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 The increasing prevalence of malware targeting android mobile devices has 

raised significant concerns regarding user privacy and security. In response, 

effective methods for malware classification and detection are crucial to 

protect users from malicious applications. This paper presents an approach 

that leverages deep learning techniques and explainable artificial intelligence 

(XAI) for android mobile malware classification and detection. 

Convolutional neural networks (CNNs) are deep learning model that has 

shown impressive performance in several application areas, including image 

and text classification. In the context of android mobile malware, CNNs 

have shown promising results in capturing intricate patterns and features 

inherent in malware samples. By training these models on large datasets of 

benign and malicious applications, accurate classification can be achieved. 

To enhance transparency and interpretability, XAI techniques are integrated 

into the classification process. These techniques provide insights into the 

decision-making process of the deep learning models, enabling the 

identification of critical features and characteristics that contribute to the 

classification results. This research, by combining deep learning and XAI 

methods, presents a fresh strategy for identifying and categorizing Android 

malware. This research paper will focus on a fascinating CNN-based 

malware categorization technique. 
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1. INTRODUCTION 

Over the past several years, one of the primary concerns of researchers and specialists in the field of 

cybersecurity has been the growing frequency and sophistication of malicious software. Malware is an 

abbreviation that stands for malicious applications. This term refers to a broad category of potentially 

destructive software that is developed to take advantage of flaws in computer systems, mobile devices, and 

networks with the intention of wreaking havoc, stealing sensitive information, or gaining unauthorised access. 

Traditional methods of malware detection based on signatures were shown to be ineffective when confronted 

with the continually changing panorama of threats posed by malware. As a direct consequence of this, 

researchers working in the field of malware detection and classification began looking to machine learning and, 

more particularly, deep learning for more efficient solutions. 

This research article, provide a deep learning-based approach to identifying and classifying android 

malware. Which also highlight the need for more precise results in the field of malware detection using machine 

https://creativecommons.org/licenses/by-sa/4.0/
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learning while presenting significance of previous work in this area. The use of a deep learning-trained 

convolutional neural network (CNN) algorithm is an improvement over previous work. This paper investigates 

a long-standing open question: how to identify novel behaviors inside malware families. The research employs 

a form of artificial intelligence (AI) called explainable artificial intelligence (XAI), which can justify its 

decisions to a human reader. The overall efficiency of the system can be improved by using XAI to learn more 

about android malware detection and classification. The novel contribution of this study is the application of 

XAI to the problem of discovering commonalities across distinct types of malware. The goal is to improve 

malware detection and classification by making the detection process more interpretable and transparent 

through the provision of justifications for the selections made by the deep learning model. The paper's next 

sections will detail the research methods, explaining how deep learning was implemented with CNN and how 

XAI was included.  

While deep learning and XAI show promise in android mobile malware classification and detection, 

there are still challenges to overcome. Class imbalance, adversarial attacks, and real-time scalability are 

among the key challenges that require further investigation and development of robust solutions. The 

experimental findings will demonstrate the efficacy of the proposed strategy in identifying and categorizing 

android malware. This research, by combining deep learning and XAI methods, presents a fresh strategy for 

identifying and categorizing android malware. The following parts will describe the research process, provide 

the findings, and show why the proposed technique is important for stopping the spread of android malware. 

 

 

2. LITERATURE REVIEW 

Recently, deep learning techniques such as CNN have proven superior to more standard learning 

algorithms in a wide range. In view of this achievement, a CNN network was proposed for malware 

classification, along with data augmentation addresses to improve performance [1]. Bhanu et al. [2] provide 

an integrated structure for dealing with the problem of malware, with a focus on threats sent via SMS 

messages on android devices. SMS message processing has been implemented. Research by Susanto et al. [3] 

includes an examination of every phase of malware detection and offers an alternative taxonomy of literature 

concerning IoT malware detection in an effort to uncover problems and challenges in this area. Data sets 

from malware repositories, feature extraction techniques, and detection strategies are all discussed, as are the 

results of the various studies. Abubaker et al. [4] gives framework that uses feature selection based on an 

ensemble extra tree classifier approach and a machine learning classifier to examine the behavior of malware 

apps by evaluating permissions. When it comes to detecting and classifying malware, a method has been 

presented [5]. DL-droid is a deep learning system that can detect malicious android apps by methodical input 

generation and dynamic analysis [6]. Experiments were run on real smart phones with over 30,000 

applications, both good and poor. Kim et al. [7] represents a malware detection system that brings together a 

high detection rate with an average resource need. The application programming interface call graphs of 

malicious programs are analyzed by MAPAS, which uses convolution neural networks. However, MAPAS 

uses CNN to detect shared features in malware API call graphs. Effective and efficient android malware 

detection using machine learning is represented in paper [8]. Deep learning for android malware detection 

has been suggested, and its dynamic nature makes it resistant to obfuscation [9]. Using the dynamic 

exploration of an application in a simulated environment, it makes advantage of the identified behavioral 

traits. The proposed technique is evaluated with 13533 applications representing several different domains. 

This method is effective, with an F-measure and a detection rate. Android application malware is also 

identified using a novel gated recurrent unit (GRU) and recurrent neural network (RNN) technique explained 

in [10]. Extracts two static attributes from Android apps using the CICAndMal2017 dataset: API calls and 

permissions. Malware detection and threat attribution (MDTA) is a portable framework for detecting 

malware [11]. Recognized threats can be identified using supervised machine learning techniques, which are 

also used. The most realistic and controllable strategy is the MDTA. Paper's technology used three machine 

algorithms to detect malware vulnerabilities in mobile app behavior. To ensure this system is capable of 

accurately predicting how mobile applications will behave, we put it through a battery of tests using  

K-nearest neighbor (KNN), Naive Bayes, and a decision tree technique [12]. 

 

  

3. MOBILE MALWARE DETECTION 

Android anti-malware solutions such as Lookout mobiles were tested by zveloLABS. Lookout 

version 8.9-00fc217, a renowned android anti-virus app, was tested to check if it could detect the harmful 

malware programmes DroidDream. The eclipse IDE's android virtual machine plugin was used to emulate 

the Android smartphone environment. Then, using the disassembly/assembly technique described in the 

research paper, successfully changed the DroidDream binaries. This because the researchers had mentioned 
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that converting mobile malware could have an impact on its functionality. Because the 

disassembly/reassembly procedure had no effect on the code, figured DroidDream had kept its functionality. 

The goal of this research to see if the obfuscated version could be distinguished from the original. Lookout's 

mobile anti-virus logs showed that the malware that had been changed from DroidDream had been 

successfully detected. The logs from the app also revealed the discovery of the second sample of mobile 

malware, gemini, after it had been modified. This research article relied on version of Lookout version 8.7.1-

edc6df5. As a result, the obfuscated DroidDream malware was able to evade detection, as evidenced by the 

presence of a malicious "Bowling Time" programme icon on the virtual android environment. It was possible 

for Lookout to modify and apply counter measures against the tested obfuscated malware quickly using 

reverse engineering and innovation. This is a great example of how malware development and counter 

measures have evolved over time using both white hat and black hat tactics. In this research mobile malware 

DroidDream altered into affiliate web scanners which successfully discovered it. This extra step elevated a 

fantastic point. Third-party scanners for mobile apps could be useful in determining the validity and 

legitimacy of an app.zveloLABS considers both static and behavioural approaches. In order to discover new 

breeds of android malware that have the same signature footprints, static analysis is insufficient. Malware 

detection efficiency improves dramatically when used in conjunction with behavioural detection approaches 

and machine learning technology. To stay competitive in today's market, established businesses must 

understand and protect their mobile fleet from the rapidly developing and evolving world of mobile malware. 

Although the vast majority of businesses are aware of mobile malware, only a small percentage understand 

the various types and how they infiltrate corporate devices. In order to classify ransomware using machine 

learning, a dynamic analysis method is presented in paper [13]. In order to track down and run malicious 

code, researchers have developed a sandbox system [14]. Moon et al. [15] proposed a framework for using 

semi-supervised machine learning to discover and analyze android's dynamic API calls. An example of a 

policy regulation taken from Kirin is as follows: the permission labels of phone and internet must not be 

present in an application. The most frequently requested harmful permission is access to the internet. Data 

prediction and classification using linear regression is discussed in paper [16].  

Vanjire et al. [17] introduces an Android malware detection system that utilizes deep learning 

techniques to bolster mobile security. By employing fully-connected feedforward deep neural networks 

(FNN) and the autoencoder algorithm, the system achieves an impressive accuracy of 95% on a real-world 

dataset. These results underscore the effectiveness of deep learning FNN and autoencoder methods in 

detecting Android malware. Ullah et al. [18] presents a transparent malware detection system that integrates 

transfer learning and visual malware features. By leveraging both textual and visual attributes, the method 

aims to improve detection accuracy. Naeem et al. [19] assesses pertained CNN models for detecting malware 

from IoT device. It also explores the effectiveness of combining these CNN models with different classifiers 

in large-scale learning. The findings recommend utilizing a pretrained Inception-v3 CNN model, fine-tuned 

for improved performance, to detect IoT device malware. This approach leverages color image 

representations of Android Dalvik Executable Files (DEX) to enhance malware detection accuracy. 

In the framework outlined in paper [20], a set of specialized detectors converts network-flow data 

into interpretable network events. Next, a neural network is crafted to examine this event sequence and 

identify specific threats, malware families, and broader malware categories. Then, the integrated-gradients 

technique is utilized to highlight events that together constitute the unique behavioral pattern of the threat. 

Kinkead et al. [21] presents two key contributions to enhancing malware detection in Android apps. Firstly, it 

proposes a new method using a CNN to pinpoint critical locations in an app's opcode sequence linked to 

malware. Secondly, it compares these identified locations with those highlighted by the LIME explainability 

method. Leveraging the Drebin benchmark dataset, the study shows strong alignment between  

CNN-identified malicious locations and those flagged by LIME across various malware families. The survey 

[22] aims to address the research gap by offering an in-depth and current overview of XAI methodologies 

relevant to cybersecurity challenges. Ambekar et al. [23] develops a novel Android malware classification 

framework named TabLSTMNet, leveraging recent datasets. Utilizing the NATICUSdroid and 

TUNADROMD datasets containing Android permissions and API attributes, TabLSTMNet employs a fusion 

of TabNet's attention mechanism and the long short-term memory (LSTM) architecture to differentiate 

between benign and malicious applications. Yan et al. [24] proposes an online detection system built on 

FPGA technology, aimed at enabling real-time detection in high-speed network environments. This system 

utilizes a rule tree approach, which simplifies the challenge of integrating a deep neural network into FPGA. 

Smmarwar et al. [25] presents XAI-AMD-DL, a hybrid Android malware detection (AMD) system that 

integrates CNN and Bi-GRU architectures within an XAI on CICAndMal2019 Android malware dataset. 
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4. MOBILE MALWARE DETECTION TECHNIQUE 

Mobile malware detection and other security vulnerabilities detection approaches have varied degrees 

of effectiveness and weakness. Analyses that are performed in a static environment an application's static 

analysis can detect dangerous features or faulty code portions without executing it, saving time and money. 

Figure 1 shows techniques for examination when doubtful applications are checked to detect security issues. 
 

 

 
 

Figure 1. Static anomaly detection techniques 
 
 

Figure 1 depicts a malware discovery method for operating system that has been presented. System 

feature extraction is used to deconstruct the mobile app and extract system calls. Then, centroid machine, a 

lightweight clustering approach (anomaly detection), is used to determine whether the mobile app is harmful 

or not. Further, it’s difficult to say how well this strategy will work with less well-known ones. Figure 1 

shows how to use the previously described PiOS technique to perform analysis for iOS application binaries. 

iOS reviews mobile application and produces a control flow diagram. This procedure needs analysing 

sensitive sources from phone as contact book, GPS time, and other data. Any delicate information sent from 

the source to sync without informing the user will be detected by dataflow analysis, resulting in security 

breaches. Figure 1 depicts a proposed android malware detection method. In static code analysis software 

examines Java source code from the installation image of the application. Despite the fact that this technique 

was verified on 1,100 mobile applications. To do dynamic analysis instead of static testing, researchers run 

the mobile application on a virtual machine or emulator. This allows them to track the app's dynamic 

behaviour. Dynamic analysis is used system call tracing also in taint tracking. TaintDroid used in system-

wide taint tracking for android.  

There are four granularities of taint propagation, as shown in Figure 2(a) variable, method, message, 

and the Dalvik virtual machine as well as on a filesystem level. Any uncertain data originating from sensitive 

sources will be marked with taint tracking to prevent unauthorised access. Location, microphone, camera, and 

unique phone identifiers are all examples of sensitive mobile data. By modifying the library loader in this way, 

we can ensure that untrusted applications are unable to execute native methods without first invoking the virtual 

machine. After that, sensitive data leaking is investigated by doing a dynamic analysis on the affected 

files.network interface–a conduit via which corrupted information can be flushed before transmission. 

Many third party android applications tested with TaintDroid indicated that shared user location 

with phone unique id. TaintDroid, on the other hand, may produce false negatives and positives, and it 

ignores additional vulnerabilities in favour of just monitoring dataflow. With the android application sandbox 

technologies, android applications can undergo with a two-step analysis process. As shown in Figure 2(b), 

static and dynamic evaluations are carried out in offline mode using a sandbox. Static analysis is used to 

disassemble an application's binary image, and the stripped code is examined for any unusual patterns. The 

binary is run at android emulator then system calls are analysed dynamically. While android monkey was 

used to generate inputs, real-world testing was more effective. Furthermore, this method has not been tested 

against malware that uses polymorphic encryption. Permissions assessment for a given application are critical 

in mobile apps because they let users know what the app's intentions are and what it's doing behind the 

scenes. Because permissions on smartphones are explicitly established, application developers must obtain 

the necessary permissions. Application vulnerabilities can occur when writers deliberately obfuscate about 

permissions used in their applications.  
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Figure 2. Dynamic anomaly analysis: (a) system-wide and (b) sandbox-based 
 
 

Figure 3 depicts the Kirin android app certification. Checks the application's permissions during 

installation. When a programme is installed, the security settings of the user are extracted and compared to 

the security policy rules. If an application does not comply with Kirin's security policy, it will be deleted or a 

warning will be sent to the user's device. Moon et al. [15] proposed a framework for using semi-supervised 

machine learning to discover and analyze android's dynamic API calls. An example of a policy regulation 

taken from Kirin is as follows: the permission labels of phone and internet must not be present in an 

application. The most frequently requested harmful permission is access to the internet. 
 
 

 
 

Figure 3. Kirin android application certification 

 

 

5. SYSTEM PROCESS METHOD 

Experimental evaluations on a comprehensive dataset of android mobile applications represents the 

proposed approach. The deep learning models trained with XAI techniques achieved high classification 

accuracy and provided interpretable explanations for the decision-making process. This enables users and 

security analysts to better understand the basis for malware detection, improving trust and aiding in the 

decision-making process. A dataset of 833,000 binary samples (both clean and malware) from various 

malware families, compilers, and "first-seen" time periods was collected for the malware detection 

investigations. Sanity checks were performed to exclude corrupt or excessively large or small samples from 

the experiment. The raw bytes from the samples that passed the sanity checks were extracted and used for 

further experiments. Deep learning model training: a CNN was trained using the raw byte data from the 

training set. The CNN was trained to classify the samples as either clean or malware. Evaluation and 
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performance analysis: three tests were conducted to evaluate the performance of the trained CNN model: a 

high receiver operating curve (ROC) score of 0.9953 was obtained, indicating excellent performance. 

Duplicate removal: duplicate raw byte entries were found after extracting them from the 833,000 unique 

samples due to malware families employing hash-busting and polymorphism techniques. The duplicated 

entries were removed in the second experiment, resulting in a reduced dataset of 262,000 samples. The 

performance of the model was still within an acceptable confidence range. Malware classification: in the 

third experiment, malware classification was attempted based on different malware families. A subset of 

samples was taken from the dataset, with specific labels assigned to clean samples, malware families, and 

others. The remaining 20,000 samples were divided into 11 categories based on different compilers and 

packagers. Training and testing: the dataset was randomly divided again into training and test sets using an 

80/20 split. The performance of the model was evaluated using precision, and a test precision of 0.9700 was 

achieved in this experiment. The training and testing process took 26 minutes using a single GPU. 

The method outlined in Figure 4 demonstrates the systematic process followed for android mobile 

malware classification and detection using a deep learning algorithm. The collection and preprocessing of a 

large-scale dataset, training a CNN model, evaluating performance, handling duplicate entries, and 

classifying malware based on different families were key steps in this method. The achieved results and 

performance metrics were derived from the rigorous application of this method. 
 

 

 
 

Figure 4. System process model 

 

 

6. RESULTS ANALYSIS 

We gathered 833,000 binary samples (dirty and clean) from a wide variety of families, compilers, 

and "first-seen" times for our malware detection studies. Many samples were from the same families, but the 

packers and obfuscators they used were all different. We performed sanity checks on the samples to make 

sure we weren't using any that were corrupted or were either too big or too small for the experiment. We 

performed a number of experiments using the unprocessed bytes from a sample that made it past our sanity 

check. A random 80/20 split was used to separate the data into training and testing sets. We ultimately relied 

on this data set to conduct the three analyses. Area under the ROC of 0.9953 was achieved by feeding the 

CNN raw bytes from a training set of 833,000 samples. Here, after extracting them from the initial set of 

833,000 unique samples, duplicate raw byte entries were discovered. Malware groups that used hash-busting 

to exploit polymorphism played a significant role in this. In our second trial, we replicated the extracted raw 

byte entries. The raw byte input vector had dropped to a meager 262,000 samples. The evaluated area was 

found to have a ROC coefficient of 0.9920, well within the bounds of respectable certainty. Third, we looked 

for ways to group malware into its many families. The original set of samples was reduced to a total of 

130,000, with the first sample marked as clean, the second through ninth as malware families, and the tenth 

as others. The remaining 20,000 samples were then separated into the following 11 groups: there are 11 bins 

total, and each one contains code snippets generated by a different compiler or packager. Again, randomly 

split the data into a training and test set, but this time split it 80/20. An experimental recision of 0.9700 was 

achieved. Training and testing on a single GPU took 26 minutes. 

T-SNE and PCA are used to visually portray and explain the data both before and after the CNN 

training process.To get a better grasp on how CNN training works, we analyzed it graphically. After training, 

CNN is able to extract meaningful representations for capturing the attributes of different forms of malware, 

as seen in separate clusters. Since most groups were clearly distinguished, we reasoned that the method could 
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function as a multi-class classifier. After then, we analyzed CNN's decisions with XAI. Therefore, CNN 

places a premium on those details when making choices. Were interested in learning more about the bits that 

made a big difference in the final verdict, and so personally assessed a few cases. To get to this end, result 

enlisted the aid of a human specialist evaluate if the red-highlighted bytes belonged to a known malware 

family. The CNN's ability to learn and identify useful patterns that people or other forms of automation 

would overlook is demonstrated by its ability to link these bytes to virus classification. These research' lack 

of sophistication in uncovering novel patterns of interest is not at all indicative of the CNN's ineffectiveness. 

 

 

7. CONCLUSION 

By integrating deep learning methods with XAI, this study introduces a fresh strategy for android 

mobile malware categorization and detection. CNN models combined with XAI techniques allow for precise 

categorization with full explanations of the reasoning behind the results. This study aids current initiatives to 

reduce Android mobile malware threats, improving safety and privacy in the dynamic mobile app ecosystem. 

This research paper will focus on a fascinating CNN-based malware categorization technique. Using the 

CNN raw byte model, malware can be classified from beginning to end. CNN has the potential to be used as 

a feature extractor to improve existing features. With enough time and resources, the CNN raw byte model 

could detect hazard families before other vendors and uncover previously unknown threats. Wireless-enabled 

personal digital assistants (PDAs) are targets for mobile malware, which can cause the system to crash and 

compromise confidential data. Wireless phones and PDA networks have risen in popularity and 

sophistication as a result, making it more difficult to keep them safe from viruses and other types of 

malwares. It also provides insights on CNN judgments and aids in the identification of intriguing patterns 

across malware families using XAI. 
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