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The increasing prevalence of malware targeting android mobile devices has
raised significant concerns regarding user privacy and security. In response,
effective methods for malware classification and detection are crucial to
protect users from malicious applications. This paper presents an approach
that leverages deep learning techniques and explainable artificial intelligence
(XAI) for android mobile malware classification and detection.
Convolutional neural networks (CNNs) are deep learning model that has
shown impressive performance in several application areas, including image
and text classification. In the context of android mobile malware, CNNs
have shown promising results in capturing intricate patterns and features
inherent in malware samples. By training these models on large datasets of
benign and malicious applications, accurate classification can be achieved.
To enhance transparency and interpretability, XAl techniques are integrated

Malware classification
Malware detection

into the classification process. These techniques provide insights into the
decision-making process of the deep learning models, enabling the
identification of critical features and characteristics that contribute to the
classification results. This research, by combining deep learning and XAl
methods, presents a fresh strategy for identifying and categorizing Android
malware. This research paper will focus on a fascinating CNN-based
malware categorization technique.
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1. INTRODUCTION

Over the past several years, one of the primary concerns of researchers and specialists in the field of
cybersecurity has been the growing frequency and sophistication of malicious software. Malware is an
abbreviation that stands for malicious applications. This term refers to a broad category of potentially
destructive software that is developed to take advantage of flaws in computer systems, mobile devices, and
networks with the intention of wreaking havoc, stealing sensitive information, or gaining unauthorised access.
Traditional methods of malware detection based on signatures were shown to be ineffective when confronted
with the continually changing panorama of threats posed by malware. As a direct consequence of this,
researchers working in the field of malware detection and classification began looking to machine learning and,
more particularly, deep learning for more efficient solutions.

This research article, provide a deep learning-based approach to identifying and classifying android
malware. Which also highlight the need for more precise results in the field of malware detection using machine
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learning while presenting significance of previous work in this area. The use of a deep learning-trained
convolutional neural network (CNN) algorithm is an improvement over previous work. This paper investigates
a long-standing open question: how to identify novel behaviors inside malware families. The research employs
a form of artificial intelligence (Al) called explainable artificial intelligence (XAl), which can justify its
decisions to a human reader. The overall efficiency of the system can be improved by using XAl to learn more
about android malware detection and classification. The novel contribution of this study is the application of
XAl to the problem of discovering commonalities across distinct types of malware. The goal is to improve
malware detection and classification by making the detection process more interpretable and transparent
through the provision of justifications for the selections made by the deep learning model. The paper's next
sections will detail the research methods, explaining how deep learning was implemented with CNN and how
XAl was included.

While deep learning and XAl show promise in android mobile malware classification and detection,
there are still challenges to overcome. Class imbalance, adversarial attacks, and real-time scalability are
among the key challenges that require further investigation and development of robust solutions. The
experimental findings will demonstrate the efficacy of the proposed strategy in identifying and categorizing
android malware. This research, by combining deep learning and XAl methods, presents a fresh strategy for
identifying and categorizing android malware. The following parts will describe the research process, provide
the findings, and show why the proposed technique is important for stopping the spread of android malware.

2. LITERATURE REVIEW

Recently, deep learning techniques such as CNN have proven superior to more standard learning
algorithms in a wide range. In view of this achievement, a CNN network was proposed for malware
classification, along with data augmentation addresses to improve performance [1]. Bhanu et al. [2] provide
an integrated structure for dealing with the problem of malware, with a focus on threats sent via SMS
messages on android devices. SMS message processing has been implemented. Research by Susanto et al. [3]
includes an examination of every phase of malware detection and offers an alternative taxonomy of literature
concerning loT malware detection in an effort to uncover problems and challenges in this area. Data sets
from malware repositories, feature extraction techniques, and detection strategies are all discussed, as are the
results of the various studies. Abubaker et al. [4] gives framework that uses feature selection based on an
ensemble extra tree classifier approach and a machine learning classifier to examine the behavior of malware
apps by evaluating permissions. When it comes to detecting and classifying malware, a method has been
presented [5]. DL-droid is a deep learning system that can detect malicious android apps by methodical input
generation and dynamic analysis [6]. Experiments were run on real smart phones with over 30,000
applications, both good and poor. Kim et al. [7] represents a malware detection system that brings together a
high detection rate with an average resource need. The application programming interface call graphs of
malicious programs are analyzed by MAPAS, which uses convolution neural networks. However, MAPAS
uses CNN to detect shared features in malware API call graphs. Effective and efficient android malware
detection using machine learning is represented in paper [8]. Deep learning for android malware detection
has been suggested, and its dynamic nature makes it resistant to obfuscation [9]. Using the dynamic
exploration of an application in a simulated environment, it makes advantage of the identified behavioral
traits. The proposed technique is evaluated with 13533 applications representing several different domains.
This method is effective, with an F-measure and a detection rate. Android application malware is also
identified using a novel gated recurrent unit (GRU) and recurrent neural network (RNN) technique explained
in [10]. Extracts two static attributes from Android apps using the CICAndMal2017 dataset: API calls and
permissions. Malware detection and threat attribution (MDTA) is a portable framework for detecting
malware [11]. Recognized threats can be identified using supervised machine learning techniques, which are
also used. The most realistic and controllable strategy is the MDTA. Paper's technology used three machine
algorithms to detect malware vulnerabilities in mobile app behavior. To ensure this system is capable of
accurately predicting how mobile applications will behave, we put it through a battery of tests using
K-nearest neighbor (KNN), Naive Bayes, and a decision tree technique [12].

3. MOBILE MALWARE DETECTION

Android anti-malware solutions such as Lookout mobiles were tested by zveloLABS. Lookout
version 8.9-00fc217, a renowned android anti-virus app, was tested to check if it could detect the harmful
malware programmes DroidDream. The eclipse IDE's android virtual machine plugin was used to emulate
the Android smartphone environment. Then, using the disassembly/assembly technique described in the
research paper, successfully changed the DroidDream binaries. This because the researchers had mentioned
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that converting mobile malware could have an impact on its functionality. Because the
disassembly/reassembly procedure had no effect on the code, figured DroidDream had kept its functionality.
The goal of this research to see if the obfuscated version could be distinguished from the original. Lookout's
mobile anti-virus logs showed that the malware that had been changed from DroidDream had been
successfully detected. The logs from the app also revealed the discovery of the second sample of mobile
malware, gemini, after it had been modified. This research article relied on version of Lookout version 8.7.1-
edc6df5. As a result, the obfuscated DroidDream malware was able to evade detection, as evidenced by the
presence of a malicious "Bowling Time" programme icon on the virtual android environment. It was possible
for Lookout to modify and apply counter measures against the tested obfuscated malware quickly using
reverse engineering and innovation. This is a great example of how malware development and counter
measures have evolved over time using both white hat and black hat tactics. In this research mobile malware
DroidDream altered into affiliate web scanners which successfully discovered it. This extra step elevated a
fantastic point. Third-party scanners for mobile apps could be useful in determining the validity and
legitimacy of an app.zveloLABS considers both static and behavioural approaches. In order to discover new
breeds of android malware that have the same signature footprints, static analysis is insufficient. Malware
detection efficiency improves dramatically when used in conjunction with behavioural detection approaches
and machine learning technology. To stay competitive in today's market, established businesses must
understand and protect their mobile fleet from the rapidly developing and evolving world of mobile malware.
Although the vast majority of businesses are aware of mobile malware, only a small percentage understand
the various types and how they infiltrate corporate devices. In order to classify ransomware using machine
learning, a dynamic analysis method is presented in paper [13]. In order to track down and run malicious
code, researchers have developed a sandbox system [14]. Moon et al. [15] proposed a framework for using
semi-supervised machine learning to discover and analyze android's dynamic API calls. An example of a
policy regulation taken from Kirin is as follows: the permission labels of phone and internet must not be
present in an application. The most frequently requested harmful permission is access to the internet. Data
prediction and classification using linear regression is discussed in paper [16].

Vanjire et al. [17] introduces an Android malware detection system that utilizes deep learning
techniques to bolster mobile security. By employing fully-connected feedforward deep neural networks
(FNN) and the autoencoder algorithm, the system achieves an impressive accuracy of 95% on a real-world
dataset. These results underscore the effectiveness of deep learning FNN and autoencoder methods in
detecting Android malware. Ullah et al. [18] presents a transparent malware detection system that integrates
transfer learning and visual malware features. By leveraging both textual and visual attributes, the method
aims to improve detection accuracy. Naeem et al. [19] assesses pertained CNN models for detecting malware
from loT device. It also explores the effectiveness of combining these CNN models with different classifiers
in large-scale learning. The findings recommend utilizing a pretrained Inception-v3 CNN model, fine-tuned
for improved performance, to detect loT device malware. This approach leverages color image
representations of Android Dalvik Executable Files (DEX) to enhance malware detection accuracy.

In the framework outlined in paper [20], a set of specialized detectors converts network-flow data
into interpretable network events. Next, a neural network is crafted to examine this event sequence and
identify specific threats, malware families, and broader malware categories. Then, the integrated-gradients
technique is utilized to highlight events that together constitute the unique behavioral pattern of the threat.
Kinkead et al. [21] presents two key contributions to enhancing malware detection in Android apps. Firstly, it
proposes a new method using a CNN to pinpoint critical locations in an app's opcode sequence linked to
malware. Secondly, it compares these identified locations with those highlighted by the LIME explainability
method. Leveraging the Drebin benchmark dataset, the study shows strong alignment between
CNN-identified malicious locations and those flagged by LIME across various malware families. The survey
[22] aims to address the research gap by offering an in-depth and current overview of XAl methodologies
relevant to cybersecurity challenges. Ambekar et al. [23] develops a novel Android malware classification
framework named TabLSTMNet, leveraging recent datasets. Utilizing the NATICUSdroid and
TUNADROMD datasets containing Android permissions and API attributes, TabLSTMNet employs a fusion
of TabNet's attention mechanism and the long short-term memory (LSTM) architecture to differentiate
between benign and malicious applications. Yan et al. [24] proposes an online detection system built on
FPGA technology, aimed at enabling real-time detection in high-speed network environments. This system
utilizes a rule tree approach, which simplifies the challenge of integrating a deep neural network into FPGA.
Smmarwar et al. [25] presents XAI-AMD-DL, a hybrid Android malware detection (AMD) system that
integrates CNN and Bi-GRU architectures within an XAl on CICAndMal2019 Android malware dataset.
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4. MOBILE MALWARE DETECTION TECHNIQUE

Mobile malware detection and other security vulnerabilities detection approaches have varied degrees
of effectiveness and weakness. Analyses that are performed in a static environment an application's static
analysis can detect dangerous features or faulty code portions without executing it, saving time and money.
Figure 1 shows techniques for examination when doubtful applications are checked to detect security issues.
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Figure 1. Static anomaly detection techniques

Figure 1 depicts a malware discovery method for operating system that has been presented. System
feature extraction is used to deconstruct the mobile app and extract system calls. Then, centroid machine, a
lightweight clustering approach (anomaly detection), is used to determine whether the mobile app is harmful
or not. Further, it’s difficult to say how well this strategy will work with less well-known ones. Figure 1
shows how to use the previously described PiOS technique to perform analysis for iOS application binaries.
iOS reviews mobile application and produces a control flow diagram. This procedure needs analysing
sensitive sources from phone as contact book, GPS time, and other data. Any delicate information sent from
the source to sync without informing the user will be detected by dataflow analysis, resulting in security
breaches. Figure 1 depicts a proposed android malware detection method. In static code analysis software
examines Java source code from the installation image of the application. Despite the fact that this technique
was verified on 1,100 mobile applications. To do dynamic analysis instead of static testing, researchers run
the mobile application on a virtual machine or emulator. This allows them to track the app's dynamic
behaviour. Dynamic analysis is used system call tracing also in taint tracking. TaintDroid used in system-
wide taint tracking for android.

There are four granularities of taint propagation, as shown in Figure 2(a) variable, method, message,
and the Dalvik virtual machine as well as on a filesystem level. Any uncertain data originating from sensitive
sources will be marked with taint tracking to prevent unauthorised access. Location, microphone, camera, and
unique phone identifiers are all examples of sensitive mobile data. By modifying the library loader in this way,
we can ensure that untrusted applications are unable to execute native methods without first invoking the virtual
machine. After that, sensitive data leaking is investigated by doing a dynamic analysis on the affected
files.network interface—a conduit via which corrupted information can be flushed before transmission.

Many third party android applications tested with TaintDroid indicated that shared user location
with phone unique id. TaintDroid, on the other hand, may produce false negatives and positives, and it
ignores additional vulnerabilities in favour of just monitoring dataflow. With the android application sandbox
technologies, android applications can undergo with a two-step analysis process. As shown in Figure 2(b),
static and dynamic evaluations are carried out in offline mode using a sandbox. Static analysis is used to
disassemble an application's binary image, and the stripped code is examined for any unusual patterns. The
binary is run at android emulator then system calls are analysed dynamically. While android monkey was
used to generate inputs, real-world testing was more effective. Furthermore, this method has not been tested
against malware that uses polymorphic encryption. Permissions assessment for a given application are critical
in mobile apps because they let users know what the app's intentions are and what it's doing behind the
scenes. Because permissions on smartphones are explicitly established, application developers must obtain
the necessary permissions. Application vulnerabilities can occur when writers deliberately obfuscate about
permissions used in their applications.
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Figure 2. Dynamic anomaly analysis: (a) system-wide and (b) sandbox-based

Figure 3 depicts the Kirin android app certification. Checks the application's permissions during
installation. When a programme is installed, the security settings of the user are extracted and compared to
the security policy rules. If an application does not comply with Kirin's security policy, it will be deleted or a
warning will be sent to the user's device. Moon et al. [15] proposed a framework for using semi-supervised
machine learning to discover and analyze android's dynamic API calls. An example of a policy regulation
taken from Kirin is as follows: the permission labels of phone and internet must not be present in an
application. The most frequently requested harmful permission is access to the internet.
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Figure 3. Kirin android application certification

5. SYSTEM PROCESS METHOD

Experimental evaluations on a comprehensive dataset of android mobile applications represents the
proposed approach. The deep learning models trained with XAl techniques achieved high classification
accuracy and provided interpretable explanations for the decision-making process. This enables users and
security analysts to better understand the basis for malware detection, improving trust and aiding in the
decision-making process. A dataset of 833,000 binary samples (both clean and malware) from various
malware families, compilers, and "first-seen" time periods was collected for the malware detection
investigations. Sanity checks were performed to exclude corrupt or excessively large or small samples from
the experiment. The raw bytes from the samples that passed the sanity checks were extracted and used for
further experiments. Deep learning model training: a CNN was trained using the raw byte data from the
training set. The CNN was trained to classify the samples as either clean or malware. Evaluation and
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performance analysis: three tests were conducted to evaluate the performance of the trained CNN model: a
high receiver operating curve (ROC) score of 0.9953 was obtained, indicating excellent performance.
Duplicate removal: duplicate raw byte entries were found after extracting them from the 833,000 unique
samples due to malware families employing hash-busting and polymorphism techniques. The duplicated
entries were removed in the second experiment, resulting in a reduced dataset of 262,000 samples. The
performance of the model was still within an acceptable confidence range. Malware classification: in the
third experiment, malware classification was attempted based on different malware families. A subset of
samples was taken from the dataset, with specific labels assigned to clean samples, malware families, and
others. The remaining 20,000 samples were divided into 11 categories based on different compilers and
packagers. Training and testing: the dataset was randomly divided again into training and test sets using an
80/20 split. The performance of the model was evaluated using precision, and a test precision of 0.9700 was
achieved in this experiment. The training and testing process took 26 minutes using a single GPU.

The method outlined in Figure 4 demonstrates the systematic process followed for android mobile
malware classification and detection using a deep learning algorithm. The collection and preprocessing of a
large-scale dataset, training a CNN model, evaluating performance, handling duplicate entries, and
classifying malware based on different families were key steps in this method. The achieved results and
performance metrics were derived from the rigorous application of this method.

Figure 4. System process model

6. RESULTS ANALYSIS

We gathered 833,000 binary samples (dirty and clean) from a wide variety of families, compilers,
and "first-seen” times for our malware detection studies. Many samples were from the same families, but the
packers and obfuscators they used were all different. We performed sanity checks on the samples to make
sure we weren't using any that were corrupted or were either too big or too small for the experiment. We
performed a number of experiments using the unprocessed bytes from a sample that made it past our sanity
check. A random 80/20 split was used to separate the data into training and testing sets. We ultimately relied
on this data set to conduct the three analyses. Area under the ROC of 0.9953 was achieved by feeding the
CNN raw bytes from a training set of 833,000 samples. Here, after extracting them from the initial set of
833,000 unique samples, duplicate raw byte entries were discovered. Malware groups that used hash-busting
to exploit polymorphism played a significant role in this. In our second trial, we replicated the extracted raw
byte entries. The raw byte input vector had dropped to a meager 262,000 samples. The evaluated area was
found to have a ROC coefficient of 0.9920, well within the bounds of respectable certainty. Third, we looked
for ways to group malware into its many families. The original set of samples was reduced to a total of
130,000, with the first sample marked as clean, the second through ninth as malware families, and the tenth
as others. The remaining 20,000 samples were then separated into the following 11 groups: there are 11 bins
total, and each one contains code snippets generated by a different compiler or packager. Again, randomly
split the data into a training and test set, but this time split it 80/20. An experimental recision of 0.9700 was
achieved. Training and testing on a single GPU took 26 minutes.

T-SNE and PCA are used to visually portray and explain the data both before and after the CNN
training process.To get a better grasp on how CNN training works, we analyzed it graphically. After training,
CNN is able to extract meaningful representations for capturing the attributes of different forms of malware,
as seen in separate clusters. Since most groups were clearly distinguished, we reasoned that the method could
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function as a multi-class classifier. After then, we analyzed CNN's decisions with XAl. Therefore, CNN
places a premium on those details when making choices. Were interested in learning more about the bits that
made a big difference in the final verdict, and so personally assessed a few cases. To get to this end, result
enlisted the aid of a human specialist evaluate if the red-highlighted bytes belonged to a known malware
family. The CNN's ability to learn and identify useful patterns that people or other forms of automation
would overlook is demonstrated by its ability to link these bytes to virus classification. These research' lack
of sophistication in uncovering novel patterns of interest is not at all indicative of the CNN's ineffectiveness.

7. CONCLUSION

By integrating deep learning methods with XAl, this study introduces a fresh strategy for android
mobile malware categorization and detection. CNN models combined with XAl techniques allow for precise
categorization with full explanations of the reasoning behind the results. This study aids current initiatives to
reduce Android mobile malware threats, improving safety and privacy in the dynamic mobile app ecosystem.
This research paper will focus on a fascinating CNN-based malware categorization technique. Using the
CNN raw byte model, malware can be classified from beginning to end. CNN has the potential to be used as
a feature extractor to improve existing features. With enough time and resources, the CNN raw byte model
could detect hazard families before other vendors and uncover previously unknown threats. Wireless-enabled
personal digital assistants (PDASs) are targets for mobile malware, which can cause the system to crash and
compromise confidential data. Wireless phones and PDA networks have risen in popularity and
sophistication as a result, making it more difficult to keep them safe from viruses and other types of
malwares. It also provides insights on CNN judgments and aids in the identification of intriguing patterns
across malware families using XAl.
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