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The COVID-19 pandemic has highlighted the importance of accurately
predicting disease severity to ensure timely intervention and effective
allocation of healthcare resources, which can ultimately improve patient
outcomes. This study aims to develop an efficient machine learning (ML)
model based on patient demographic and clinical data. It utilizes advanced
feature engineering techniques to reduce the dimensionality of dataset and
address the issue of highly imbalanced data using synthetic minority
oversampling technique (SMOTE). The study employs several ensemble
learning models, including XGBoost, Random Forest, AdaBoost, voting
ensemble, enhanced-weighted voting ensemble, and stack-based ensembles
with support vector machine (SVM) and Gaussian Naive Bayes as meta-
learners, to develop the proposed model. The results indicate that the
proposed model outperformed the top-performing models reported in
previous studies. It achieved an accuracy of 0.978, sensitivity of 1.0,
precision of 0.875, F1-score of 0.934, and receiver operating characteristic
area under the curve (ROC-AUC) of 0.965. The study identified several
features that significantly correlated with COVID-19 severity, which
included respiratory rate (breaths per minute), c-reactive proteins, age, and
total leukocyte count (TLC) count. The proposed approach presents a
promising method for accurate COVID-19 severity prediction, which may
prove valuable in assisting healthcare providers in making informed
decisions about patient care.
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1. INTRODUCTION

In recent years, the global response to the ongoing novel coronavirus disease (COVID-19)
pandemic, caused by COVID-19, has been marked by its rapid spread and significant impact on public
health, economies, and society. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) and is known for its highly contagious nature and ability to cause severe respiratory
infections [1]. The accurate prediction of COVID-19 clinical outcomes and understanding its severity has
become essential for effective healthcare resource management. Identifying individuals at higher risk of
severe disease is crucial for timely medical interventions, treatment optimization, and improved patient
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outcomes. Furthermore, predicting COVID-19 severity aids in prioritizing vaccinations and guiding public
health measures for high-risk populations.

Machine learning (ML), a branch of artificial intelligence (Al) that relies on data-driven learning
models, has found extensive application in healthcare, including risk assessment, large dataset analysis, and
result prediction [2]-[5]. Recently, ML has emerged as a valuable tool for predicting COVID-19 severity [6],
[7]. ML algorithms analyze diverse data, including clinical parameters, demographics, and biomarkers, to
develop predictive models. These models uncover intricate patterns and correlations that might elude human
observation, enabling accurate and timely disease severity prediction. While earlier prognosis for COVID-19
patients was limited due to a lack of disease knowledge, ML and Al techniques have enabled accurate
outcome prediction. These models focus on self-improvement through learning from examples, obviating the
need for explicit programming. Multiple studies have aimed to create models for early-stage infectious
disease onset prediction in patients [8]-[11]. Promising results have emerged from ML approaches to
COVID-19 severity prediction [12], [13]. By harnessing these techniques, researchers and healthcare
professionals can enhance patient triage, resource allocation, and clinical decision-making.

This study seeks to contribute to the growing understanding of COVID-19 severity prediction by
comprehensively analyzing biomarkers, clinical parameters, and ML techniques. The structure of this paper
is as follows: section 2 provides a literature overview and highlights prior research on COVID-19 severity
prediction. Section 3 outlines the study's methodology, encompassing data collection, preprocessing, feature
selection, and model development. Section 4 demonstrates model performance, presents results and analysis,
and discusses implications and potential clinical applications. Lastly, section 5 concludes by summarizing
key findings, addressing limitations, and suggesting avenues for future research.

2. RELATED WORK

COVID-19 severity prediction research has garnered substantial global interest, leading to a
multitude of studies exploring diverse approaches and methodologies. A significant focus of these
investigations lies in the identification and analysis of clinical parameters as potential predictors of
COVID-19 severity. Numerous research studies have been dedicated to the prediction of COVID-19 severity,
employing diverse ML algorithms. A comprehensive overview of related studies is presented in Table 1,
based on three key selection criteria: i) the primary focus of the study is on COVID severity prediction; ii)
the utilization of ML algorithms plays a pivotal role in the predictive modeling process; and iii) the
evaluation and measurement of COVID severity are conducted through the application of predictive models.

Table 1. Literature survey

SMOTE  Important ~ Sample

Ref. ML models used - - Performance
analysis features size
[14] Multi-layer perceptron (MLP) No 8 257 MLP: AUC score=0.96, F1-score=0.791,
accuracy=0.943, precision=0.848,
sensitivity=0.776
[15] Deep learning No 11 10937 RF: AUC score=0.869, sensitivity=0.822,
accuracy=0.807, specificity=0.787
[16] Random forest (RF), support vector Yes 5 224 RF: AUC score=0.86, sensitivity=0.80,
machine (SVM), logistic regression (LR) accuracy=0.80, specificity=0.81
[17] RF, naive bayes (NB), SVM, k-nearest No 5 422 GNB: AUC score=0.89, sensitivity=83.8%,
neighbors (KNN), LR, artificial neural accuracy=81.2%, specificity=81.2%
network (ANN)
[18] MLP, radial basis function (RBF), general No 32 80 RF: sensitivity=0.6785, accuracy=0.9083,
regression neural network (GRNN), SVM, precision=0.9083, specificity=0.978, F1-
RF score=0.7756
[19] XGBoost (XGB), LR No 15 3028 XGBoost: AUC score=0.8517,
sensitivity=0.7747, accuracy=0.7682,
precision=0.7652, F1-score=0.7697
[20] LR, linear discriminant analysis (LDA), No 11 992 SVM: sensitivity=0.69, accuracy=0.6,
KNN, classification and regression trees precision=0.95, F1-score=0.8
(CART), NB, SVM, RF
[21] LR, XGB, RF Yes 7 287 RF: sensitivity=0.949, accuracy=0.952,
specificity=0.956, F1-score=0.955
[22] RF Yes 10 5059 RF: AUC score=0.98
[23] RF, NB, and gradient boosting No 7 478 RF: sensitivity=98.6, accuracy=78.4,
precision=91, specificity=94.7, F1-
score=95
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The experimental setup involved the utilization of both base and ensemble models, with and without
synthetic minority oversampling technique (SMOTE) analysis, considering datasets with diverse sample
sizes. The evaluation of these models was based on the receiver operating characteristic area under the curve
(ROC-AUC) score, sensitivity, accuracy, precision, and F1-score. Despite advancements, several challenges
and limitations have persisted. One prominent limitation is the relatively small dataset, as highlighted in
previous studies [14], [17], [18], [20], [21]. This limitation indicates that existing studies may have been
conducted on limited data, potentially leading to biased or less generalizable findings. Another noteworthy
limitation is the need to explore additional biomarkers and clinical features. This limitation indicates that
researchers should explore and investigate other potential biomarkers and clinical features that may
significantly contribute to the predictive power of the model [14]. Furthermore, addressing the issue of
imbalanced datasets, and employing appropriate feature selection techniques is a challenge in ensuring
reliable predictions. The need to discern the most pivotal features and optimal ML techniques is crucial for
precise COVID-19 severity prediction.

3. METHODOLOGY
3.1. Data

In this study, we used a dataset obtained from the public dataset by Bhat et al. [14]. The dataset was
originally collected from 257 confirmed COVID-19 patients admitted to the DY Patil group of hospitals in
Pune, Maharashtra, India between July and September 2020. The confirmation of COVID-19 cases was
based on positive real-time polymerase chain reaction (RT-PCR) tests for SARS-CoV-2 infection. Patient
records were collected and anonymized at the Council of Scientific and Industrial Research (CSIR)-Institute
of Genomics and Integrative Biology (CSIR-IGIB) data warehouse to ensure data privacy and confidentiality.
This dataset contains 50 features, including demographic and clinical information such as oxygen saturation,
respiratory rate, body mass index (BMI), age, sex, comorbidities, and respiratory support levels. In addition,
detailed blood test reports were included for 31 different test parameters, including C-reactive protein (CRP),
interleukin 6 (IL-6), total leukocyte count (TLC), D-dimer, and lactate dehydrogenase.

3.2. Data pre-processing

Before conducting our analysis, we performed additional data preprocessing to address any potential
data quality issues and standardize the data for further analysis. The data were initially examined to identify
and remove irrelevant columns such as patient id, area, date of collection, etc. resulting in the removal of
seven columns. To address missing data, another seven columns with a higher percentage of missing values
were dropped from the dataset because imputing these missing values could introduce bias. Additionally, two
columns containing constant values and zeros were identified and removed from the dataset as they did not
offer any meaningful information for analysis. To enrich the dataset with valuable information, feature
extraction was performed on the symptoms presented and co-morbid condition columns, resulting in the
creation of 14 new columns. Moreover, a new target column, severity, was generated by combining the
information from the existing Outcome and ventilatory support required columns. If a patient required
ventilator support or demise, the corresponding entry in the severity column was marked as severe else no
severe, facilitating the classification task [14]. Because data quality and completeness are critical for accurate
analysis, all rows with missing values, particularly for biological features, were excluded from the dataset.
Consequently, the dataset was refined and 151 records with 45 relevant features were retained for further
analysis.

Figure 1 illustrates the distribution of no-severe and severe COVID-19 cases categorized by sex.
The data highlight a higher number of male patients affected by the virus, as both no-severe and severe cases
are more prevalent among males.The age distribution histogram in Figure 2 provides valuable insights into
the relationship between age and the severity of COVID-19 symptoms. The majority of COVID-19 patients
in the dataset fall within the age range of 30-70, with a higher number of patients displaying no-severe
symptom compared to severe symptom within this age bracket. However, beyond the age of 70 years, there
was a significant increase in patients experiencing severe symptoms, with a notable peak observed.
Moreover, patients over the age of 80 are more prone to experiencing severe symptoms than no-severe. These
observations underscore the critical role of age in determining the severity of COVID-19 symptoms and have
important implications for healthcare policies aimed at addressing the prevention and treatment of
COVID-19. Upon inspecting the target variable severity, it was evident (Figure 3) that the dataset exhibited
an imbalanced class distribution, with an approximate ratio of 1:6 between the severe and no-severe classes.
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3.3. Proposed model

In this study, we embarked on feature-engineering techniques to identify the most relevant and
informative features. We employed various methods, including f-test analysis of variance (ANOVA), mutual
information (MI), uniform manifold approximation and projection (UMAP), and principal component
analysis (PCA), to extract salient information from the dataset. Each technique yielded a reduced dataset with
selected features, which were then split into training and testing sets at a 70:30 ratio. To identify the best
feature engineering model, we employed conventional ML techniques, namely, SVM, LR, decision tree
(DT), KNN, and Gaussian Naive Bayes (GNB), on each of the reduced datasets. This step allowed us to
assess the performance of each technique and to identify the most effective feature selection approach. The
selection of the LR, DT, KNN, SVM, and GNB ML algorithms for our research on COVID-19 severity
prediction is grounded in robust reasoning and notable attributes: i) proven success in health disorder
diagnosis and treatment [6], ii) flexibility in handling complex classification tasks [8], and iii) prominence in
the ML community [6]. Leveraging ensemble learning methods, including RF, XGB, AdaBoost, ExtraTrees,
voting ensemble, enhanced voting ensemble [5], and stack-based algorithm with meta-learners SVM
(SBA_meta_SVM) and GNB (SBA_meta_GNB), we harnessed the collective power of multiple base models
to achieve accurate and robust predictions. Figure 4 illustrates the comprehensive workflow of the entire
process undertaken in this study.
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Figure 4. Workflow of the proposed model

3.4. Feature engineering techniques

In the context of ML classification problems, dimensionality reduction and feature selection serve as
solutions to overcome the challenges associated with a large number of features. High dimensionality poses
difficulties in visualization, analysis, overfitting, and accuracy. The following feature engineering techniques
were applied in this study.

— F-Test ANOVA is a statistical method that compares the means of two or more groups to determine if
there is a significant difference between them. It assumes normal distribution and equal variances and
calculates the ratio of variance between groups to variance within groups to determine the statistical
significance of the difference between means. It can be used in various applications, such as clinical trials
or evaluating the performance of different groups.

— Ml is a measure of the amount of information that two variables share. It is calculated by comparing the
joint distribution of the variables to their individual distributions. It is often used in feature selection and
dimensionality reduction to identify the most informative features for a given task.

— PCA is a powerful technique for dimensionality reduction that can be used for feature selection in ML. By
identifying the most important features and reducing the dimensionality of the dataset, it can improve the
performance and stability of ML models.

— UMAP is a nonlinear dimensionality reduction technique used to visualize high-dimensional data in a
lower-dimensional space. It works by constructing a topological representation of the data and preserving
the local structure of the data in the lower-dimensional space. UMAP has become increasingly popular due
to its ability to better preserve the global and local structure of the data compared to other dimensionality
reduction techniques.

3.5. SMOTE

SMOTE [24], [25] is an oversampling method that addresses class imbalance by generating
synthetic examples for the minority class. SMOTE selects k nearest neighbors from the minority class for
each instance and constructs new synthetic instances by interpolating between the feature values of the
selected instance(s) and those of its nearest neighbors. The new instances are located in the same region of
the feature space as the original instances but differ slightly in their feature values. SMOTE repeats this
process until the desired level of oversampling is achieved.

3.6. GidSearchCV

In this study, hyperparameter tuning was performed using GridSearchCV(), a widely used technique
for optimizing ML models. This method systematically explores the hyperparameter space through an
exhaustive search over a predefined set of hyperparameter values. The model was trained and evaluated for
all possible combinations of these hyperparameters using cross-validation, ensuring robust performance
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evaluation. The optimal hyperparameters were selected based on the maximization of the specified evaluation
metric. Adoption of GridSearchCV() in this study facilitated the identification of the most suitable
hyperparameter settings for our model, enhancing its performance on unseen data.

3.7. Machine learning techniques
In this research, the following ML techniques have been employed:

LR is an algorithm in supervised ML for binary classification problems. The algorithm predicts the output
of a categorical dependent variable by considering a given set of independent variables. This approach
anticipates the outcome of binary events, such as yes or no.

SVM procedure categorizes linear and non-linear data. SVM uses non-linear mapping to transform the
training set to a high level. In this new dimension, SVM searches for the optimal linear hyperplane to
separate tuples of one class from another as a decision boundary. A hyperplane with the appropriate non-
linear mapping in higher dimensions can separate two-class data. In contrast to the other approaches,
hyperplanes are robust for overfitting.

KNN is a non-parametric algorithm that classifies data points based on their neighbors. It assigns a class
label by considering the majority vote of the k nearest neighbors. It is simple but can be computationally
expensive for large datasets.

DT is a tree-based algorithm that splits data based on features to create decision rules. It recursively
partitions data until reaching homogeneous subsets. It is interpretable, handles both numerical and
categorical data, and can be prone to overfitting.

GNB is a probabilistic classifier that uses Bayes theorem and assumes a Gaussian distribution of features
given class labels. It is computationally efficient and well-suited for high-dimensional datasets with
continuous features but may not perform well when assumptions of normality and independence are not
met. GNB is widely used in ML and serves as a baseline for comparing more complex algorithms.
XGBoost is an ensemble-based technique [7] for classification and regression that is a regularized form of
the gradient-boosting algorithm. One issue with gradient boosting algorithms is the potential for model
overfitting due to data imbalance. XGB addresses this by incorporating a regularization parameter that
reduces the risk of overfitting. XGB is also a tree-based ensemble classifier, and it uses a boosting data
resampling method to minimize the misclassification error and improve accuracy. This method is iterative
and utilizes records that were not successfully predicted in previous iterations for training in subsequent
iterations until an optimal result is achieved.

AdaBoost is a ML algorithm used for classification tasks. It combines multiple weak classifiers to create a
strong classifier. It updates sample weights based on weak classifier performance and aggregates their
predictions for the final result. AdaBoost is popular for its ability to enhance classification model accuracy
and has found wide application in ML.

RF is an ensemble classifier that uses decision-making with various types of trees. It evaluates the division
to create a DT using an arbitrary sequence of features at each node, and each tree is based on the individual
values of a random variable. To increase the trees, we can use bagging along with the selection of the
random attribute using the CART method. RF uses a random linear combination of the input attributes, and
new attributes are created, reflecting a linear combination of existing features rather than choosing the sub-
cluster of features randomly.

ExtraTrees ML algorithm utilizes an ensemble of DT to make predictions. It is an extension of the RF
algorithm that employs a technique known as extremely randomized trees. In contrast to RF, ExtraTrees
chooses split points randomly for each feature and then selects the optimal split among them. This
approach increases the robustness of the model to noisy and irrelevant features and reduces the risk of
overfitting. ExtraTrees has demonstrated high performance in classification and regression tasks and is
particularly well-suited to handling large datasets with high-dimensional features.

Voting ensemble, also known as majority voting, is a popular ensemble learning method that combines the
predictions of multiple individual models to improve the overall accuracy of a ML system. The technique
involves training multiple base models on the same dataset using different learning algorithms or
hyperparameters and then aggregating their predictions to arrive at a final decision. The ensemble can be
configured to use a simple majority vote or to weight the predictions of each model according to their
performance.

Enhanced-weighted voting ensemble [5] is an extension of the traditional voting ensemble method that
assigns different weights to individual classifiers based on their performance on the training set. Here, the
algorithm calculates weights and individual weights for a set of inputs and then classifies another set of
inputs into positive or negative classes based on the sum of weights in each class. The performance of
EWE has been evaluated through experiments on different datasets and compared with other ensemble
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methods, demonstrating its effectiveness in improving classification accuracy and handling imbalanced
datasets.

— Stacked ensemble methods are a type of ML algorithm that combines multiple models to create a more
accurate and robust model. In this approach, several base models are trained independently, and their
predictions are combined to create a meta-model. The meta-model is trained on the predictions made by
the base models and aims to learn the optimal combination of the base models' predictions to make a final
prediction. Stacked ensemble methods are often used in classification and regression problems and can
improve the accuracy of predictions by reducing bias and variance. However, they can also be
computationally intensive and require careful tuning of hyperparameters.

3.8. Model evaluation

The performance of the model was meticulously assessed using a range of key evaluation metrics:
accuracy, which measures overall correctness; precision, indicating the proportion of true positives among
predicted positives; sensitivity, gauging the true positive rate; specificity, representing the true negative rate;
ROC-AUC, which evaluates the model's ability to distinguish between classes; and the F1-score, which
balances precision and sensitivity.

4. RESULTS AND DISCUSSION

The results of our study demonstrate the effectiveness of various feature engineering techniques in
reducing the dimensionality of the pre-processed dataset for COVID-19 severity prediction. Applying the
F-Test ANOVA led to a reduced dataset with only 16 features, selected based on significant p-values
(<0.05). Similarly, mutual information yielded reduced datasets with 10 features, selected based on mutual
information scores. UMAP, and PCA yielded reduced datasets with 5 and 13 optimal value of n_components
respectively. Subsequently, conventional ML techniques, including SVM, KNN, LR, DT, and GNB, were
applied to each reduced dataset derived from the feature engineering techniques. A comprehensive
comparison of the results for different feature engineering techniques is presented in Table 2, and Table 3
displays the weighted features obtained using these techniques.

Remarkably, the DT model on the reduced dataset obtained by F-Test ANOVA, emerged as the best
feature engineering model, showing superior predictive performance. This model, consisting of only four
features, namely, respiratory rate (breaths per minute), C-REACTIVE PROTEINS, age, and TLC COUNT
proved to be highly effective in predicting COVID-19 severity, as shown in Figure 5.

Table 2. Comparison of results for different feature engineering techniques
Feature engineering  Model  Accuracy  Fl-score ROC-AUC

MI KNN 0.804 - 0.474
GNB 0.804 0.571 0.827
DT 0.87 0.4 0.631
SVM 0.827 0.429 0.663
LR 0.76 0.153 0.507
ANOVA KNN 0.804 - 0.474
GNB 0.76 0.476 0.741
DT 0.891 0.545 0.701
SVM 0.869 0.625 0.805
LR 0.847 0.533 0.734
PCA DT 0.804 0 0.474
DT 0.804 0.571 0.826
GNB 0.869 0.4 0.63
DT 0.826 0.429 0.663
GNB 0.76 0.154 0.507
UMAP GNB 0.76 0.267 0.566
KNN 0.848 - 0.5
DT 0.848 0.364 0.618
SVM 0.717 0.134 0.482
LR 0.76 0.154 0.508

Table 3. Weighted features through feature engineering

Sets Features selected
Mutual information set Respiratory rate (breaths per minute), C-REACTIVE PROTEINS, age, Urea
F-Test ANOVA set Respiratory rate (breaths per minute), C-REACTIVE PROTEINS, age, TLC COUNT
PCA set 13-components
UMAP set 5-components

Bulletin of Electr Eng & Inf, Vol. 13, No. 3, June 2024; 1718-1729



Bulletin of Electr Eng & Inf ISSN: 2302-9285 g 1725

Feature Importance From Decision Tree Model Weights

0.7 calor

[}

s 0.6

o 0.6
)]

y 05

C

g 0.4 04
a

E o3

[}

|

3 02 0.2
m

L1}

[T

0.1
|| ™ o
8 by, X

A 4 c 9 I Y £ 4 5 G ¢ &
S5y, e Re, {CCO Sos, " &g sy, "oy, Op e, Rep.. e, g, Cugy
3%, Cr, 7 g, L, a5, o, s &
% Wy Oge ¥ Ry g Ogp Sp S0 Or%f
e A S
s, 7 D, 0, 8
o & s
Qat" s ]-'1#3- }.}1{6‘3 Af’?("
Dg,. r
l,}J‘F’l’?{.’(
Features

Figure 5. Feature importance scores of the best feature engineering model (DT)

To enhance our predictive models further, various ensemble techniques were employed on the final
reduced dataset. Among them, voting ensemble achieved the highest performance, with an ROC-AUC,
accuracy, sensitivity, specificity, precision, and F1-score of 0.821, 0.934, 0.714, 0.974, 0.834, and 0.769
respectively, as presented in Table 4.

Table 4. Comparison of ensemble models performance-without SMOTE
Ensemble models ROC-AUC  Accuracy Sensitivity Specificity  Precision  Fl-score Time elapsed (s)

XGBoost 0.86 0.934 0.571 1 1 0.727 6.206
RF 0.831 0.913 0.571 0.974 0.8 0.667 114.583
AdaBoost 0.714 0.913 0.571 0.974 0.8 0.667 0.110
ExtraTrees 0.9 0.934 0.571 1 1 0.727 100.672
Voting ensembles 0.821 0.934 0.714 0.974 0.834 0.769 0.063
Enhanced weighted 0.812 0.934 0.571 1 1 0.727 0.047
voting ensemble

SBA-GNB 0.667 0.891 0.714 0.923 0.625 0.667 0.078
SBA-SVM 0.614 0.847 0.571 0.897 0.5 0.534 0.078

The original dataset exhibits class imbalance, which can potentially impact the model's performance.
To overcome this issue, SMOTE is applied to the training set, resulting in a balanced dataset that ensures
both classes are equally represented. Prior to SMOTE, the training set comprised 15 severe cases and 90
non-severe cases, highlighting the severe class imbalance. However, after applying SMOTE, the number of
samples in the training set increased to 180, with an equal representation of 90 samples for both the severe
and non-severe classes. The application of SMOTE to address class imbalance resulted in an even more
robust performance. The AdaBoost emerged as the top-performing ensemble model, showing remarkable
ROC-AUC, accuracy, sensitivity, specificity, precision, and F1-score of 0.965, 0.978, 1.0, 0.974, 0.875, and
0.934 respectively, with a swift execution time of 0.088 s, as shown in Table 5.

Figure 6 provides a visual representation of ROC curves of different ensemble models. Figure 7
presents a comprehensive comparison of the evaluation parameters for different models using SMOTE. The
evaluation metrics used in the comparison included ROC-AUC, accuracy, sensitivity, specificity, precision,
and F1-score.
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Table 5. Comparison of ensemble models performance-with SMOTE

Ensemble models ROC-AUC  Accuracy Sensitivity Specificity Precision  Fl-score Time elapsed (s)
XGBoost 0.998 0.935 1.0 0.923 0.7 0.823 6.917
RF 0.999 0.935 0.857 0.948 0.7 0.800 121.372
AdaBoost 0.965 0.978 1.0 0.974 0.875 0.934 0.0888
ExtraTrees 0.999 0.913 0.857 0.923 0.667 0.750 117.986
Voting ensembles 0.994 0.870 0.857 0.871 0.545 0.667 54.419
Enhanced weighted 0.996 0.870 0.857 0.871 0.545 0.667 57.457
voting ensemble
SBA-GNB 0.977 0.913 1.0 0.897 0.636 0.778 49.572
SBA-SVM 0.937 0.652 0.28 0.71 0.153 0.200 46.923
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Figure 7. Comparison of performance evaluations (with SMOTE) for different ML models

In this study, we effectively addressed several challenges and limitations identified in the literature
survey, thereby enhancing the robustness and applicability of COVID-19 severity prediction models. Our
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research presents significant achievements in overcoming these challenges, contributing to the advancement
of predictive modelling for COVID-19 severity assessment.

To address the limitations of a limited dataset, we employed various feature engineering techniques,
including F-Test ANOVA, mutual information, UMAP, and PCA. These techniques effectively reduce the
dimensionality of the pre-processed dataset, allowing us to retain essential features while mitigating the
potential loss of information due to random undersampling. Furthermore, by employing conventional ML
techniques and ensemble methods on a reduced dataset, scalable and robust prediction models were
successfully developed. Our top-performing ensemble model, the Adaboost, demonstrated exceptional
accuracy, F1-score, sensitivity, and ROC-AUC metrics, meeting the need for better predictive performance.

We have also addressed the issue of data imbalance by using the SMOTE. Imbalanced datasets are
common in clinical settings, where the number of severe COVID-19 cases is often significantly lower than
that of non severe cases. The incorporation of SMOTE in our predictive modelling approach not only
addresses the data imbalance challenge, but also contributes to the overall robustness and generalizability of
the COVID-19 severity prediction models. This ensures that the models are better equipped to handle real-
world scenarios with imbalanced datasets and enhances the model's reliability in clinical decision-making
processes.

Bhat et al. [14] reported that the MLP model achieved the highest accuracy of 0.942, an F1-score of
0.791, a precision of 0.847, a sensitivity of 0.776, and a ROC-AUC score of 0.961. However, in our study
with the same dataset, the proposed model, exhibits superior performance in terms of accuracy of 0.978, F1-
score of 0.934, precision of 0.875, sensitivity of 1.0, and ROC-AUC score of 0.965 making it a promising
choice for COVID-19 severity prediction with a substantial improvement in F1-score from 0.791 to 0.934.

5. CONCLUSION

This research highlights the significance of robust feature engineering and ensemble techniques for
predicting COVID-19 severity. The DT model derived from the F-Test ANOVA demonstrated superior
performance, and the application of SMOTE further enhanced the accuracy and predictive power of the
ensemble models. The proposed model outperformed the top-performing models reported in previous studies
by achieving an accuracy of 0.978, sensitivity of 1.0, precision of 0.875, Fl-score of 0.934, and
ROC-AUC of 0.987. These results have promising implications for improving clinical decision-making and
patient care in the management of COVID-19 cases.

Looking towards the future scope, we propose the acquisition of larger and diverse datasets from
multiple healthcare centers for external validation to enhance the generalizability of predictive models. In
addition, we advocate the integration of multiple data sources, such as genomic and imaging data, to capture
a comprehensive view of the complexity of the disease. Moreover, we encourage further exploration of
explainable Al techniques to improve the interpretability of models and foster better acceptance and trust in
the healthcare community.
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