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Cancer of the lungs is considered one of the primary causes of death among
patients globally. Early detection contributes significantly to the success of
pulmonary cancer treatment. To aid the pulmonary nodule classification,
many models for the analysis of medical image utilizing deep learning have
been developed. Convolutional neural network (CNN) recently, has attained
remarkable results in various image classification tasks. Nevertheless, the
CNNs performance is heavily dependent on their architectures which still
heavily reliant on human domain knowledge. This study introduces a
cutting-edge approach that leverages genetic algorithms (GAs) to
automatically design 3D CNN architectures for differentiation between
benign and malignant pulmonary nodules. The suggested algorithm utilizes
the dataset of lung nodule analysis 2016 (LUNA16) for evaluation. Notably,
our approach achieved exceptional model accuracy, with evaluations on the
testing dataset yielding up to 95.977%. Furthermore, the algorithm exhibited
high sensitivity, showcasing its robust performance in distinguishing

between benign and malignant nodules. Our findings demonstrate the
outstanding capabilities of the proposed algorithm and show an outstanding
performance and attain a state of art solution in lung nodule classification.
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1. INTRODUCTION

Pulmonary cancer ranks among the primary causes of death worldwide. In 2020 the estimated
number of new cases diagnosed with lung cancer reaches about 2.2 million new cases worldwide and these
numbers are expected to increase in near future [1]-[3]. Cancer is an uncontrolled malignant growth in the
lung tissues [4]. It may also cause metastasis, the spread of cancer from the lung into other organs which
increases the risk of death. That’s why early detection and treatment significantly boost the success of
treatment and decrease mortality rates in diagnosed patients [5], [6]. Computed tomography (CT) screening
has proven effective in early detection of lung nodules, offering a potential solution to mitigate this situation
and decreases lung cancer mortality rates [7]. However, the manual nodule detection process is laborious and
time-consuming for radiologists since it requires a long time owing to the fact that they review sheer volume
of scans in a day, which may affect their capacity to accurately identifying and classifying tumors [2], [8].
Even expert radiologists sometimes faces difficulty detecting and diagnosing lung nodules in CT scans [9].
Also, the accuracy of a radiologist’s diagnosis are heavily influenced by the individual clinician’s experience
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[10]. Recently, computer-aided diagnosis (CAD) systems have emerged as a valuable tool for easing the
burden on radiologists by providing objective prediction with non-invasive solution to aid radiologists to
diagnose pulmonary nodules [3], [7], [9]. Typically, CAD systems for lung nodule detection involve five
stages: i) image acquisition, ii) preprocessing, iii) lung segmentation, iv) nodule detection, and
v) classification [6]. This study specifically focuses on the classification method for lung nodule. The
existing CAD systems can be divided into two categories: handcrafted feature extraction classification
models and deep neural network classification models with automated feature extraction [7], [10].

The approaches in the first category usually assess the radiological characteristics, like nodule
shape, texture, and size then it uses a classifier to indicate the status of malignancy. The processing processes
carried out before the feature extraction stage have some bearing on how well a CAD system doing
Handcraft or standard feature extraction performs. As a result, CT scan images are subjected to image
enhancement and image segmentation techniques. Approaches used throughout the improvement and
segmentation rounds are sometimes manually and carefully tweaked in order to prepare the region of interest
(Rol) for feature extraction [7]. Rustam et al. [8] used feature extraction techniques including gray level
co-occurrence matrices (GLCM), lung nodule size, and local binary pattern (LBP) to extract features from
the SPIE-AAPM-NCI Lungx Challenge in 2015. Fuzzy kernel C-means and fuzzy C-means were employed
for classifying 2D lung nodules images as benign or malignant. Using Python 3.7, fuzzy kernel C-means
achieved the highest accuracy, recall, and f1 score with 74.1%, 69.2%, and 72% respectively. However,
fuzzy C-means achieved the highest specificity of 87.5%, and both classifiers achieved the best precision of
80%. Asuntha and Srinivasan [11] developed a novel method named as “fuzzy particle swarm optimization
convolution neural network (FPSOCNN)”. It applies fuzzy particle swarm optimization (FPSO) to select
optimal features from various geometric, texture, intensity, and volumetric features extracted using different
techniques. Then these features are classified using 2D CNN to classify the lung cancer type. The system
reduces the computational complexity of CNN and achieves accuracy of 95.62% on the dataset of the lung
image database consortium and image database resource initiative (LIDC-IDRI). Despite the great
performance of the handcrafted feature extraction classification models, the gathering and choosing a valid
features subset for diagnosis of pulmonary nodules is time-consuming and risky, as it introduces
measurement errors that affect the classifier performance and accuracy [10].

In contrast, the second category automatically learns from the CT scans the nodule features by
utilizing deep neural network-based models. These are high performing models with great prediction
accuracy for lung nodule classification. This sort of system often requires less complicated denoising and
image enhancement techniques, instead employing image preprocessing methods such as cropping, zooming
or image rotation to enhance diagnostic efficiency [7]. Silva et al. [5] presented a system utilizing deep
learning in conjunction with the GA to classify lung lesions on CT scans. The system does not need feature
extraction or selection which reduces the system computing complexity. The system used images of size
28x28 dimension as input. This system was tested on the dataset of LIDC-IDRI, achieving an accuracy of
94.78%, specificity of 95.14%, sensitivity of 94.66%, and an area under the curve (AUC) of 0.949. Where
Dey et al. [10] presented four two-pathway 3D CNNs to classify CT image of pulmonary nodules as benign
or malignant. Each pathway accepted images with the size 50x50 pixelsx5 slices and 100x100 pixelsx10
slices respectively. Accordingly, the “multi-output DenseNet (MoDenseNet)” outperformed the other three
models with AUC of 0.9548 and accuracy of 90.40%. The model size and total number of parameters was
equal to 34.8 million. While Pfeffer and Ling [12] adopted the evolutionary algorithm presented in [13], and
implement it to classify whether pulmonary nodules visible on CT scans are malignant or benign. The
algorithm is the implementation of GA for 2D CNN architecture design. The authors used images with size
32x32 pixelsx1 input channel. The algorithm named CNN-GA presented a model with accuracy equal to
91.3%. Another classification technique called bilinear convolutional neural network (BCNN) was
introduced in [14]. The (VGG16 and VGG19) two-stream CNNs were used in BCNN as feature extractors, to
reduce false positives before using a support vector machine (SVM) as classifier. The public LUNA16
database was used to evaluate the method’s performance. The system used images with size 50x50 for
training and validation. The BCNN attained a 91.99% accuracy rate and a 0.959 AUC rate. Jiang et al. [15]
developed a lung nodule classifier known as “NASLung” using neural architecture search (NAS). This
approach automatically seeks a 3D architecture network with high speed and accuracy. The use of the
convolutional block attention module (CBAM) and SoftMax loss during training helped learn representations
of angularly discriminative features. Using the dataset of LIDC-IDRI, the model reached 90.77% acc.
Additionally, in a study by Al-Huseiny [16], GoogLeNet was employed for transfer learning using the 1Q-
OTH/NCCD lung cancer dataset. The system promises to isolate the lungs area and eliminate any leftover
clutter and unnecessary surrounds using inexpensive pre-processing process. According to experimental
findings, the trained model has improved its overall accuracy on the validation data by 94.38%.
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Despite this approach can give a promising performance, but it still demands the expertise of deep
learning hyper-parameters incorporation with the knowledge of the problem space [13]. Also, studies have
shown that model performance can vary significantly to data sets with different domains even if it has the
same network architectures and hyper-parameter [17], [18]. Furthermore, the majority of the current deep
learning models use 2D CNN networks to solve the lung nodule classification problem [18] which may cause
the discard of some important features of the original image. For these reasons, there is a demand for a smart
and automated 3D CNN architecture design that can be related to the entered data and does not necessitate
the presence of experts.

In order to fulfill these demands, we propose in this study, an efficient 3D CNN architectural design
with the deployment of evolutionary algorithm GA to automate the CNN design to classify the pulmonary
nodules whether it is malignant or benign from 3D CT lung images. The algorithm’s importance lies in
discovering the best 3D CNN architecture for the input data automatically, without any manual interference
through the evolutionary search so there is no need for extracting or selecting the proper features or need of
experts to build the proper CNN model for entered data. The algorithm employs GA to evolve and select the
best CNN architecture by optimizing the network parameters such as: i) the number of CNN basic building
blocks, ii) the value of feature map for the convolutional layers, and iii) the learning rate value of the model.
The proposed algorithm used the LUNAL6 dataset [19] for training and evaluation. The subsequent sections
detail the paper’s structure as follows: section 2 outlines the main steps and details of the proposed algorithm.
Section 3 discusses the obtained results, and section 4 presents the concluding remarks and outlines.

2. METHOD

This section illustrates the proposed algorithm by means of a genetic algorithm as depicted in
Figure 1. The framework encompasses a series of steps involving the collection, cropping, and classification
of a total of 868 lung nodules. The training and validation of the model are performed using a 3D image
dataset. The subsequent subsections elaborate on the distinct stages of this framework.

The 3D CT scan

l

Prepare the Input
Data

: - 75

Automatic Feature Extraction &
Classification using (Deep
Learning and GA)

!

The Best 3D CNN Architecture for
Classifying the Input Data

Figure 1. The proposed system framework

2.1. Dataset and pre-processing

The pulmonary nodule CT scans dataset used in this study is the LUNA16 dataset. It is a subset
from LIDC-IDRI dataset [20]. The LIDC-IDRI is a public dataset that contains 1,010 CT scans with one or
more pulmonary nodules can be seen in each image associated with annotations by one to four radiologists
[12]. Annotations used included radiologists’ ratings of nodules varying from one to five, with one indicating
a small likelihood of malignancy and five indicating the highest likelihood of malignancy [21]. The
heterogeneous scans in the LUNAL6 dataset are filtered using by various criteria [19], [22]. A thin slice
should be used since pulmonary nodules might be rather tiny. Consequently, scans having a slice thickness
>2.5 mm were disregarded. Additionally, images that had missing slices or uneven slices spacing were
disregarded. This resulted in 888 CT scans and a total of 1,186 nodules. Nonetheless, not all the scans were
considered in this study. We applied the following criteria to determine the appropriate sample and its class
membership whether it is malignant or benign. First, at least three radiologists should diagnose the lung
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nodule. Then, the mean value of the annotated nodule was computed. If the calculated average value was
greater than 3 then it is malignant. Conversely, if the average value was less than 3 then it is benign. Nodules
have 3 as mean value, were excluded from the dataset. This process resulted with 434 malignant and 540
benign nodules. We performed further balancing to dataset so that the malignant data is equal to the benign
one. Ultimately, we end up with 868 pulmonary nodules (50% malignant and 50% benign) for training,
validation, and testing.

After applying these criteria, we proceed with the preprocessing of the CT scan images. Starting
with the Hounsfield units (HU) values, we convert them from the range of (-1,200, 600) HU to a normalized
range of [0, 1]. These normalized values are then scaled to an 8-bit image format within the range of [0, 255].
This transformation allows for better visualization and further processing of the CT images. Next, we
resampled the data to 1x1x1 pixels. Then each patient’s lung nodule coordinates are used to crop the picture
from 512x512xno. of slices, to dimensions (48x48 pixelsx8 slicesx1 input channel) and saved in PNG
format. In essence, the code performs several tasks, including processing input data, extracting nodules
associated with each image, generating cropped nodule images, and saving slices of each case in PNG format
in a separate folder categorized by their malignancy status. With this understanding of how the input data is
handled, we can now proceed to describe the proposed algorithm in detail.

2.2. Convolutional neural networks

This subsection introduces the proposed algorithm CNNs basic building unit as shown in Figure 2,
where its fundamental units are convolutional and pooling layers. The basic building unit used in the
proposed network is adopted from dense block. A dense block is a CNN module that attaches all layers
having feature-map sizes that match directly to one another. It was initially proposed as a structure of the
DenseNet architecture [23]. To maintain the nature of feed-forward, every layer acquires from all previous
layers’ additional inputs, and passes on to all subsequent layers it is own feature-maps. DenseNet combines
the features by concatenating them, in contrast to ResNets, which sums the features before passing them into
a layer [23]. Each basic block used in the proposed algorithm contains no. of convolutional layers with a 3D
filter of size 3x3x3. GA operators generate the blocks number in each individual as we illustrate in the next
subsection. As the number of blocks increases, so does the number of connected convolutional layers within
each block. Specifically, the first block contains 4 layers, the second block will contain 10 layers, and the
third and subsequent blocks each will contain 20 layers. After each block a transition layer of a 3D max
pooling with kernel size 2x2x1 is used, followed by a dropout layer to help prevent over fitting, during
training. Padding is used with each convolution layer to maintain feature map size. Batch normalizing and
Relu activation function were appended through each convolution layer. At the end of each individually
generated model, we add another convolution and max pooling layers of size 2x2x2 before flattening the
output. Since our dataset is only divided into two classes, the loss function was computed using binary cross
entropy. This function measures the discrepancy between the predicted probability distribution and the actual
probability distribution for a binary classification problem. In (1) represents the binary cross-entropy:

Hy(q) = =~ 2, y; . log(pO)) + (1 = ) .log (1 — p(¥)) (1)

Where y; represent the labels (0 or 1), p(y;) represent the probability of 1 and (1 — p(y;)) represent the
probability of 0, and N represent the samples number. For both target classes, the final classification was
generated using a sigmoid classifier.

N Dense

Dense block with 4 layers

Transition

One layer
D Relu
ﬁ//’ - Batch normalization

Figure 2. The proposed algorithm CNN basic building unit
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2.3. Genetic algorithms

GAs employs bio-inspired, processes like selection, crossover, and mutation to obtain the most
effective solution to any presented problem [24]. This algorithm mirrors the natural selection process where
the fittest individuals are chosen for reproduction, resulting in offspring of the next generation. The
illustration in Figure 3 depicts a general concept for GAs based on the individuals’ selection for the offspring,
randomized cross-over, mutation that leads to the proper individuals in order to obtain the most effective
solution for the given problem. Each candidate is assessed and assigned a fitness value, often a function of
the decoded bits in their chromosome. These candidates are chosen for reproduction based on their fitness
values, guided by selection criteria. These selected individuals, referred to as parents, contribute to the
subsequent generation of the population. The crossover mechanism combines two parents to generate
children for the next generation, while the mutation mechanism introduces random changes to individual
parents to create children.

Input Offspri
Data Rhed
population
Initial Mutation
population
l Crossover
Fitness
evaluation .
l Selection
Criteria No
fulfilled?
l Yes
Output the

desired solution

Figure 3. The flow chart of genetic algorithm

Regarding image classification, GAs can thus aid in the automatic and efficient discovery of
optimum solutions for CNNs hyper-parameter settings, in addition to the overall design of the CNNs
architectures [12]. Lately, GA has shown great performance in term of generating CNNs architecture
automatically to classify 2D images from the dataset of CIFAR10 with accuracy up to 96.78%, which is
higher than most manually tuned models by deep learning experts [13]. By exploiting the GAs advantages,
we were able to introduce the proposed algorithm to classify a 3D lung nodule images. Algorithm 1
demonstrates the proposed algorithm framework. In the beginning the algorithm starts by entering a
predefined parameter such as: i) the basic building block of CNNs that we illustrated earlier; ii) the 3D
cropped lung nodule images; iii) the size of the population; and iv) GA maximum generation number. The
first population is generated randomly with different depth using the predefined parameters and GA operator,
in which the GA operator generates: i) the number of basic building blocks of CNNs in each individual and
this step determines the depth of each individual; ii) the value of feature map for convolutional layers in each
individual; and iii) the individual models learning rate value. Regarding the building blocks value, the
algorithm can choose from a set of numbers ranging from 1 to 10. In relation to feature map the algorithm
can choose from {8, 10, 12, 24, 32, 48, 64}, as for the learning rate value the algorithm can choose from a set
of numbers ranging from 0.00001 to 0.001. In Table 1 we demonstrate the parameters limit used will training
the proposed algorithm, in which the GA operator can randomly select from, to generate different population
in each generation. Now, the present generation’s counter is set to zero. Then, the algorithm starts to traverse
a series of evolutionary processes in order to obtain the optimum CNNs architecture. Throughout evolution,
each individual’s fitness is assessed, and the best fitness individuals are selected as parents. New offspring
are generated from the parents through genetic mechanisms encompassing selection, crossover, and mutation
processes.

After training the initial generation, each individual is subjected to validation and testing, allowing
for a comparison of their final accuracies. Subsequently, a selection process is initiated, wherein the five
best-performing models are chosen. Crossover and mutation operations are then applied to these selected
models, giving rise to a new population of offspring models that will be trained, validated, and tested in the
subsequent iterations.
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Algorithm 1. The proposed algorithm

Inputs A set of predefined parameters; the basic building block of CNNs, the 3D cropped lung nodule
images, the size of population, maximum number of generations.

Output The 3D CNN best architecture for classification.

Po <« Generate the initial population with different (block numbers, learning rate, and CNN feature map
size).

g < 0

while g < maximum generation number:
In Pg, train and evaluate each individual fitness.
Select the individuals with the highest accuracies.
Sg < Apply the crossover and mutation operation, for offspring generation from the selected
parent individuals.
Pgt+1 « selection from Py U Sy
g—g+l

end

Return The individual in Py with the best fitness.

Table 1. The parameters limit used by the algorithm

Parameter Minimum value  Maximum value
Basic building blocks 1 10
Learning rate 0.00001 0.001
Feature map 8 64

In the crossover processes the algorithm selects a random integer “n” as a crossover point from the
set {0, 1, 2} corresponding to the number of basic building blocks of CNNs, the value of feature maps for
convolutional layers, and the learning rate value respectively. It performs the crossover operation by
swapping the genetic material between the selected parent chromosomes at the designated crossover point.
The resulting offspring chromosomes are collected in a new list, and any duplicate chromosomes are
removed. Once the number of offspring chromosomes in the list is equal to the crossover rate, the new
offspring is returned as the output. In the mutation processes the algorithm selects a random integer “n” from
the set {0, 1, 2} to use as the mutation point. Based on the mutation rate the algorithm performs the mutation
operation on the offspring chromosomes by generating a random value at the mutation point. Upon the
completion of these operations, the generation’s counter is incremented by one, ensuring that the
evolutionary process continues until the counter reaches the algorithm’s maximum number of generations.
The evolutionary process concludes at the end of the last generation, and the proposed algorithm presents the
performance of each population categorization across all generations. Utilizing the test data, each
individual’s categorization performance is assessed, ultimately yielding the highest-performing model as the
output.

3. RESULTS AND DISCUSSION

Our research is implemented utilizing Python code using Keras and TensorFlow as the backend
[25]. We initiated the proposed algorithm with a population count and generation number both set to n=10.
The maximum iteration for training each population in each generation is set to 300 epochs with an early
stopping condition to stop training when the validation accuracy stopped improving. All generated models
underwent training using Adam optimizer and L2 regularizer. The evaluation of the LUNAL6 dataset was
conducted using a 4-fold cross-validation approach. The dataset was divided into three subsets for training
and validation and one subset for testing. Specifically, 80% of the data was allocated for training, while the
remaining 20% was designated for testing. Within the training set, 20% was further set aside for validation
purposes. Upon completion of the final generation, the evolutionary process was terminated. The proposed
algorithm displayed the classification performance of each individual population across all generations.
Performance evaluation for each individual was performed using the test data. Ultimately, the
best-performing model was saved as the outcome of the algorithm.

The proposed algorithm achieved the ability to generate models with accuracies evaluated on the
testing dataset of up to 95.977%. Figure 4 presents the average performance of all populations in each
generation. It is evident from the blue line, which represents the average accuracy of each generation, that the
algorithm’s performance continually improves as the generations progress.
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Figure 4. The average accuracy and top performance CNNs models for all populations in each generation
during the evolutionary process

To assess the performance of the generated 3D CNN architectures, the confusion matrix [3], [11]
was employed. Given the two classes of malignant and benign nodules, a 2x2 confusion matrix was used, as
depicted in Figure 5(a). Furthermore, sensitivity, specificity, and precision were calculated using the
confusion matrix, as shown in (2) to (4):

TP

Sensitivity = prap— 2
cps s TN

Specificity = P 3)

Precision = —= (@)
TP+FP

Where TP represents true positive, FN represents false negative, TN represents true negative, and FP
represents false positive. The selected model had sensitivity equal to 98.8%, specificity equal 93.4% and
precision equal 93.2%. The results of these measurements, which are provided here, demonstrate the validity
of the suggested framework for categorizing data of a comparable modality since increasing the sensitivity,
which represents the success or hit rate, while keeping the specificity, which signifies true negative rate, is a
major goal of classification models [16]. We can see the receiver operating characteristic (ROC) curve of the
network architecture with the best performance in Figure 5(b), with an AUC equal to 0.985. Figure 6
depicted the network architecture with the best performance. The model consists of four basic building
blocks with convolutional layers equal to 4, 10, 20 and 20, respectively. Where, each convolution layer has a
3D filter of size 3x3x3 and feature map value equal 10. The model learning rate value is equal to

5.600000000000001e-4. The size of the model and parameters total number is 1 million and
176,211 thousand.
ROC curve
80 10 ’f'
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EU W '.F‘
- E f"
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0 2
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Figure 5. The output CNN model classification performance; (a) the output CNN architecture confusion
matrix and (b) the output CNN architecture ROC curve
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Figure 6. Architectures of the best performing network, where; DB: dense block; conv: convolutional layer;
BN: batch normalization FM: feature map

Table 2 demonstrates comparison of our model with others such as the ones presented in [5], [8],
[10]-[12], [14]-[16]. It is clearly shown that the proposed method performs comparably better in different
performance criteria such as the model size and total number of parameters, and classification accuracy.
Because we use fewer parameters, our model is extremely comparable to earlier models. It is evident that the
proposed method outperforms other methods used with the same dataset and others with different dataset.
However, caution should be exercised when drawing firm conclusions about the performance of this
algorithm in comparison to others until evaluated on equal grounds.

Table 2. Comparisons of the previously mentioned state-of-the-art networks to the proposed algorithm

The classification systems Dataset TPR% TNR% ACC% AUC No. para. (M)
Deep learning-based CADX [5] LIDC-IDRI 94.66 95.14 94.78 0.949 -
Fuzzy kernel C-means [8] LUNGX SPIE AAPM 69.2 78.6 74.1 - -
MoDenseNet [10] LIDC-IDRI 90.47 90.33 90.40 0.9548 34.8
FPSOCNN [11] LIDC-IDRI 97.93 96.32 95.62 - -
CNN-GA [12] LIDC-IDRI - - 91.3 - -
BCNN [14] LUNA16 91.85 92.27 91.99 0.959 _
NASLung [15] LIDC-IDRI 85.37 95.04 90.77 - 16.84
GoogLeNet DNN [16] 1Q-OTH/NCCD 95.08 93.7 94.38 - -

The proposed algorithm LUNA16 98.8 93.4 95.977 0.985 1.18

Where TPR., TNR, ACC., and No. para., denote true positive rate or sensitivity, true negative rate or specificity, accuracy, and the
number of parameters, respectively

4. CONCLUSION

In this study, the objective is to introduce an automated algorithm for 3D CNNSs architecture design
based on GA to classify whether pulmonary nodules are malignant or benign and helping users with no
expertise in CNNs to find the best 3D CNN architecture to classify pulmonary nodules. The goal was
achieved successfully by developing a cutting-edge approach which exploits the GA evolutionary search to
encode and design 3D CNNs with random depths. Using the dataset of LUNA16 the proposed algorithm was
evaluated. In comparison with other models the proposed algorithm showed a cutting-edge performance
regarding the model number of parameters and the classification accuracy without the need of expert
knowledge to extract the proper features or to build the CNN architecture. In the future, the proposed
algorithm may be deployed in various clinical classification applications.
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