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 The COVID-19 pandemic has highlighted the importance of accurately 

predicting disease severity to ensure timely intervention and effective 

allocation of healthcare resources, which can ultimately improve patient 

outcomes. This study aims to develop an efficient machine learning (ML) 

model based on patient demographic and clinical data. It utilizes advanced 

feature engineering techniques to reduce the dimensionality of dataset and 

address the issue of highly imbalanced data using synthetic minority 

oversampling technique (SMOTE). The study employs several ensemble 

learning models, including XGBoost, Random Forest, AdaBoost, voting 

ensemble, enhanced-weighted voting ensemble, and stack-based ensembles 

with support vector machine (SVM) and Gaussian Naïve Bayes as meta-

learners, to develop the proposed model. The results indicate that the 

proposed model outperformed the top-performing models reported in 

previous studies. It achieved an accuracy of 0.978, sensitivity of 1.0, 

precision of 0.875, F1-score of 0.934, and receiver operating characteristic 

area under the curve (ROC-AUC) of 0.965. The study identified several 

features that significantly correlated with COVID-19 severity, which 

included respiratory rate (breaths per minute), c-reactive proteins, age, and 

total leukocyte count (TLC) count. The proposed approach presents a 

promising method for accurate COVID-19 severity prediction, which may 

prove valuable in assisting healthcare providers in making informed 

decisions about patient care. 
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1. INTRODUCTION 

In recent years, the global response to the ongoing novel coronavirus disease (COVID-19) 

pandemic, caused by COVID-19, has been marked by its rapid spread and significant impact on public 

health, economies, and society. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) and is known for its highly contagious nature and ability to cause severe respiratory 

infections [1]. The accurate prediction of COVID-19 clinical outcomes and understanding its severity has 

become essential for effective healthcare resource management. Identifying individuals at higher risk of 

severe disease is crucial for timely medical interventions, treatment optimization, and improved patient 

https://creativecommons.org/licenses/by-sa/4.0/
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outcomes. Furthermore, predicting COVID-19 severity aids in prioritizing vaccinations and guiding public 

health measures for high-risk populations. 

Machine learning (ML), a branch of artificial intelligence (AI) that relies on data-driven learning 

models, has found extensive application in healthcare, including risk assessment, large dataset analysis, and 

result prediction [2]–[5]. Recently, ML has emerged as a valuable tool for predicting COVID-19 severity [6], 

[7]. ML algorithms analyze diverse data, including clinical parameters, demographics, and biomarkers, to 

develop predictive models. These models uncover intricate patterns and correlations that might elude human 

observation, enabling accurate and timely disease severity prediction. While earlier prognosis for COVID-19 

patients was limited due to a lack of disease knowledge, ML and AI techniques have enabled accurate 

outcome prediction. These models focus on self-improvement through learning from examples, obviating the 

need for explicit programming. Multiple studies have aimed to create models for early-stage infectious 

disease onset prediction in patients [8]–[11]. Promising results have emerged from ML approaches to 

COVID-19 severity prediction [12], [13]. By harnessing these techniques, researchers and healthcare 

professionals can enhance patient triage, resource allocation, and clinical decision-making. 

This study seeks to contribute to the growing understanding of COVID-19 severity prediction by 

comprehensively analyzing biomarkers, clinical parameters, and ML techniques. The structure of this paper 

is as follows: section 2 provides a literature overview and highlights prior research on COVID-19 severity 

prediction. Section 3 outlines the study's methodology, encompassing data collection, preprocessing, feature 

selection, and model development. Section 4 demonstrates model performance, presents results and analysis, 

and discusses implications and potential clinical applications. Lastly, section 5 concludes by summarizing 

key findings, addressing limitations, and suggesting avenues for future research. 

 

 

2. RELATED WORK 

COVID-19 severity prediction research has garnered substantial global interest, leading to a 

multitude of studies exploring diverse approaches and methodologies. A significant focus of these 

investigations lies in the identification and analysis of clinical parameters as potential predictors of  

COVID-19 severity. Numerous research studies have been dedicated to the prediction of COVID-19 severity, 

employing diverse ML algorithms. A comprehensive overview of related studies is presented in Table 1, 

based on three key selection criteria: i) the primary focus of the study is on COVID severity prediction; ii) 

the utilization of ML algorithms plays a pivotal role in the predictive modeling process; and iii) the 

evaluation and measurement of COVID severity are conducted through the application of predictive models. 

 

 

Table 1. Literature survey 

Ref. ML models used 
SMOTE 

analysis 

Important 

features 

Sample 

size 
Performance 

[14] Multi-layer perceptron (MLP) No 8 257 MLP: AUC score=0.96, F1-score=0.791, 

accuracy=0.943, precision=0.848, 

sensitivity=0.776 
[15] Deep learning No 11 10937 RF: AUC score=0.869, sensitivity=0.822, 

accuracy=0.807, specificity=0.787 

[16] Random forest (RF), support vector 
machine (SVM), logistic regression (LR) 

Yes 5 224 RF: AUC score=0.86, sensitivity=0.80, 
accuracy=0.80, specificity=0.81 

[17] RF, naïve bayes (NB), SVM, k-nearest 

neighbors (KNN), LR, artificial neural 

network (ANN) 

No 5 422 GNB: AUC score=0.89, sensitivity=83.8%, 

accuracy=81.2%, specificity=81.2% 

[18] MLP, radial basis function (RBF), general 

regression neural network (GRNN), SVM, 
RF 

No 32 80 RF: sensitivity=0.6785, accuracy=0.9083, 

precision=0.9083, specificity=0.978, F1-
score=0.7756 

[19] XGBoost (XGB), LR No 15 3028 XGBoost: AUC score=0.8517, 

sensitivity=0.7747, accuracy=0.7682, 
precision=0.7652, F1-score=0.7697 

[20] LR, linear discriminant analysis (LDA), 
KNN, classification and regression trees 

(CART), NB, SVM, RF 

No 11 992 SVM: sensitivity=0.69, accuracy=0.6, 
precision=0.95, F1-score=0.8 

[21] LR, XGB, RF Yes 7 287 RF: sensitivity=0.949, accuracy=0.952, 
specificity=0.956, F1-score=0.955 

[22] RF Yes 10 5059 RF: AUC score=0.98 

[23] RF, NB, and gradient boosting No 7 478 RF: sensitivity=98.6, accuracy=78.4, 
precision=91, specificity=94.7, F1-

score=95 
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The experimental setup involved the utilization of both base and ensemble models, with and without 

synthetic minority oversampling technique (SMOTE) analysis, considering datasets with diverse sample 

sizes. The evaluation of these models was based on the receiver operating characteristic area under the curve 

(ROC-AUC) score, sensitivity, accuracy, precision, and F1-score. Despite advancements, several challenges 

and limitations have persisted. One prominent limitation is the relatively small dataset, as highlighted in 

previous studies [14], [17], [18], [20], [21]. This limitation indicates that existing studies may have been 

conducted on limited data, potentially leading to biased or less generalizable findings. Another noteworthy 

limitation is the need to explore additional biomarkers and clinical features. This limitation indicates that 

researchers should explore and investigate other potential biomarkers and clinical features that may 

significantly contribute to the predictive power of the model [14]. Furthermore, addressing the issue of 

imbalanced datasets, and employing appropriate feature selection techniques is a challenge in ensuring 

reliable predictions. The need to discern the most pivotal features and optimal ML techniques is crucial for 

precise COVID-19 severity prediction. 

 

3. METHODOLOGY  

3.1.  Data 

In this study, we used a dataset obtained from the public dataset by Bhat et al. [14]. The dataset was 

originally collected from 257 confirmed COVID-19 patients admitted to the DY Patil group of hospitals in 

Pune, Maharashtra, India between July and September 2020. The confirmation of COVID-19 cases was 

based on positive real-time polymerase chain reaction (RT-PCR) tests for SARS-CoV-2 infection. Patient 

records were collected and anonymized at the Council of Scientific and Industrial Research (CSIR)-Institute 

of Genomics and Integrative Biology (CSIR-IGIB) data warehouse to ensure data privacy and confidentiality. 

This dataset contains 50 features, including demographic and clinical information such as oxygen saturation, 

respiratory rate, body mass index (BMI), age, sex, comorbidities, and respiratory support levels. In addition, 

detailed blood test reports were included for 31 different test parameters, including C-reactive protein (CRP), 

interleukin 6 (IL-6), total leukocyte count (TLC), D-dimer, and lactate dehydrogenase. 

 

3.2.  Data pre-processing 

Before conducting our analysis, we performed additional data preprocessing to address any potential 

data quality issues and standardize the data for further analysis. The data were initially examined to identify 

and remove irrelevant columns such as patient id, area, date of collection, etc. resulting in the removal of 

seven columns. To address missing data, another seven columns with a higher percentage of missing values 

were dropped from the dataset because imputing these missing values could introduce bias. Additionally, two 

columns containing constant values and zeros were identified and removed from the dataset as they did not 

offer any meaningful information for analysis. To enrich the dataset with valuable information, feature 

extraction was performed on the symptoms presented and co-morbid condition columns, resulting in the 

creation of 14 new columns. Moreover, a new target column, severity, was generated by combining the 

information from the existing Outcome and ventilatory support required columns. If a patient required 

ventilator support or demise, the corresponding entry in the severity column was marked as severe else no 

severe, facilitating the classification task [14]. Because data quality and completeness are critical for accurate 

analysis, all rows with missing values, particularly for biological features, were excluded from the dataset. 

Consequently, the dataset was refined and 151 records with 45 relevant features were retained for further 

analysis. 

Figure 1 illustrates the distribution of no-severe and severe COVID-19 cases categorized by sex. 

The data highlight a higher number of male patients affected by the virus, as both no-severe and severe cases 

are more prevalent among males.The age distribution histogram in Figure 2 provides valuable insights into 

the relationship between age and the severity of COVID-19 symptoms. The majority of COVID-19 patients 

in the dataset fall within the age range of 30-70, with a higher number of patients displaying no-severe 

symptom compared to severe symptom within this age bracket. However, beyond the age of 70 years, there 

was a significant increase in patients experiencing severe symptoms, with a notable peak observed. 

Moreover, patients over the age of 80 are more prone to experiencing severe symptoms than no-severe. These 

observations underscore the critical role of age in determining the severity of COVID-19 symptoms and have 

important implications for healthcare policies aimed at addressing the prevention and treatment of  

COVID-19. Upon inspecting the target variable severity, it was evident (Figure 3) that the dataset exhibited 

an imbalanced class distribution, with an approximate ratio of 1:6 between the severe and no-severe classes.  
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Figure 1. Distribution of patients with severe and 

non-severe COVID-19 based on sex 

Figure 2. Distribution of severe and no-severe 

COVID-19 patients based on age 

 

 

 
 

Figure 3. Distribution of severe and non-severe patients 

 

 

3.3.  Proposed model 

In this study, we embarked on feature-engineering techniques to identify the most relevant and 

informative features. We employed various methods, including f-test analysis of variance (ANOVA), mutual 

information (MI), uniform manifold approximation and projection (UMAP), and principal component 

analysis (PCA), to extract salient information from the dataset. Each technique yielded a reduced dataset with 

selected features, which were then split into training and testing sets at a 70:30 ratio. To identify the best 

feature engineering model, we employed conventional ML techniques, namely, SVM, LR, decision tree 

(DT), KNN, and Gaussian Naive Bayes (GNB), on each of the reduced datasets. This step allowed us to 

assess the performance of each technique and to identify the most effective feature selection approach. The 

selection of the LR, DT, KNN, SVM, and GNB ML algorithms for our research on COVID-19 severity 

prediction is grounded in robust reasoning and notable attributes: i) proven success in health disorder 

diagnosis and treatment [6], ii) flexibility in handling complex classification tasks [8], and iii) prominence in 

the ML community [6]. Leveraging ensemble learning methods, including RF, XGB, AdaBoost, ExtraTrees, 

voting ensemble, enhanced voting ensemble [5], and stack-based algorithm with meta-learners SVM 

(SBA_meta_SVM) and GNB (SBA_meta_GNB), we harnessed the collective power of multiple base models 

to achieve accurate and robust predictions. Figure 4 illustrates the comprehensive workflow of the entire 

process undertaken in this study. 
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Figure 4. Workflow of the proposed model 

 

 

3.4.  Feature engineering techniques 

In the context of ML classification problems, dimensionality reduction and feature selection serve as 

solutions to overcome the challenges associated with a large number of features. High dimensionality poses 

difficulties in visualization, analysis, overfitting, and accuracy. The following feature engineering techniques 

were applied in this study. 

− F-Test ANOVA is a statistical method that compares the means of two or more groups to determine if 

there is a significant difference between them. It assumes normal distribution and equal variances and 

calculates the ratio of variance between groups to variance within groups to determine the statistical 

significance of the difference between means. It can be used in various applications, such as clinical trials 

or evaluating the performance of different groups. 

− MI is a measure of the amount of information that two variables share. It is calculated by comparing the 

joint distribution of the variables to their individual distributions. It is often used in feature selection and 

dimensionality reduction to identify the most informative features for a given task. 

− PCA is a powerful technique for dimensionality reduction that can be used for feature selection in ML. By 

identifying the most important features and reducing the dimensionality of the dataset, it can improve the 

performance and stability of ML models. 

− UMAP is a nonlinear dimensionality reduction technique used to visualize high-dimensional data in a 

lower-dimensional space. It works by constructing a topological representation of the data and preserving 

the local structure of the data in the lower-dimensional space. UMAP has become increasingly popular due 

to its ability to better preserve the global and local structure of the data compared to other dimensionality 

reduction techniques. 

 

3.5.  SMOTE 

SMOTE [24], [25] is an oversampling method that addresses class imbalance by generating 

synthetic examples for the minority class. SMOTE selects k nearest neighbors from the minority class for 

each instance and constructs new synthetic instances by interpolating between the feature values of the 

selected instance(s) and those of its nearest neighbors. The new instances are located in the same region of 

the feature space as the original instances but differ slightly in their feature values. SMOTE repeats this 

process until the desired level of oversampling is achieved.  

 

3.6.  GidSearchCV 

In this study, hyperparameter tuning was performed using GridSearchCV(), a widely used technique 

for optimizing ML models. This method systematically explores the hyperparameter space through an 

exhaustive search over a predefined set of hyperparameter values. The model was trained and evaluated for 

all possible combinations of these hyperparameters using cross-validation, ensuring robust performance 
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evaluation. The optimal hyperparameters were selected based on the maximization of the specified evaluation 

metric. Adoption of GridSearchCV() in this study facilitated the identification of the most suitable 

hyperparameter settings for our model, enhancing its performance on unseen data. 

 

3.7.  Machine learning techniques 

In this research, the following ML techniques have been employed: 

− LR is an algorithm in supervised ML for binary classification problems. The algorithm predicts the output 

of a categorical dependent variable by considering a given set of independent variables. This approach 

anticipates the outcome of binary events, such as yes or no. 

− SVM procedure categorizes linear and non-linear data. SVM uses non-linear mapping to transform the 

training set to a high level. In this new dimension, SVM searches for the optimal linear hyperplane to 

separate tuples of one class from another as a decision boundary. A hyperplane with the appropriate non-

linear mapping in higher dimensions can separate two-class data. In contrast to the other approaches, 

hyperplanes are robust for overfitting. 

− KNN is a non-parametric algorithm that classifies data points based on their neighbors. It assigns a class 

label by considering the majority vote of the k nearest neighbors. It is simple but can be computationally 

expensive for large datasets. 

− DT is a tree-based algorithm that splits data based on features to create decision rules. It recursively 

partitions data until reaching homogeneous subsets. It is interpretable, handles both numerical and 

categorical data, and can be prone to overfitting. 

− GNB is a probabilistic classifier that uses Bayes theorem and assumes a Gaussian distribution of features 

given class labels. It is computationally efficient and well-suited for high-dimensional datasets with 

continuous features but may not perform well when assumptions of normality and independence are not 

met. GNB is widely used in ML and serves as a baseline for comparing more complex algorithms. 

− XGBoost is an ensemble-based technique [7] for classification and regression that is a regularized form of 

the gradient-boosting algorithm. One issue with gradient boosting algorithms is the potential for model 

overfitting due to data imbalance. XGB addresses this by incorporating a regularization parameter that 

reduces the risk of overfitting. XGB is also a tree-based ensemble classifier, and it uses a boosting data 

resampling method to minimize the misclassification error and improve accuracy. This method is iterative 

and utilizes records that were not successfully predicted in previous iterations for training in subsequent 

iterations until an optimal result is achieved. 

− AdaBoost is a ML algorithm used for classification tasks. It combines multiple weak classifiers to create a 

strong classifier. It updates sample weights based on weak classifier performance and aggregates their 

predictions for the final result. AdaBoost is popular for its ability to enhance classification model accuracy 

and has found wide application in ML. 

− RF is an ensemble classifier that uses decision-making with various types of trees. It evaluates the division 

to create a DT using an arbitrary sequence of features at each node, and each tree is based on the individual 

values of a random variable. To increase the trees, we can use bagging along with the selection of the 

random attribute using the CART method. RF uses a random linear combination of the input attributes, and 

new attributes are created, reflecting a linear combination of existing features rather than choosing the sub-

cluster of features randomly. 

− ExtraTrees ML algorithm utilizes an ensemble of DT to make predictions. It is an extension of the RF 

algorithm that employs a technique known as extremely randomized trees. In contrast to RF, ExtraTrees 

chooses split points randomly for each feature and then selects the optimal split among them. This 

approach increases the robustness of the model to noisy and irrelevant features and reduces the risk of 

overfitting. ExtraTrees has demonstrated high performance in classification and regression tasks and is 

particularly well-suited to handling large datasets with high-dimensional features. 

− Voting ensemble, also known as majority voting, is a popular ensemble learning method that combines the 

predictions of multiple individual models to improve the overall accuracy of a ML system. The technique 

involves training multiple base models on the same dataset using different learning algorithms or 

hyperparameters and then aggregating their predictions to arrive at a final decision. The ensemble can be 

configured to use a simple majority vote or to weight the predictions of each model according to their 

performance. 

− Enhanced-weighted voting ensemble [5] is an extension of the traditional voting ensemble method that 

assigns different weights to individual classifiers based on their performance on the training set. Here, the 

algorithm calculates weights and individual weights for a set of inputs and then classifies another set of 

inputs into positive or negative classes based on the sum of weights in each class. The performance of 

EWE has been evaluated through experiments on different datasets and compared with other ensemble 
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methods, demonstrating its effectiveness in improving classification accuracy and handling imbalanced 

datasets. 

− Stacked ensemble methods are a type of ML algorithm that combines multiple models to create a more 

accurate and robust model. In this approach, several base models are trained independently, and their 

predictions are combined to create a meta-model. The meta-model is trained on the predictions made by 

the base models and aims to learn the optimal combination of the base models' predictions to make a final 

prediction. Stacked ensemble methods are often used in classification and regression problems and can 

improve the accuracy of predictions by reducing bias and variance. However, they can also be 

computationally intensive and require careful tuning of hyperparameters. 

 

3.8.  Model evaluation 

The performance of the model was meticulously assessed using a range of key evaluation metrics: 

accuracy, which measures overall correctness; precision, indicating the proportion of true positives among 

predicted positives; sensitivity, gauging the true positive rate; specificity, representing the true negative rate; 

ROC-AUC, which evaluates the model's ability to distinguish between classes; and the F1-score, which 

balances precision and sensitivity. 

 

 

4. RESULTS AND DISCUSSION  

The results of our study demonstrate the effectiveness of various feature engineering techniques in 

reducing the dimensionality of the pre-processed dataset for COVID-19 severity prediction. Applying the  

F-Test ANOVA led to a reduced dataset with only 16 features, selected based on significant p-values  

(<0.05). Similarly, mutual information yielded reduced datasets with 10 features, selected based on mutual 

information scores. UMAP, and PCA yielded reduced datasets with 5 and 13 optimal value of n_components 

respectively. Subsequently, conventional ML techniques, including SVM, KNN, LR, DT, and GNB, were 

applied to each reduced dataset derived from the feature engineering techniques. A comprehensive 

comparison of the results for different feature engineering techniques is presented in Table 2, and Table 3 

displays the weighted features obtained using these techniques. 

Remarkably, the DT model on the reduced dataset obtained by F-Test ANOVA, emerged as the best 

feature engineering model, showing superior predictive performance. This model, consisting of only four 

features, namely, respiratory rate (breaths per minute), C-REACTIVE PROTEINS, age, and TLC COUNT 

proved to be highly effective in predicting COVID-19 severity, as shown in Figure 5. 
 

 

Table 2. Comparison of results for different feature engineering techniques 
Feature engineering Model Accuracy F1-score ROC-AUC 

MI KNN 0.804 - 0.474 
GNB 0.804 0.571 0.827 

DT 0.87 0.4 0.631 

SVM 0.827 0.429 0.663 
LR 0.76 0.153 0.507 

ANOVA KNN 0.804 - 0.474 

GNB 0.76 0.476 0.741 

DT 0.891 0.545 0.701 

SVM 0.869 0.625 0.805 

LR 0.847 0.533 0.734 

PCA DT 0.804 0 0.474 

DT 0.804 0.571 0.826 

GNB 0.869 0.4 0.63 

DT 0.826 0.429 0.663 

GNB 0.76 0.154 0.507 
UMAP GNB 0.76 0.267 0.566 

KNN 0.848 -  0.5 

DT 0.848 0.364 0.618 

SVM 0.717 0.134 0.482 

LR 0.76 0.154 0.508 

 

 

Table 3. Weighted features through feature engineering 
Sets Features selected 

Mutual information set Respiratory rate (breaths per minute), C-REACTIVE PROTEINS, age, Urea 

F-Test ANOVA set Respiratory rate (breaths per minute), C-REACTIVE PROTEINS, age, TLC COUNT 
PCA set 13-components 

UMAP set 5-components 
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Figure 5. Feature importance scores of the best feature engineering model (DT) 

 

 

To enhance our predictive models further, various ensemble techniques were employed on the final 

reduced dataset. Among them, voting ensemble achieved the highest performance, with an ROC-AUC, 

accuracy, sensitivity, specificity, precision, and F1-score of 0.821, 0.934, 0.714, 0.974, 0.834, and 0.769 

respectively, as presented in Table 4.  

 

 

Table 4. Comparison of ensemble models performance-without SMOTE 
Ensemble models ROC-AUC Accuracy Sensitivity Specificity Precision F1-score Time elapsed (s) 

XGBoost 0.86 0.934 0.571 1 1 0.727 6.206 

RF 0.831 0.913 0.571 0.974 0.8 0.667 114.583 

AdaBoost 0.714 0.913 0.571 0.974 0.8 0.667 0.110 
ExtraTrees 0.9 0.934 0.571 1 1 0.727 100.672 

Voting ensembles 0.821 0.934 0.714 0.974 0.834 0.769 0.063 

Enhanced weighted 
voting ensemble 

0.812 0.934 0.571 1 1 0.727 0.047 

SBA-GNB 0.667 0.891 0.714 0.923 0.625 0.667 0.078 

SBA-SVM 0.614 0.847 0.571 0.897 0.5 0.534 0.078 

 

 

The original dataset exhibits class imbalance, which can potentially impact the model's performance. 

To overcome this issue, SMOTE is applied to the training set, resulting in a balanced dataset that ensures 

both classes are equally represented. Prior to SMOTE, the training set comprised 15 severe cases and 90  

non-severe cases, highlighting the severe class imbalance. However, after applying SMOTE, the number of 

samples in the training set increased to 180, with an equal representation of 90 samples for both the severe 

and non-severe classes. The application of SMOTE to address class imbalance resulted in an even more 

robust performance. The AdaBoost emerged as the top-performing ensemble model, showing remarkable 

ROC-AUC, accuracy, sensitivity, specificity, precision, and F1-score of 0.965, 0.978, 1.0, 0.974, 0.875, and 

0.934 respectively, with a swift execution time of 0.088 s, as shown in Table 5. 

Figure 6 provides a visual representation of ROC curves of different ensemble models. Figure 7 

presents a comprehensive comparison of the evaluation parameters for different models using SMOTE. The 

evaluation metrics used in the comparison included ROC-AUC, accuracy, sensitivity, specificity, precision, 

and F1-score.  

 

 

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 3, June 2024: 1718-1729 

1726 

Table 5. Comparison of ensemble models performance-with SMOTE 
Ensemble models ROC-AUC Accuracy Sensitivity Specificity Precision F1-score Time elapsed (s) 

XGBoost 0.998 0.935 1.0 0.923 0.7 0.823 6.917 
RF 0.999 0.935 0.857 0.948 0.7 0.800 121.372 

AdaBoost 0.965 0.978 1.0 0.974 0.875 0.934 0.0888 

ExtraTrees 0.999 0.913 0.857 0.923 0.667 0.750 117.986 
Voting ensembles 0.994 0.870 0.857 0.871 0.545 0.667 54.419 

Enhanced weighted 

voting ensemble 

0.996 0.870 0.857 0.871 0.545 0.667 57.457 

SBA-GNB 0.977 0.913 1.0 0.897 0.636 0.778 49.572 

SBA-SVM 0.937 0.652 0.28 0.71 0.153 0.200 46.923 

 

 

 

 
 

Figure 6. ROC-AUC curve for different ensemble models 

 

 

 
 

Figure 7. Comparison of performance evaluations (with SMOTE) for different ML models 

 

 

In this study, we effectively addressed several challenges and limitations identified in the literature 

survey, thereby enhancing the robustness and applicability of COVID-19 severity prediction models. Our 
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research presents significant achievements in overcoming these challenges, contributing to the advancement 

of predictive modelling for COVID-19 severity assessment. 

To address the limitations of a limited dataset, we employed various feature engineering techniques, 

including F-Test ANOVA, mutual information, UMAP, and PCA. These techniques effectively reduce the 

dimensionality of the pre-processed dataset, allowing us to retain essential features while mitigating the 

potential loss of information due to random undersampling. Furthermore, by employing conventional ML 

techniques and ensemble methods on a reduced dataset, scalable and robust prediction models were 

successfully developed. Our top-performing ensemble model, the Adaboost, demonstrated exceptional 

accuracy, F1-score, sensitivity, and ROC-AUC metrics, meeting the need for better predictive performance. 

We have also addressed the issue of data imbalance by using the SMOTE. Imbalanced datasets are 

common in clinical settings, where the number of severe COVID-19 cases is often significantly lower than 

that of non severe cases. The incorporation of SMOTE in our predictive modelling approach not only 

addresses the data imbalance challenge, but also contributes to the overall robustness and generalizability of 

the COVID-19 severity prediction models. This ensures that the models are better equipped to handle real-

world scenarios with imbalanced datasets and enhances the model's reliability in clinical decision-making 

processes. 

Bhat et al. [14] reported that the MLP model achieved the highest accuracy of 0.942, an F1-score of 

0.791, a precision of 0.847, a sensitivity of 0.776, and a ROC-AUC score of 0.961. However, in our study 

with the same dataset, the proposed model, exhibits superior performance in terms of accuracy of 0.978, F1-

score of 0.934, precision of 0.875, sensitivity of 1.0, and ROC-AUC score of 0.965 making it a promising 

choice for COVID-19 severity prediction with a substantial improvement in F1-score from 0.791 to 0.934. 

 

 

5. CONCLUSION  

This research highlights the significance of robust feature engineering and ensemble techniques for 

predicting COVID-19 severity. The DT model derived from the F-Test ANOVA demonstrated superior 

performance, and the application of SMOTE further enhanced the accuracy and predictive power of the 

ensemble models. The proposed model outperformed the top-performing models reported in previous studies 

by achieving an accuracy of 0.978, sensitivity of 1.0, precision of 0.875, F1-score of 0.934, and  

ROC-AUC of 0.987. These results have promising implications for improving clinical decision-making and 

patient care in the management of COVID-19 cases. 

Looking towards the future scope, we propose the acquisition of larger and diverse datasets from 

multiple healthcare centers for external validation to enhance the generalizability of predictive models. In 

addition, we advocate the integration of multiple data sources, such as genomic and imaging data, to capture 

a comprehensive view of the complexity of the disease. Moreover, we encourage further exploration of 

explainable AI techniques to improve the interpretability of models and foster better acceptance and trust in 

the healthcare community. 
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