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 Brain-computer interfaces have been explored for years with the intent of 

using human thoughts to control mechanical system. By capturing the 

transmission of signals directly from the human brain or 

electroencephalogram (EEG), human thoughts can be made as motion 

commands to the robot. This paper presents a prototype for an 

electroencephalogram (EEG) based brain-actuated robot control system using 

mental commands. In this study, Linear Discriminant Analysis (LDA) and 

Support Vector Machine (SVM) method were combined to establish the best 

model. Dataset containing features of EEG signals were obtained from the 

subject non-invasively using Emotiv EPOC headset. The best model was 

then used by Brain-Computer Interface (BCI) to classify the EEG signals into 

robot motion commands to control the robot directly. The result of the 

classification gave the average accuracy of 69.06%. 
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1. INTRODUCTION  

A brain-computer interface (BCI) system provides a communication between human brain and a 

computer by interpreting the intention of the brain via EEG signals.The feasibility of the technique was first 

demonstrated using brain activity acquired from the intracranial electrodes implanted in the motor cortex of 

rats [1], and monkeys [2]-[5]. The main problems for the development of reliable signal translation methods 

are due to the variability of mental activities such as motoric imagery activity and subject characteristics.  

In some studies, EEG signals were preprocessed by applying Single Channel Independent 

Component Analysis (SCICA) [6] and Empirical Mode Decomposition (EMD) [7], the features were 

extracted using the summation of several power spectrum components before classification. Higuchi fractal 

dimension was used for classifying the EEG signals recorded from the subjects before and after meditation 

[8]. Another study was to analyze early Alzheimer EEGs by utilizing the power spectral analysis and other 

complexity features [9]. Learning styles of 68 participants were assessed via Kolb’s Learning Style 

Inventory, and the EEG signals were recorded from the prefrontal cortex. The alpha and theta spectral 

centroid frequencies were utilized as the inputs of k-nearest neighbor classifier to divide the participants into 

four learning groups, i.e. diverger, assimilator, converger, and accommodator groups [10]. 

Recently, the most developed technology is Brain Computer Interface (BCI) application. The EEG 

recorded based on imagery activities is translated by an automation system to derive the original motoric or 

other cognitive-related intentions. One study in this field was implemented by employing bandpass filter and 

Common Spatial Pattern (CSP) for noise filtering. Then, the features were extracted using Principle 

Component Analysis (PCA), and classified by applying Interval Type-2 Fuzzy Logic System [11]. EEG 

signals of left and right hand movement imagination were extracted by obtaining the DWT coefficients of the 

EEG beta band. The features were classified into two classes using probabilistic and back propagation neural 

networks [12]. 
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Another application, the assessment of different stimulus modalities of video games using Emotiv 

EEG showed that intensity game play was related to the frequency bands. During high-intensity events, beta 

and gamma power was significantly increased compared to low intensity events [13]. EEG signals captured 

by the Emotiv Epoc Headset were applied to control the Spykee mobile robot via a wireless communication. 

The pattern recognition was carried out by the echo state network [14]. The BCI system for controlling a 

LEGO Mindstorms NXT robot using Neurosky headset and Emotiv Epoch was evaluated based on 

participant’s experience with a descriptive label on a 7-point scale. The result had the average of 4.2 and the 

standard deviation of 1.2 for controlling the robot to move forward and to end the track [15]. 

The Emotiv EPOC system was studied for the capability to recognize the P300 event-related 

potential for P300-speller based on the oddball paradigm [16]. The Emotiv EPOC system was also tested and 

compared with the medical grade system for the auditory ERP research [17] and the P300 speller-like system 

[18]. The P300 event-related potentials for disable Subjects using stimuli of the six-choice P300 paradigm 

were classified using singular spectrum analysis (SSA) and multilayer perceptron (MLP) [19], andwavelet 

transform, MLP, and soft margin SVM [20]. 

This study employed the Emotiv EPOC to control a mobile robot to move forward, backward, turn 

right, turn left, and neutral, via EEG imagery motion. The Emotiv EPOC headset has 14 saline electrodes and 

2 reference electrodes which are used to collect EEG data from the subject, and transmit the data wirelessly 

to a computer for processing. Initially, EEG signals of imagery motion were recorded and processed off-line 

to train the classification system, which consisted of Linear Discriminant Analysis (LDA) and Support 

Vector Machine (SVM). Then the obtained model was applied to predict the class of the real-time EEG 

signals and the result was translated into one of the five motion commands. Since the recognition of the EEG 

signals was used to control a mobile robot in real-time processing, the sampled EEG signals of 14 channels 

(after normalization every 0.5 s) were used directly as the feature vector of the classifier. 

 

 

2. MATERIAL  

Raw EEG data were obtained from the EEG data recording of mental command thought of a test 

subject using the Emotiv EPOC. EEG data recording process was done by using Emotiv Xavier testbench 

software. The use of Emotiv EPOC device by a test subject is shown in Figure 1. 

 

 

 
 

Figure 1. The test subject used Emotiv EPOC headset to record EEG data 

 

 

EEG was recorded when the test subject thought certain mental commands by imagining the 

movement of the object. The test subject must focus, relax, and there are not many disturbing movements 

when doing the mental commands. We used “Mental Command Suite” to help the test subject do the mental 

commands that allowed the test subject to control the motion of a 3-dimensional cube using his mind. The 3D 

cube can move up, down, left and right according to the test subject's mind, as shown in Figure 2. The mental 

command suite is included in Emotiv Xavier software. 

From the process of recording the data, we obtained raw EEG data consisting of 5 classes of motion: 

neutral, forward, backward, turn right and turn left. Each class had 5 minutes of data and 14 features (of 14 

Emotiv EPOC sensor channels), as shown in Figure 3. The EEG sampling rate was 128 Hz. 
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Figure 2. A 3D cube model as a tool to facilitate 

test subjects in performing the mental command: 

a) turn left command, b) turn right command, c) 

forward command, d) backward command 

Figure 3. The raw EEG data that recorded by 14 saline 

electrodes 

 

 

3. RESEARCH METHOD 

The system classification to control the mobile robot is illustrated in Figure 4. It consisted of three 

stages, i.e. preprocessing, processing, and post-processing. The recorded EEG called the raw EEG was used 

to train the classifier off-line. Then, the model of the classifier predicted the on-line class of the real-time 

EEG. 
 

 

 
 

Figure 4. Flowchart of the system 

 

 

3.1. Preprocessing  

This stage aimed to eliminate the noise signal and to normalize the data before the data were 

processed further. The processes that were carried out at this stage was Butterworth bandpass filtering and 
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normalizing data. Butterworth bandpass filters are causal and of various orders. We used a Butterworth 

bandpass filter of 4th order with lower and upper cutoff frequencies 29 Hz and 40Hz, respectively.  

The EEG data from the Emotiv EPOC had 14 attributes from 14 electrode channels and sampled at 

128 Hz. The data were then normalized separately for each channel. Normalization was performed every 0.5 

s of data (64 samples) using the following formula, 
           

 
(1) 

 

where the number 30 is the average signal amplitude of the headset. 

 

3.2. Processing  

This stage aimed to get the model that was used in the classification process of real-time EEG data. 

The processes carried out at this stage were to train the combined classifier, i.e. linear discriminant analysis 

(LDA) and support vector machine (SVM). The interface to process data training is shown in Figure 5. 

The selection of training data was determined as random sequences of length N seconds of each 

class of commands. The N second length sequence was determined by the duration of recording the training 

data. Then the raw EEG data were obtained by combining all sequences from each class of commands. For 

testing data, we used the whole EEG data. Illustration of the selection of training data can be seen in Figure 

6. 
 
 

 

 
  

Figure 5. The interface of BCI’s data training process Figure 6. Illustration of the selection of training data 
 

 

We applied this raw EEG data as the LDA input. The LDA projection was then used as the SVM 

data input. Support Vector Machine is basically a binary classifier. Because the classification had more than 

two classes, multiple SVMs with a one-against-one scheme were built. After the SVM training, we obtained 

the model for classifying real-time EEG data. The output class was then translated to a motion command. 

The motion command class determination was performed every 0.5 s for 64 samples of EEG data. The 

display of the real-time EEG classification process is shown in Figure 7. 
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Figure 7. Display of the real-time EEG classification process 

 

 

3.3. Post-processing 

After the classification process, motion commands were sent to move the robot. The next command 

was sent to the robot if the class obtained was different from the previous one. The motion command was 

sent in the form of a single character and transmitted via serial communication. The robot used was a 

wheeled robot that could move forward, backward, turn right, and turn left. The robot was connected 

wirelessly with BCI program using XBee PRO transmitter. The physical form of the robot and transmitter 

can be seen in Figure 8. 
 
 

 
 

Figure 8. The motion command was sent from BCI to the robot wirelessly (a) A wheeled robot that could 

move forward, backward, turn right and turn left (b) Transmitter robot XBee PRO which connected the robot 

with a Brain Computer Interface (BCI) wirelessly 

 

 

4. RESULTS AND DISCUSSION 

For the first scenario, the system was tested for the classification process of the combined LDA and 

SVM by varying the recording duration. Lower and upper cutoff frequencies were 29 Hz and 40 HZ, 

respectively. The results indicated that, the accuracy was better for longer duration of time up to 25 s and the 

accuracy for the neutral position was the highest, as shown in Table 1.  

 

 

Table 1. Accuracy for Various Recording Times 
Recording Time 

(second) 

Forward 

(%) 

Backward 

(%) 

Right 

(%) 

Left 

(%) 

Neutral 

(%) 

Average 

Accuracy (%) 

5 61.11 58.96 61.09 63.56 74.08 63.76 

8 54.32 57.93 60.53 61.05 73.02 61.37 

10 63.79 63.35 64.01 60.21 81.59 66.59 
15 64.38 66.49 69.29 62.69 83.80 69.33 

20 65.39 69.99 68.25 64.59 83.23 70.29 

25 70.99 64.59 66.81 71.21 85.75 71.87 
30 69.02 60.50 61.31 64.78 90.54 69.23 

40 70.83 66.78 70.02 65.80 81.47 70.98 

50 64.53 65.06 67.45 58.89 90.72 69.33 
60 67.56 54.75 69.50 68.95 87.24 69.60 
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For the second scenario, the classification process was also performed using various values for 

lower and upper cutoff frequencies of the Butterworth bandpass filter. Both test variables were combined and 

performed for 10 iterations for each combination. Each combination was tested using a 30 second recording 

time. Detailed testing of the accuracy of this scenario is shown in Table 2. Based on the results of this 

scenario, the most optimal average accuracy was 70.28% for lower and upper cutoff frequencies 28 Hz and 

39 Hz, respectively.  

 

 

Table 2. The results of Classification Accuracy 

No. 
Lower cutoff 

frequency (Hz) 

Upper cutoff 

frequency (Hz) 

Average 

Accuracy (%) 

1 16 40 45.55 

2 22 40 58.91 

3 31 40 68.43 
4 33 40 67.42 

5 29 37 67.32 

6 29 39 69.69 
7 29 45 63.70 

8 29 43 65.17 

9 28 39 70.28 
10 30 40 68.55 

 

 

For the third scenario, the classification was carried out for 2, 3, 4, and 5 classes with a 30 s 

recording time. The average accuracy for 2, 3, 4, and 5 classes was 89.45%, 82.50%. 76.30%, and 67.52%, 

respectively. 

All of the above scenarios applied the combined LDA and SVM. The combined LDA and SVM 

produced a good model for classifying EEG data for mental commands to control robot motion. The 

classification of 5 classes with a 30 s recording time, showed that the combined LDA and SVM yielded 

better accuracy than using only LDA and SVM separately. The average accuracy for LDA, SVM, and the 

combined LDA and SVM were 56.13%, 67.42%, and 69.06%, respectively. 

 

 

5. CONCLUSION 

From the results, it can be concluded that classifying EEG mental command data using a 

combination of LDA and SVM provides better performance than using LDA and SVM separately. This can 

produce an accuracy of at least 60% by varying the cutoff frequencies of the Butterworth bandpass filter by 

about 29 Hz and 40 Hz for lower and upper cutoff frequencies. The recording time of 25 or 30 seconds 

maintains its accuracy greater than 65%. The experiments show that smaller number of classes provide 

greater accuracy with the maximum average accuracy of 89.45%. 
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