailand
Email: ppikul@kku.ac.th

1. INTRODUCTION
Solving multimodal, high-dimensional, and non-linear real-world optimization problems requires

well-designed efficiency optimization methods [1]–[5]. To address this challenge, many researchers have pro-
posed evolutionary algorithms such as genetic algorithm (GA) [6], ant colony optimization (ACO) [7], particle
swarm optimization (PSO) [8], [9], artificial bee colony algorithm (ABC) [10], and differential evolution (DE)
[11], [12] for these problems.

DE is a population-based global search algorithm introduced by Storn and Price in 1997 for continuous
optimization. Its operations consist of mutation, crossover, and selection [11]. The performance of DE depends
on the control parameters: scaling factor F and crossover rate CR. The scaling factor controls the step size
of the mutation operation, and the crossover rate indicates the probability of exchanging elements between the
mutant and target vectors. These control parameter values significantly affect the algorithm’s performance, and
DE with the fixed parameters F and CR are only suitable for specific problems. Thus, many control parameter

Journal homepage: http://beei.org

560 ❒ ISSN: 2302-9285

adaptation techniques have been proposed to improve the algorithm’s performance.
The adaptive parameter technique uses the overall feedback from the search to adjust the parameter

values, and the self-adaptive approach encodes the parameter values to the individuals and propagates them to
others. These adaptation techniques can also modify the mutation operation. The DE algorithms with adap-
tive parameters or improved mutation operations can accelerate the search process. However, they may face
challenges in achieving high-precision solutions, such as getting stuck in local optimum or losing population
diversity. Therefore, further improvements and strategies are necessary to enhance the adaptive approaches.

This paper proposes a self-adaptive differential evolution algorithm with dynamic fitness-ranking mu-
tation and pheromone strategy called SDE-FMP. The algorithm introduces a fitness-ranking mutation strategy
that dynamically divides the population into three groups according to fitness rank. Then, it selects groups
and their vectors with adaptive probabilities to create a mutant vector. The SDE-FMP also employs the self-
adaptive control parameter adaptation by encoding the pre-assigned F and CR values to the target vector and
adjusting these values with the pheromone information. This self-adaptive process learns to find the appropriate
parameters naturally. In addition, the algorithm incorporates the resetting operation to manage the dominant
pheromone and enhance the efficiency of probabilities. The main contributions of our proposed algorithm are
the ability to achieve high-precision solutions and superior performance to the compared methods.

The remainder of this paper is organized as follows: i) section 2 briefly reviews some related work;
ii) section 3 gives details of the proposed SDE-FMP algorithm; iii) the experiment sets are given in section 4;
iv) section 5 discusses experimental results; v) the results and discussion are presented in section 6; and vi) the
conclusion is given in section 7.

2. LITERATURE REVIEW
This section reviews the basic DE algorithm, self-adaptive DE algorithms, adaptive DE algorithms,

and continuous ACO algorithms that inspire our proposed algorithm.
The basic DE algorithm has three iterative operations: mutation, crossover, and selection. The al-

gorithm generates NP population vectors from feasible solution space and indicates the best vector. For
j = 1, . . . , NP , the mutation operation creates the mutant vector vj by randomly choosing three distinct
vectors different from the target vector xj as (1):

vj = xr1 + F · (xr2 − xr3) (1)

where F is the scaling factor.

Next, the crossover operation constructs the trial vector uj by exchanging the component of xj and vj
with the crossover rate CR. Finally, the selection operation updates the target vector with the trial vector when
the fitness value of uj is better than that of xj .

Since the basic mutation equation with the fixed parameters F and CR cannot solve a wide range
of problems, the parameter adaptation and enhanced mutation strategy have been proposed to improve the
performance of basic DE.

2.1. Self-adaptive DE algorithms
The self-adaptive DE algorithms encode the control parameter values to each target vector, adapt them

based on the feedback of the search, and propagate the better ones to the next generation.
The jDE by Brest et al. [13] is the self-adaptive DE algorithm encoding Fi and CRi to ith target

vector with initial values 0.5 and 0.9, respectively. Mutation and crossover operations use these values from the
target vector with the probabilities of 0.9; otherwise, it generates anew from [0.5, 0.9] and [0, 1], respectively.
The algorithm does not use feedback from the selection operation. The jDE outperforms the basic DE with
F = 0.5 and CR = 0.9 on several benchmark functions. Cheng et al. [14] proposed DE with FDDE strategy
that uses the combined fitness and diversity rankings to position the random vectors in a mutation operator
where the diversity ranking computes from the difference of the median fitness and individual fitness values.
The strategy improves the performance of jDE in both low-dimensional and high-dimensional problems. This
work indicates the role of position selection for vectors in the mutation operator. Qin et al. [15] proposed
a differential evolution algorithm with strategy adaptation called SaDE. The algorithm uses four mutation
operations and encodes their indices to each target vector. It assigns corresponding parameters F and CR from

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 559–571

Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 561

Normal distributions and changes encoded information based on the probability of success and failure in the
selection operation. The experimental results show that SaDE outperforms basic DE and jDE. The EPSDE
algorithm by Mallipeddia et al. [16] uses an ensemble of parameters and mutation strategies. This algorithm
initially encodes a mutation strategy for a target vector and assigns corresponding parameters F and CR. If the
generated trial vector is not better than its target vector, the algorithm changes the target’s encoded information
to the new one. EPSDE outperforms the classic DE and three adaptive DE algorithms: jDE, SaDE, and JADE.

2.2. Adaptive DE algorithms
The adaptive DE algorithm adjusts the control parameter with the overall feedback from the search.

Then, the newly generated parameter will be biased according to the search feedback.
Zhang and Sanderson [17] presented the JADE algorithm that generates parameters F and CR from

the Normal and Cauchy distributions, respectively. The algorithm implements an external archive for keeping
the inferior vectors from selection and uses some top best vectors and the archived vectors in mutation.The
results show that JADE is better than the classic DE and some adaptive DE algorithms. Tanabe and Fuku-
naga [18] introduced success-history-based parameter adaptation for differential evolution (SHADE), which
improves the JADE algorithm with historical memories for each individual to update the mean of distributions.
Experimental results show that SHADE is competitive with EPSDE, JADE, and CoDE. Next, Wang et al. [19]
introduced DE with composite trial vector generation strategies and control parameters called CoDE. It gen-
erates three trial vectors with three different mutation operations and chooses the best one to compete with
the target vector. The results show that CoDE is better than jDE, JADE, SaDE, and EPSDE algorithms. Zou
et al. [20] presented the CUSDE algorithm that uses a new mutation strategy by selecting the vectors with
the probability calculated from the number of consecutive unsuccessful updates and removing individuals with
those large numbers. The basic DE with this approach outperforms basic DE and some adaptive DEs.

2.3. Ant colony optimization
ACO is the population-based algorithm using the pheromone strategy to guide the ant population to

locate optimal solutions for discrete optimization [21]. The ACO for continuous optimization requires dividing
the initial spaces into discrete subspaces for formulating the pheromone structure. During the search process,
the algorithm constructs a new solution vector with the components corresponding to subspaces according to
the pheromone gathered from better solutions [22].

The ACOR algorithm is the first ACO algorithm for continuous optimization introduced by Dorigo
and Socha [23]. The algorithm uses a pheromone structure to store the best solution components in an archive
table and generates a new candidate solution with the corresponding distributions. At the end of the generation,
it updates the pheromone by adding better candidate solutions and removing the worst archive solutions in the
table. The performance of ACOR is competitive with other probability learning methods.

Xiao and Li [24] presented the hybrid of ACOR and DE algorithms called HACO. It uses DE to
generate new candidate solutions for the ACOR algorithm. The experimental results show that HACO per-
forms better than ACOR algorithms. Singsathid and Wetweerapong [25] introduced the ACO with the domain
partitioning technique called PACO. It generates solution components from partition points of adaptive search
subspace that cover the best solutions and updates the pheromone according to the newly obtained best solution.
The experiments show that PACO outperforms some well-known continuous ACO algorithms.

3. THE PROPOSED SDE-FMP ALGORITHM
We propose a self-adaptive differential evolution algorithm with dynamic fitness-ranking mutation

and pheromone strategy, called SDE-FMP, which improve classic DE mutation by using the dynamic mutation
and self-adaptive control parameters controlled with pheromone strategy and resetting operation. The details
of SDE-FMP are as follows.

3.1. New dynamic mutation strategy for SDE-FMP
SDE-FMP sorts the population vectors at the beginning of each generation according to the fitness

values and divides them into three groups with the same size, denoted by G1, G2, G3 where they represent the
top best individuals, intermediate individuals, and worst individuals, respectively.

To create a mutant vector for each target vector xi, i = 1, 2, . . . , NP , the algorithm chooses a group
gk (from G1, G2, or G3) for each position k = 1, 2, 3 of the mutation equation (g2 and g3 must be different

Self-adaptive differential evolution algorithm with dynamic fitness-ranking mutation ... (Pirapong Singsathid)

562 ❒ ISSN: 2302-9285

for diversity) with probability vectors PropRk calculated from pheromone vectors PheromoneRk. Note that
SDE-FMP initializes all components of pheromone vectors to be 1, ensuring equal probability.

Next, the algorithm chooses three distinct random vectors xR1 , xR2 , xR3 which differ from xi by
uniformly selecting random vectors in the corresponding selected gk groups to generate a mutant vector as (2):

vi = xR1
+ F (i) · (xR2

− xR3
) (2)

where the scaling factor F (i) corresponds to target vector xi.
The mutant vector enters the crossover operation to generate the trial vector ui as (3):

ui,j =

{
vi,j ; sj ≤ CR(i) or j = Irand
xi,j ; otherwise (3)

where j = 1, . . . , D; sj is a uniform random number in (0, 1) and Irand is a randomly fixed integer from 1 to
D.

At the selection operation, if ui is better than xi, the algorithm updates the pheromone at the lth
position of gk = Gl by adding one to the associated pheromone vector position to reinforce the pheromone
information related to a successful solution as (4):

PheromoneRk(l) = PheromoneRk(l) + 1 (4)

At the end of each generation, the algorithm normalizes the PheromoneRk to the probability vector
PropRk as (5):

PropRk(l) =
PheromoneRk(l)∑3

m=1 PheromoneRk(m)
(5)

for l = 1, 2, 3.

3.2. Self-adaptive control parameters of F and CR
We use scaling factor values F = 0.5, 0.7, 0.9 to control the step size for the mutant vectors and

crossover rate values CR = 0.1, 0.9 to balance between intensifying and diversifying the search. CR = 0.1
is suitable for a local search, while CR = 0.9 is suitable for a global search. So, we have six combinations of
these values.

At initialization, the algorithm sets all components of the pheromone vector PheromoneFCR to be
one and encodes a random pair of F (i) and CR(i) for each target vector xi. The algorithm uses F (i) and
CR(i) from xi to generate a trial vector ui from mutation and crossover operations.

At the selection operation, if ui is better than xi, the target vector retains its current F (i) and CR(i)
values and the associated pheromone vector value PheromoneFCR(t) is incremented by one.

PheromoneFCR(t) = PheromoneFCR(t) + 1 (6)

where t is the corresponding index of that combination. Otherwise, the target vector is re-encoded with a
new random pair of F (i) and CR(i) based on the probability vector PropFCR, allowing the target vector to
explore new parameter values. Note that PropFCR is calculated from PheromoneFCR for each generation
as (7):

PropFCR(t) =
PheromoneFCR(t)∑6

m=1 PheromoneFCR(m)
(7)

for t = 1, 2, . . . , 6.

3.3. The pheromone resetting
At the end of each generation, SDE-FMP determines whether the pheromone vectors have reached the

specified thresholds to prevent the dominance of certain pheromone values and promote fair competition among
choices. The two parameters rg and rp represent the thresholds for PheromoneRk and PheromoneFCR,
respectively. If the sum of any pheromone vector is greater than the corresponding threshold, the algorithm

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 559–571

Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 563

resets all elements of those pheromone vectors back to 1. The pseudo code of SDE-FMP is presented in
Algorithm 1.

Algorithm 1 SDE-FMP algorithm

1: Initialize the population of NP individuals
2: Find the best vector xbest and its best function value fbest
3: Encode the F (i), CR(i) values to each target vector xi, i = 1, . . . , NP
4: Set all elements of PheromoneRk, k = 1, 2, 3 and PheromoneFCR to 1
5: Set all elements of ProbRk to be equal for k = 1, 2, 3
6: Set all elements of ProbFCR to be equal
7: Set number of function evaluations nf = 0
8: Set the V TR or the maximum number of function evaluations maxnf
9: while stopping condition is not satisfied do

10: Sort the population individuals according to fitness ranking and divide them into G1, G2, G3 groups
11: for i = 1 : NP do
12: Choose distinct xRk

vectors with the probabilities ProbRk, k = 1, 2, 3
13: Generate a mutant vector using eq. (2)
14: Apply the crossover operation eq. (3) to get a trial vector ui

15: Evaluate f(ui) and nf ← nf + 1
16: if f(ui) < f(xi) then
17: Replace xi with ui

18: Update each PheromoneRk using eq. (4)
19: Update PheromoneFCR using eq. (6)
20: if f(ui) < fbest then
21: Replace xbest with ui

22: end if
23: else
24: Re-encode the new random F (i), CR(i) for xi according to ProbFCR
25: end if
26: end for
27: if

∑
PheromoneRk ≥ rg for some k then

28: PheromoneRk ← 1, k = 1, 2, 3
29: end if
30: if

∑
PheromoneFCR ≥ rp then

31: PheromoneFCR← 1
32: end if
33: Normalize PheromoneRk to be ProbRk using eq.(5)
34: Normalize PheromoneFCR to be ProbFCR using eq.(7)
35: end while
36: Report the obtained xbest, fbest and nf

4. EXPERIMENTAL DESIGN
The performance of SDE-FMP is tested on eight selected benchmark functions that cover four main

types: uni-modal, multi-modal, separable, and non-separable. Their formulae and search ranges are presented
in Table 1. First, we design a preliminary experiment for finding the suitable values rg and rp for all types of
problems. Then, we conduct two comparison experiments to evaluate the performance of SDE-FMP against
other adaptive DE algorithms. The details of each experiment are given in the following subsections.

Self-adaptive differential evolution algorithm with dynamic fitness-ranking mutation ... (Pirapong Singsathid)

564 ❒ ISSN: 2302-9285

Table 1. Test functions
Function Formula Search range

Sphere F1(x) =

D∑
i=1

(xi)
2 [−100, 100]

Schwefel 1.2 F2(x) =

D∑
i=1

(

i∑
j=1

xj)
2 [−100, 100]

Rosenbrock F3(x) =

D−1∑
i=1

(100(xi+1 − x2
i)

2 + (xi − 1)2) [−100, 100]

Griewank F4(x) =
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos(
xi√
i
) + 1 [−600, 600]

Rastrigin F5(x) =
D∑
i=1

[x2
i − 10cos(2πxi) + 10] [−5.12, 5.12]

Ackley F6(x) = −20 exp(−0.2

√√√√ 1

D

D∑
i=1

x2
i) [−32.32]

− exp(
1

D

D∑
i=1

cos(2πxi)) + 20 + e

Schwefel F7(x) = 418.98288727243369 ·D −
D∑
i=1

(xi sin(
√

|xi|)) [−500, 500]

Schwefel 2.22 F8(x) =
D∑
i=1

|xi|+
D∏
i=1

|xi| [−100, 100]

4.1. Finding the suitable values rg and rp for SDE-FMP
To find the suitable values for resetting periods rg and rp, the dimensions of test functions are D =

10, 30. The number of population NP = 30, maxnf = 20000D and V TR = 10−10 are used. The parameters
rg and rp are varied as rg = 200, 500 and rp = 200, 300, 400. The algorithm performs 50 independent runs for
each configuration. We report the number of successful runs (NS), the mean number of function evaluations
(meanNF), and the percentage of the standard deviation of function evaluations (%SD).

4.2. Comparing the performance of SDE-FMP with other adaptive DE algorithms using V TR
We use the obtained values rg and rp to compare the performance of SDE-FMP with some well-known

adaptive DE algorithms: JADE [17], CoDE [19], jDE [13], and SaDE [15]. The SDE-FMP uses the same
setting as the first experiment, while the compared algorithms use the parameter settings as in their original
papers. The dimensions are varied as D = 10, 30, 50. All algorithms perform 100 independent runs for
each configuration. The MATLAB source codes of JADE, CoDE, jDE, and SaDE are available from Zhang’s
homepage: http://dces.essex.ac.uk/staff/qzhang.

4.3. Comparing the performance of SDE-FMP with other adaptive DE algorithms using maxnf on CEC
2005 benchmark functions

We compare the performance of SDE-FMP using suitable rg and rp with SaDE [15], FDDE F [14],
and CUSDE [20] on 30-dimensional benchmark functions of CEC 2005 [26]. The experiment reports the
mean of optimal values and standard deviation using maxnf = 10000D over 50 independent runs. The best
values of the compared algorithms are from their original papers. We use the t-test at the significance level of
0.05 to compare their performances. The symbols +, 0,− represent that the mean of the optimal value of the
SDE-FMP is superior to, equal to, and inferior to the compared algorithm, respectively.

5. EXPERIMENTAL RESULTS
5.1. The suitable values rg and rp for SDE-FMP

The experiment finds the suitable values rg and rp that give the highest number of successful runs
and the lowest meanNF for SDE-FMP. Table 2 shows that three combinations of (rg, rp) i.e., (200, 400), (500,
200), and (500, 300) give 50 successful runs for all cases. We highlight the lowest meanNF values among these
three combinations for each case and obtain rg = 500 and rp = 300 as the best values.

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 559–571

Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 565

Table 2. The performance comparison of SDE-FMP with different values rg and rp over 50 independent runs
F D Statistics

rg =200 rg =500 rg = 1000
rp = 200 rp = 300 rp =400 rp =200 rp =300 rp = 400 rp = 200 rp = 300 rp = 400

F1

10
NS 50 50 50 50 50 50 50 50 50
meanNF 9122.62 8966.98 8939.94 8589.55 8569.9 8593.13 8309.1 8301.7 8330.37
%SD 5.54 5.65 6.66 8.29 7.00 6.32 5.64 9.38 8.78

30
NS 50 50 50 50 50 50 50 50 50
meanNF 31727.14 32191.1 32070.8 31035.48 30801.56 31003.3 26165.16 29451.24 29621.88
%SD 4.24 3.08 3.17 3.87 4.21 4.05 5.54 5.65 6.13

F2

10
NS 50 50 50 50 50 50 50 50 50
meanNF 14886.4 14813.6 15007.06 14532.58 14427.32 14364.64 13775.38 14596.9 14374.22
%SD 6.98 8.68 9.23 11.01 10.5 11.33 7.50 10.68 12.54

30
NS 50 50 50 50 50 50 50 50 50
meanNF 141685.6 139038.04 139334.24 133898.42 131200.62 129951.46 107370.16 129738.66 127754.88
%SD 6.69 8.28 6.92 8.00 9.47 5.56 7.72 8.62 10.38

F3

10
NS 48 47 50 50 50 46 44 50 48
meanNF 25334.52 25313.85 25288.82 24499.9 24470.8 24742.02 21613.9 24017.18 23592.12
%SD 9.77 13.12 10.07 9.77 14.57 11.14 10.03 14.55 17.65

30
NS 49 49 50 50 50 50 50 47 47
meanNF 219922.79 227484.93 246704.98 202595.87 207844.62 218021.04 144629.44 192881.38 199274.53
%SD 10.3 11.3 11.51 9.87 12.76 10.95 8.48 12.23 12.35

F4

10
NS 50 50 50 50 50 50 50 49 49
meanNF 23443.48 24055.58 23895.28 22821 23882.2 24615.22 23696.84 23748.12 23536.1
%SD 17.16 14.51 18.72 19.98 20.50 24.70 19.75 16.59 17.67

30
NS 50 50 50 50 50 49 50 50 50
meanNF 35335.16 34497.8 34799.02 33826.88 33284.62 34164.87 28456.36 32186.2 32371.8
%SD 5.73 5.70 7.00 6.83 5.98 7.32 8.33 6.47 8.56

F5

10
NS 50 50 50 50 50 50 50 50 50
meanNF 12863.76 12887.7 12956.24 12571.5 12342.3 12494.54 12598.32 12326.3 12362.02
%SD 4.95 4.26 4.36 4.96 5.58 5.29 5.35 6.94 6.32

30
NS 50 50 50 50 50 50 50 50 50
meanNF 58730.32 57263.4 57201.62 57217.98 56480.04 55874.78 52726.84 55993.94 55891.36
%SD 4.01 3.22 3.54 4.15 3.92 4.37 5.36 4.18 3.72

F6

10
NS 50 50 50 50 50 50 50 50 50
meanNF 15230.08 15207.54 15109.3 14476.26 14143.74 14008.16 13817.44 13791.78 13784.34
%SD 4.99 5.05 5.38 5.35 4.73 5.63 7.42 8.34 8.84

30
NS 50 50 50 50 50 50 50 50 50
meanNF 52043.1 51920.1 51532.06 50354.46 49440.6 50054.94 48582.88 48513.56 48565.88
%SD 2.30 2.44 2.36 2.92 4.47 2.54 4.28 5.06 4.92

F7

10
NS 50 50 50 50 50 50 50 50 50
meanNF 11398.32 11515.02 11405.52 11092.34 10859.18 10954.26 10957.84 10834.18 10900.8
%SD 4.33 4.89 4.87 5.48 5.72 6.36 5.27 6.55 6.51

30
NS 50 50 50 50 50 50 50 48 50
meanNF 41162.04 41313.46 40652.2 40615.06 39669.68 39620.16 35394.56 39113.77 38681.88
%SD 2.88 2.75 2.79 3.74 4.63 4.70 6.57 5.46 5.39

F8

10
NS 50 50 50 50 50 50 50 50 50
meanNF 15752.34 15797.36 15921.62 15143.78 15199.58 15148.26 14683.66 14625.28 14772.74
%SD 4.09 4.03 4.34 5.04 4.33 5.93 6.75 5.50 6.02

30
NS 50 50 50 50 50 50 50 50 50
meanNF 53337.04 53095.36 52594.54 51815.44 51384.32 51184.22 50815.5 50257.46 50110.68
%SD 2.21 2.28 1.63 2.45 2.69 2.53 3.40 3.16 3.62

NO. 50 successful runs cases 14/16 14/16 16/16 16/16 16/16 14/16 15/16 13/16 13/16

5.2. Performance comparison of SDE-FMP with other adaptive DE algorithms using V TR
We compare the performance of SDE-FMP with SaDE, CoDE, jDE, and JADE using the V TR =

10−10. Table 3 presents the number of successful runs and meanNF and highlights the best results that give
100 successful runs with the lowest meanNF.

The results show that SDE-FMP, SaDE, CoDE, jDE, and JADE give 100 successful runs for 24, 12, 16,
21, and 17 cases, respectively. Their lowest mean counts are 18, 0, 1, 0, and 5, respectively. Therefore, SDE-
FMP achieves the best performance. Note that all compared algorithms cannot achieve high-quality solutions
for the Rosenbrock function F3.

Self-adaptive differential evolution algorithm with dynamic fitness-ranking mutation ... (Pirapong Singsathid)

566 ❒ ISSN: 2302-9285

Table 3. The performance comparison of SDE-FMP, SaDE, CoDE, jDE, and JADE over 100 independent runs
F D Statistics SDE-FMP SaDE CoDE jDE JADE

F1

10
NS 100 100 100 100 100
meanNF(%SD) 8549(7.70) 12304(2.82) 24199(2.80) 28358(2.57) 23035(2.95)

30
NS 100 100 100 100 100
meanNF(%SD) 30732(4.78) 31005(3.94) 61089(2.32) 67349(1.37) 34577(3.07)

50
NS 100 100 100 100 100
meanNF(%SD) 54935(2.62) 56234(3.83) 87384(2.33) 95734(1.87) 42939(2.52)

F2

10
NS 100 100 100 100 100
meanNF(%SD) 14372(9.92) 26321(19.18) 38828(4.08) 65857(4.57) 29031(5.31)

30
NS 100 100 100 100 100
meanNF(%SD) 131979(7.96) 394091(6.68) 208775(1.00) 377665(5.12) 87170(4.94)

50
NS 100 0 9 22 100
meanNF(%SD) 451807(16.85) 0(0.00) 486460(2.19) 970940(2.44) 218639(4.31)

F3

10
NS 100 38 100 100 7
meanNF(%SD) 24218(13.20) 14223(25.84) 58911(5.01) 137735(12.69) 53357(12.05)

30
NS 100 0 81 31 10
meanNF(%SD) 208507(11.35) 0(0) 281516(6.59) 529180(4.71) 126790(3.09)

50
NS 100 0 1 4 4
meanNF(%SD) 769397(11.69) 0(0) 488460(0) 946775(6.24) 225125(3.2)

F4

10
NS 100 100 100 100 100
meanNF(%SD) 23283(23.00) 23816(1.84) 13619(1.87) 47520(1.72) 54266(3.47)

30
NS 100 100 100 100 100
meanNF(%SD) 33712(6.66) 53759(2.44) 122277(1.81) 114079(1.52) 198059(1.48)

50
NS 100 100 100 100 100
meanNF(%SD) 56498(3.67) 87137(3.90) 174414(2.19) 165118(1.52) 314970(7.85)

F5

10
NS 100 100 100 100 100
meanNF(%SD) 12460(5.59) 24755(4.07) 36493(3.29) 44271(3.47) 47759(1.95)

30
NS 100 97 97 100 100
meanNF(%SD) 56188(4.13) 73422(5.32) 150794(4.22) 123334(2.68) 143686(1.30)

50
NS 100 57 49 100 100
meanNF(%SD) 148488(4.75) 133396(5.165) 290445(5.28) 193196(2.80) 236536(1.4)

F6

10
NS 100 100 100 100 49
meanNF(%SD) 14197(6.54) 20601(3.93) 28871(3.29) 32980(2.81) 43536(4.79)

30
NS 100 100 99 100 55
meanNF(%SD) 49699(3.46) 53811(3.82) 92755(3.56) 84608(2.64) 138990(1.71)

50
NS 100 91 100 100 16
meanNF(%SD) 87009(2.22) 97754(3.76) 163292(4.12) 126238(2.29) 227293(2.41)

F7

10
NS 100 100 100 100 100
meanNF(%SD) 11002(6.84) 20237(2.00) 40587(2.00) 47096(1.50) 40421(3.12)

30
NS 100 89 100 100 100
meanNF(%SD) 40029(3.77) 68850(1.32) 98994(1.90) 106889(1.67) 55491(2.99)

50
NS 100 12 100 100 100
meanNF(%SD) 76032(2.61) 324766(1.08) 138260(1.75) 149720(1.41) 67224(2.06)

F8

10
NS 100 100 100 100 100
meanNF(%SD) 15243(5.22) 36324(15.63) 59423(6.46) 65944(10.15) 86969(5.53)

30
NS 100 67 100 100 100
meanNF(%SD) 51775(2.66) 32029(5.01) 65511(7.48) 70432(3.23) 41502(28.77)

50
NS 100 52 95 100 8
meanNF(%SD) 89138(1.60) 56207(3.84) 88634(3.51) 97001(2.43) 43912(2.36)

NO. 100 successful runs cases 24/24 12/24 16/24 21/24 17/24
NO. lowest meanNF cases 18/24 0/24 1/24 0/24 5/24

5.3. Performance comparison of SDE-FMP with other adaptive DE algorithms using maxnf on the CEC
2005 benchmark functions

We compare the performance of SDE-FMP with SaDE, FDDE F, and CUSDE using the mean of
obtained best values. Table 4 shows that the superior cases of SDE-FMP to SaDE, FDDE F, and CUSDE are
12, 9, and 10, whereas the inferior ones are 5, 6, and 5. Therefore, SDE-FMP overall outperforms the compared
methods on CEC 2005 benchmark functions.

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 559–571

Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 567

Table 4. The performance comparison of SDE-FMP, SADE, FDDE F, and CUSDE on 30-dimensional
CEC2005 benchmark functions

f
SDE-FMP SaDE [15] FDDE F [14] CUSDE [20]

MEAN std. MEAN std. MEAN std. MEAN std.
f1 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 1.40E-03 + 1.47E-03 6.73E30 + 5.62E-29
f2 1.48E-14 2.52E-14 2.77E-06 + 8.52E-06 5.20E-13 + 3.36E-13 2.82E-08 + 2.28E-08
f3 3.58E+04 3.07E+04 5.33E+05 + 4.34E+05 1.01E+05 + 8.22E+04 2.32E+05 + 1.09E+05
f4 9.77E-01 6.90E+00 1.93E+02 + 3.22E+02 2.00E-03 - 1.63E-03 1.32E-05 - 1.10E-05
f5 6.83E+02 4.43E+02 3.76E+03 + 6.12E+02 1.80E+02 - 1.47E+02 9.05E-05 - 7.68E-05
f6 1.75E-13 6.75E-13 5.28E+01 + 4.15E+01 6.22E-01 + 5.07E+00 5.47E-09 + 2.60E-08
f7 6.84E-03 9.19E-03 1.65E-02 + 1.58E-02 7.20E-02 + 5.87E-02 0.00E+00 - 0.00E+00
f8 2.09E+01 4.09E-02 2.09E+01 = 1.58E-02 2.09E+01 = 1.70E-02 2.09E+01 = 5.53E-02
f9 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 5.45E+01 + 4.44E+00 5.23E+01 + 2.13E+01
f10 1.08E+02 1.55E+01 4.76E+01 - 1.26E+01 4.66E+01 - 3.80E+00 1.72E+02 - 8.29E+00
f11 2.92E+01 1.32E+00 1.68E+01 - 1.64E+00 2.79E+01 = 2.27E+00 3.73E+01 + 7.16E-01
f12 3.43E+04 5.37E+03 3.44E+03 - 4.42E+03 3.74E+03 - 5.05E+03 3.59E+03 - 4.99E+03
f13 2.83E+00 2.14E-01 3.84E+00 + 2.66E-01 1.67E+00 - 1.36E+00 1.41E+01 + 8.47E-01
f14 1.29E+01 1.74E-01 1.26E+01 = 2.83E-01 1.29E+01 = 1.05E+00 1.30E+01 = 2.12E-01
f15 2.10E+02 2.67E+01 3.85E+02 + 4.42E+01 4.00E+02 + 3.26E+01 3.33E+02 + 1.11E+02
f16 1.57E+02 5.81E+01 8.65E+01 - 5.65E+01 1.13E+02 + 9.21E+00 2.37E+02 + 8.45E+01
f17 1.88E+02 5.11E+01 8.15E+01 - 3.46E+01 2.64E+02 + 2.15E+01 2.36E+02 + 5.98E+01
f18 9.05E+02 1.53E+01 8.73E+02 = 5.44E+01 9.04E+02 = 2.37E+00 9.03E+02 = 1.18E-01
f19 9.03E+02 2.13E+01 8.74E+02 = 5.44E+01 9.05E+02 = 7.37E+00 9.03E+02 = 1.89E-01
f20 9.07E+02 1.35E+00 8.81E+02 + 5.22E+01 5.54E+02 - 4.54E-01 9.03E+02 = 7.99E-01
f21 5.00E+02 1.83E-13 5.45E+02 + 2.15E+02 5.00E+02 = 0.00E+00 5.00E+02 = 1.62E-13
f22 9.12E+02 1.02E+01 9.21E+02 + 2.66E+01 8.72E+02 = 7.10E-01 8.61E+02 = 3.77E+00
f23 5.34E+02 3.98E-04 5.34E+02 = 8.27E-04 5.34E+02 = 4.35E-02 5.34E+02 = 3.94E-04
f24 2.00E+02 8.66E-13 2.00E+02 = 8.54E-14 2.00E+02 = 0.00E+00 2.00E+02 = 2.94E-14
f25 2.11E+02 7.32E-01 2.14E+02 + 2.35E+00 2.10E+02 = 1.72E-01 2.09E+02 = 2.46E-01

(+/ = /−) 12/8/5 9/10/6 10/10/5

6. DISCUSSION
The SDE-FMP algorithm uses the pheromone strategy to adapt the probabilities for selecting sub-

groups in mutation where a high pheromone indicates a suitable group for the corresponding position in the
mutation equation. Then, the mutant vector has more potential to create a better trial vector during the search.
The algorithm also uses the pheromone for self-adaptive control parameters F and CR, where the most suc-
cessful pair of F and CR has more potential to propagate to the next generations. The pheromone reset-
ting is employed to eliminate the dominance and balance the cycle of gathering the pheromone and using the
pheromone to improve the search performance. We obtain the suitable resetting periods rg = 500 and rp = 300
for PheromoneRk, k = 1, 2, 3 and PheromoneFCR, respectively.

We further investigate the impact of SDE-FMP’s features, including the dynamic mutation strategy,
self-adaptive control parameters, and pheromone resetting. We compared the performance of the SDE-FMP
with the SDE-FMP without the proposed mutation strategy (using basic DE mutation strategy), the SDE-FMP
without self-adaptive control parameters (using fixed F = 0.5 and CR = 0.9 values), and the SDE-FMP
without pheromone resetting on the 30-dimensional Rosenbrock function for 30 independent runs. The results
presented in Table 5 demonstrate that the SDE-FMP significantly outperforms the SDE-FMP without each
feature. The dynamic mutation strategy and self-adaptive control parameters play crucial roles in improving
the convergence speed, while the pheromone resetting further enhances the achievement of high-precision
solutions.

Figures 1 and 2 illustrate the convergence graphs of SDE-FMP compared with SaDE, CoDE, jDE, and
JADE on the Sphere, Griewank, Ackley, and Schwefel functions for 10 and 30 dimensions. They show that
SDE-FMP can solve problems of various types faster than the compared algorithms.

Self-adaptive differential evolution algorithm with dynamic fitness-ranking mutation ... (Pirapong Singsathid)

568 ❒ ISSN: 2302-9285

Table 5. Comparison of SDE-FMP and SDE-FMP without dynamic mutation strategy, self-adaptive control
parameter, and pheromone resetting on the 30-dimensional Rosenbrock function

Algorithm SDE-FMP
SDE-FMP without

dynamic mutation strategy
SDE-FMP without

self-adaptive control parameters
SDE-FMP without

pheromone resetting
NS 30 4 8 23

meanNF(%SD) 207681.97(9.52) 412309.50(35.91) 487927.25(20.31) 257962.26(43.18)

0.5 1 1.5 2 2.5 3

The number of function evaluations 104

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
e

s
t

fu
n

c
ti
o

n
 v

a
lu

e

10-Dimensional sphere function

SDE-FMP

SaDE

CoDE

jDE

JADE

0.5 1 1.5 2 2.5 3

The number of function evaluations 104

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
e

s
t

fu
n

c
ti
o

n
 v

a
lu

e

10-Dimensional Griewank function

SDE-FMP

SaDE

CoDE

jDE

JADE

104 105

The number of function evaluations

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
e

s
t

fu
n

c
ti
o

n
 v

a
lu

e

10-Dimensional Ackley function

SDE-FMP

SaDE

CoDE

jDE

JADE

1 1.5 2 2.5 3 3.5 4 4.5

The number of function evaluations 104

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
e

s
t

fu
n

c
ti
o

n
 v

a
lu

e

10-Dimensional Schwefel function

SDE-FMP

SaDE

CoDE

jDE

JADE

Figure 1. Convergence graphs of SDE-FMP, SaDE, CoDE, jDE, and JADE on 10-dimensional sphere,
Griewank, Ackley, and Schwefel functions

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 559–571

Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 569

104 105

The number of function evaluations

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
e

s
t

fu
n

c
ti
o

n
 v

a
lu

e

30-Dimensional sphere function

SDE-FMP

SaDE

CoDE

jDE

JADE

104 105

The number of function evaluations

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
e

s
t

fu
n

c
ti
o

n
 v

a
lu

e

30-Dimensional Griewank function

SDE-FMP

SaDE

CoDE

jDE

JADE

104 105

The number of function evaluations

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
e

s
t

fu
n

c
ti
o

n
 v

a
lu

e

30-Dimensional Ackley function
SDE-FMP

SaDE

CoDE

jDE

JADE

4 6 8 10 12 14 16
The number of function evaluations

104

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
e

s
t

fu
n

c
ti
o

n
 v

a
lu

e

30-Dimensional Schwefel function
SDE-FMP

SaDE

CoDE

jDE

JADE

Figure 2. Convergence graphs of SDE-FMP, SaDE, CoDE, jDE, and JADE on 30-dimensional sphere,
Griewank, Ackley and Schwefel functions

7. CONCLUSION
This paper presents a self-adaptive differential evolution algorithm with dynamic fitness-ranking mu-

tation and pheromone strategy called SDE-FMP. The pheromone strategy manages the adaptive probabilities
for a dynamic mutation and self-adaptive control parameters, and the resetting operation helps the search to
prevent premature convergence and stagnation. As a result, the proposed algorithm can solve problems of var-
ious types. Experiments indicate that SDE-FMP gives high-precision solutions and outperforms the compared
methods on benchmark functions.

ACKNOWLEDGEMENT
Pirapong Singsathid thanks the Development and Promotion of Science and Technology talents project

(DPST) for the financial support. Pikul Puphasuk and Jeerayut Wetweerapong would like to thank the Depart-
ment of Mathematics, Faculty of Science, Khon Kaen University for simulation equipment support.

Self-adaptive differential evolution algorithm with dynamic fitness-ranking mutation ... (Pirapong Singsathid)

570 ❒ ISSN: 2302-9285

REFERENCES
[1] W. Aribowo and B. S. Supari, “A hunger game search algorithm for economic load dispatch,” IAES International Journal of Artificial

Intelligence (IJ-AI), vol. 11, no. 2, pp. 632–640, 2022, doi: 10.11591/ijai.v11.i2.pp632-640.
[2] B.Ouacha, H. Bouyghf, M. Nahid, and S. Abenna, “Dea-based on optimization of inductive coupling for powering implantable

biomedical devices,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 13, no. 3, pp. 1558–1567, 2022,
doi: 10.11591/ijpeds.v13.i3.pp1558-1567.

[3] A. R. Khaparde, R. P. Sundarasamy, S. Rajendran, A. Ticku, and A. Palanichamy, “Analysis of new differential evolution variants
to solve multi-modal problems,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 3, pp. 1352–1359, 2023,
doi: 10.11591/ijai.v12.i3.pp1352-1359.

[4] A. Hiendro, I. Yusuf, F. Husin, and K. H. Khwee, “Photovoltaic parameters estimation of poly-crystalline and mono-crystalline
modules using an improved population dynamic differential evolution algorithm,” International Journal of Electrical and Computer
Engineering (IJECE), vol. 12, no. 5, pp. 4538–4548, 2022, doi: 10.11591/ijece.v12i5.pp4538-4548.

[5] N. S. K. Gandikota, M. H. Hasan, and J. Jaafar, “An adaptive metaheuristic approach for risk-budgeted portfolio optimization,” IAES
International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 1, pp. 305–314, 2023, doi: 10.11591/ijai.v12.i1.pp305-314.

[6] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and
artificial intelligence, MIT press, 1992.

[7] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp.
28–39, 2006, doi: 10.1109/MCI.2006.329691.

[8] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95. Proceedings of The Sixth International
Symposium on Micro Machine and Human Science, pp. 39–43, IEEE, 1995, doi: 10.1109/MHS.1995.494215.

[9] J. Kennedy and R. Eberhart, ”Particle swarm optimization,” Proceedings of ICNN’95 - International Conference on Neural Net-
works, Perth, WA, Australia, 1995, pp. 1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968.

[10] D. Karaboga and B. Basturk, “On the performance of artificial bee colony (ABC) algorithm,” Applied Soft Computing, vol. 8, no. 1,
pp. 687–697, 2008, doi: 10.1016/j.asoc.2007.05.007.

[11] R. Storn and K. Price, “Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces,”
Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997, doi: 10.1023/A:1008202821328.

[12] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in differential evolution–an updated survey,” Swarm and Evolutionary
Computation, vol. 27, pp. 1–30, 2016, doi: 10.1016/j.swevo.2016.01.004.

[13] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: A compara-
tive study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006,
doi: 10.1109/TEVC.2006.872133.

[14] J. Cheng, Z. Pan, H. Liang, Z. Gao, and J. Gao, “Differential evolution algorithm with fitness and diversity ranking-based mutation
operator,” Swarm and Evolutionary Computation, vol. 61, p. 100816, 2021, doi: 10.1016/j.swevo.2020.100816.

[15] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical opti-
mization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2008, doi: 10.1109/TEVC.2008.927706.

[16] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren, “Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Applied Soft Computing, vol. 11, no. 2, pp. 1679–1696, 2011, doi: 10.1016/j.asoc.2010.04.024.

[17] J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution with optional external archive,” IEEE Transactions on Evolu-
tionary Computation, vol. 13, no. 5, pp. 945–958, 2009, doi: 10.1109/TEVC.2009.2014613.

[18] R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential evolution,” in 2013 IEEE Congress on
Evolutionary Computation, pp. 71–78, IEEE, 2013, doi: 10.1109/CEC.2013.6557555.

[19] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite trial vector generation strategies and control parameters,”
IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 55–66, 2011, doi: 10.1109/TEVC.2010.2087271.

[20] L. Zou, Z. Pan, Z. Gao, and J. Gao, “Improving the search accuracy of differential evolution by using the number of consecutive
unsuccessful updates,” Knowledge-Based Systems, vol. 250, p. 109005, 2022, doi: 10.1016/j.knosys.2022.109005.

[21] C. Blum, “Ant colony optimization: Introduction and recent trends,” Physics of Life Reviews, vol. 2, no. 4, pp. 353–373, 2005, doi:
10.1016/j.plrev.2005.10.001.

[22] Z. Chen, S. Zhou, and J. Luo, “A robust ant colony optimization for continuous functions,” Expert Systems with Applications,
vol. 81, pp. 309–320, 2017, doi: 10.1016/j.eswa.2017.03.036.

[23] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” European Journal of Operational Research, vol. 185,
no. 3, pp. 1155–1173, 2008, doi: 10.1016/j.ejor.2006.06.046.

[24] J. Xiao and L. Li, “A hybrid ant colony optimization for continuous domains,” Expert Systems with Applications, vol. 38, no. 9, pp.
11072–11077, 2011, doi: 10.1016/j.eswa.2011.02.151.

[25] P. Singsathid and J. Wetweerapong, “Solving continuous optimization problems by ant colony optimization with domain partitioning
technique,” in Proceedings of the 23rd Annual Meeting in Mathematics (AMM2018), pp. 257–262, 2018.

[26] P. N. Suganthan et al., “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,”
KanGAL report, vol. 2005005, no. 2005, p. 2005, 2005.

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 559–571

Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 571

BIOGRAPHIES OF AUTHORS

Pirapong Singsathid completed his M.Sc. degree in Applied Mathematics from Khon
Kaen University, Thailand in 2018. He is a Ph.D. student in Applied Mathematics, Khon Kaen Uni-
versity. His research area is optimization. He can be contacted at email: pirapongs@kkumail.com.

Jeerayut Wetweerapong completed his M.Sc. degree in Mathematics from West Virginia
University, US in 1995 and Ph.D. degree in Mathematics from Khon Kaen University, Thailand in
2012. He is an assistant professor at Department of Mathematics, Khon Kaen University. He has
been doing research in field of scientific computing and optimization. He can be contacted at email:
wjeera@kku.ac.th.

Pikul Puphasuk completed her M.Sc. degree in Mathematics from Khon Kaen University,
Thailand in 2002 and Ph.D. degree in Applied Mathematics from Suranaree University of Technol-
ogy, Thailand in 2009. She is an associate professor at Department of Mathematics, Khon Kaen
University. Her research areas include computational sciences, numerical analysis, and optimization.
She can be contacted at email: ppikul@kku.ac.th.

Self-adaptive differential evolution algorithm with dynamic fitness-ranking mutation ... (Pirapong Singsathid)

https://orcid.org/0000-0002-6711-0672
https://scholar.google.co.id/citations?hl=id&user=ipG2AVsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58516375900
https://orcid.org/0000-0001-5053-3989
https://www.scopus.com/authid/detail.uri?authorId=57213199428
https://orcid.org/0000-0001-9069-1703
https://www.scopus.com/authid/detail.uri?authorId=36154844600
https://scholar.google.co.id/citations?hl=id&user=GgyeGgMAAAAJ

	Introduction
	Literature review
	Self-adaptive DE algorithms
	Adaptive DE algorithms
	Ant colony optimization

	The proposed SDE-FMP algorithm
	New dynamic mutation strategy for SDE-FMP
	Self-adaptive control parameters of F and CR
	The pheromone resetting

	Experimental design
	Finding the suitable values rg and rp for SDE-FMP
	Comparing the performance of SDE-FMP with other adaptive DE algorithms using VTR
	Comparing the performance of SDE-FMP with other adaptive DE algorithms using maxnf on CEC 2005 benchmark functions

	Experimental results
	The suitable values rg and rp for SDE-FMP
	Performance comparison of SDE-FMP with other adaptive DE algorithms using VTR
	Performance comparison of SDE-FMP with other adaptive DE algorithms using maxnf on the CEC 2005 benchmark functions

	Discussion
	Conclusion

