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 Predicting the onset of cardiovascular disease (CVD) has been a hot topic for 

researchers for years, and recently, the concept of transfer learning has been 

gaining traction in this field. Transfer learning (TL) is a process that involves 

transferring information gained from one task or domain to another related 

task or domain. This paper comprehensively reviews recent advancements in 

pre-trained TL models for CVD, focusing on electrocardiogram (ECG) 

signals. Forty-three articles were chosen from Scopus and Google Scholar 

sources and reviewed, focusing on the type of CVD detected, the database 

used, the ECG input format, and the pre-training model used for transfer 

learning. The results show that more than 80% of the studies utilize 2-

dimensional (2D) ECG input from the two most utilized available ECG 

datasets: MIT-BIH arrhythmia (ARR) and MIT-BIH normal sinus rhythm. 

alexnet, visual geometry group (VGG), and residual network (ResNet) are 

among the pre-trained TL models with the highest number used among 

reviewed articles. Additionally, the development of pre-trained TL models 

over time has made it possible to detect CVD with ECG signals. It can also 

address limited data problems, promote the development of more dependable 

and resilient detection systems, and aid medical professionals in diagnosing 

CVD and other diseases.  
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1. INTRODUCTION  

Cardiovascular disease (CVD) continues to be the leading cause of death worldwide, causing the loss 

of up to 17.9 million lives [1]. The disease encompasses a range of conditions that impact the heart and blood 

vessels such as coronary artery disease, heart failure, and hypertension. These illnesses collectively result in a 

considerable worldwide health burden, leading to a significant number of fatalities and negatively impacting 

the quality of life for numerous individuals. CVD can arise from a range of risk factors, including smoking, 

unhealthy food, lack of physical exercise, and genetic predisposition. CVD's effect on the cardiovascular 

system can result in symptoms such as angina, dyspnoea, and in extreme instances, myocardial infarctions (MI) 

and cerebrovascular accidents. Therefore, it is vital to prioritise prevention and management strategies for 

maintaining optimal health and providing innovative approaches to improve detection and early diagnosis [2]. 

In recent years, the growing field of artificial intelligence has shown tremendous potential in CVD detection 

systems. CVD can be detected using several methods, such as electrocardiogram (ECG) [3], [4], 

phonocardiogram (PCG) [5], [6], echocardiography [7], and magnetic resonance imaging of the heart  
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(MRI) [8], [9]. Among these diagnostic modalities, ECG is available in the wearable form making it a low-

cost, non-invasive, and easily obtainable option.  

ECG device allows measurement of electrical activities in the heart and any abnormalities of the ECG 

pattern may reflect the occurrence of CVD condition of the heart. However, manual interpretation of these 

signals is time-consuming and prone to human error. Previous studies have shown that automation of 

interpreting these signals using machine learning (ML) and deep learning (DL) approaches will help to cope 

with the problems mentioned. Even though ML has the potential to automate and improve the accuracy of 

CVD diagnosis, it requires feature extraction to be performed before the classification process, which can be 

time-consuming, demanding expertise, and financially overburdened. Conversely, DL enables the integration 

of feature extraction and classification within the same constructed model. But it is data-hungry, requiring 

larger datasets for optimal performance which leads to longer training times and incurring substantial 

computational expenses. Hence, researchers in the field of CVD adopted transfer learning (TL) approaches to 

address the issues derived from ML and DL approaches [10]. TL is a method that utilises knowledge gained 

from one task to improve performance in another task. The method does not only eliminate the need for 

repetitive feature extraction and the time-consuming training procedure from scratch, but also performs 

exceptionally well with limited data, which sets it apart from the requirements of classical ML and DL. 

Related review studies on CVD detection mostly focused on ECG in cardiovascular disease detection 

applications but do not discuss the transfer learning approach [11]. Other related review studies that touched 

on transfer learning focused only on medical imaging, such as echocardiography, X-rays, CT scans, MRI, and 

endoscopy [12]. Another study on transfer learning focused only on non-medical images such as time series 

data, audio, or text [13]. Compared with previous review studies, the main significance of this paper is to 

explore the potential of pre-trained models for improving CVD using ECG. Additionally, the focus of this 

paper is to look broadly at recent advances in the field of heart disease detection systems, with a focus on the 

wide variety of pre-trained models that have been used for CVD diagnosis, as well as datasets and tools 

commonly used with transfer learning in this domain. 

The rest of this paper is structured as follows: section 2 explains the strategy of article searching used 

in this paper. Section 3 includes an overview of cardiovascular diseases, electrocardiograms, ECG datasets 

available, transfer learning and its existing pre-trained models. A review of the state-of-the-art researchers on 

transfer learning for CVD diagnosis is also presented in this section. Section 4 discusses the challenges and 

opportunities of using transfer learning for CVD diagnosis. Finally, the review is concluded in section 5. 

 

 

2. METHOD 

This study adheres to the preferred reporting items for systematic reviews and meta-analyses 

(PRISMA). The selection of publications in this study is primarily drawn from two scholarly databases i.e., 

Scopus and Google Scholar. These two sources provide access to a wide range of scholarly literature, including 

research articles and conference proceedings. The search focuses on the publications from the year 2018 to 

March 2023 that were written in English. For the early screening, the title or abstract should at least contain 

the keywords "electrocardiogram", "ECG", "pre-trained", and "transfer learning." Any publications that do not 

include any of these keywords were not considered. The search strategy resulted in more than 200 papers 

meeting these criteria. After an initial screening involving titles and abstracts, we refined the list to 73 articles 

eligible for further evaluation. The selected publications should focus on detecting cardiovascular diseases 

using transfer learning approaches. If not, it will be eliminated from the list. The full text for the selected 

articles was acquired and further assessments were carried out. Finally, 43 papers are selected after evaluating 

the complete text, and the critical information for this review is recorded. The information includes the type of 

CVD detected, the database used, the ECG input format used, and the pre-trained model used for transfer 

learning. Each piece of information is presented and discussed in the following section. Figure 1 shows the 

process flow in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) diagram. 
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Figure 1. The PRISMA diagram 

 

 

 

3. RESULT 

All selected papers are reviewed, focusing on the type of CVD detected, the database used, the ECG 

input format, and the pre-training model used for transfer learning. These key points are important in 

developing CVD detection systems, especially in determining the appropriate database of the solution, the 

signal pre-processing process, designing, and building transfer learning models while improving system 

performance, and considering the cost of CVD detection using transfer learning. A summary of the information 

extracted from the selected paper is presented in the next section. 

 

3.1.  Cardiovascular disease 

The following is a list of some of the most well-known types of CVDs: 

a. Coronary heart disease (CHD): CHD is a problem that occurs when the blood supply to the heart muscle is 

interrupted by a cholesterol deposit known as plaque. Plaque is a build-up of cholesterol that happens 

naturally and causes blood vessels to get narrower over time. If the blood vessels are totally clogged, this 

may result in chest discomfort or a heart attack. 

b. MI: a MI, more often referred to as a "heart attack," is defined by the obstruction of blood flow to the heart 

muscle caused by the presence of a blood clot or plaque. A heart attack may be fatal. The early diagnosis 

of this illness is very necessary in order to prevent unexpected deaths and an increasing mortality rate [14]. 

c. Arrhythmia (ARR): when there is a disturbance in the heart's electrical conduction system, it can lead to an 

irregular heartbeat or abnormal cardiac rhythms, a condition known as ARR. This condition is characterized 

by an irregularity in the heart's electrical activity. In most cases, ARRs are accompanied by additional 

symptoms such as exhaustion, chest discomfort, shortness of breath, or unconsciousness [15]. These 

symptoms need prompt medical care since, if left untreated, they may advance to the point where they cause 

permanent paralysis or a stroke.  

Many researchers devoted time and energy to this field to improve health care by enabling more 

accurate diagnosis and faster treatment of heart-related diseases. For example, Abo-Zahhad and Hassan [16] 

has studied and detected CHD using ECG signals. Rahman et al. [17] applied a long-term ECG to detect ARRs. 

In addition, some authors narrow the focus to specific diseases grouped under ARR, such as atrial fibrillation 

[18]. The researchers in [19] begin to explore CVD affecting the ventricles of the heart and detect ventricular 

tachyARR. This irregular and rapid heart rhythm arises from inappropriate electrical impulses in the ventricles 

of the heart. On the contrary, James et al. [2], Suinesiaputra et al. [9], and Naz et al. [19] used a 12-lead ECG 

in their MI detection system. Another study in 2021 developed MI detection using a combined strategy of ECG 

data and features called DeepMI [20]. A study by Fatema et al. [21] and Bhosale and Patnaik [22] both 

classified CVD disease involving MI and abnormal heartbeats using paper-based ECG images. 
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3.2.  Electrocardiogram  

CVD correlates with the ECG pattern, which explains the need to analyse the ECG taken immediately 

after the onset of symptoms. Each ECG cycle consists of three phases: The P wave, the QRS complex, and the 

T wave. In these three phases, there is a segment called ST segments that reflect ventricular repolarization. In 

this segment, elevation or depression of the ST may indicate signs of a heart attack and is usually used to detect 

MI. In addition, the interval from peak R to another peak R may indicate the heart rhythm is either under normal 

conditions, too slow (i.e., bradycardia ARR), or too fast (i.e., tachycardia ARR). Figure 2 shows various 

patterns of ECG, including normal ECG pattern (Figure 2(a)), abnormal ST-elevation for MI (Figure 2(b)), 

abnormal ST depression for MI (Figure 2(c)), fast heart rhythm (Figure 2(d)), and slow heart rhythm that 

usually reflects the presence of CVD (Figure 2(e)). 

 

 

 

  
(b) (c) 

  

  
(a) (d) (e) 

 

Figure 2. Various pattern of ECG; (a) normal ECG pattern; (b) abnormal ST elevation–MI; (c) abnormal ST 

depression–MI; (d) fast heart rhythm; and (e) slow heart rhythm 

 

 

Based on the analysis of the reviewed papers, more than 80% of the studies utilize 2-dimensional (2D) 

ECG input comprised of beat images, spectrograms, scalograms, and printed images. ECG raw data (i.e.,  

1-dimensional, 1D) was used in the study by Mohebbanaaz et al. [23] as primary data. In the study by  

Kim et al. [24], an ECG spectrogram and an ECG scalogram were used, and the performance of the detection 

system between these two was compared. The ECG scalogram was found to have a more stable CVD prediction 

than the ECG spectrogram. The ECG scalogram and ECG raw data were compared in the study by Sabeenian 

and Janani [25]. The authors found that both input types perform best using different pre-trained models. 

Besides, Venton et al. [26] studies the impact of four separate methods of generating an image from a single 

ECG: the ECG scalogram, the ECG spectrogram, the attractor, and the Poincare plot. The finding shows that 

the scalogram and spectrogram perform the best, followed by the Poincare plot and the attractor. 

 

3.3.  ECG datasets for cardiovascular disease 

Typically, ECG data used in previous studies was obtained from publicly accessible databases such 

as PhysioNet or Kaggle. The collaboration between the Massachusetts Institute of Technology (MIT) and the 

Beth Israel Hospital (BIH) in Boston is the first standard public dataset available for CVD evaluation [27]. 

This major contributor establishes several datasets, including MIT-BIH ARR, MIT-BIH normal sinus rhythm 

(NSR), MIT-BIH atrial fibrillation (AFib), and the longer version of it called MIT-BIH Long-Term AF, MIT-

BIH malignant ventricular arrhythmia (VT), and MIT-BIH ventricular fibrillation (VFib). Among these MIT-

BIH datasets, the MIT-BIH ARR dataset and MIT-BIH NSR were the most popular datasets used in the 

reviewed studies. The MIT-BIH ARR was collected at Boston's Beth Israel Hospital using Holter monitors on 

47 subjects, while the MIT-BIH normal sinus rhythm database contains a long-term (25-hour) recording of 

ECG Holter data from 18 normal subjects.  

Besides the MIT-BIH dataset collection, several researchers used the physionet database purposely 

built for the computing in cardiology challenge 2017 [28]. This dataset consists of 8528 single-lead ECG 

recordings of normal, AFib, noisy, and others using an AliveCor device with 9 to 60 seconds of training and 

testing sets. The length of ECG recordings varies depending on the specific dataset and its intended purpose. 

There are several other datasets used in CVD studies, such as the China physiological signal challenge 2018 

(ICBEB) dataset, the European ST-T, INCART ARR, BIDMC congestive heart failure (CHF), QT, and 

Creighton University Ventricular Tachyarrhythmia (CUDB).  

Several datasets are built specifically for MI evaluation. For instance, Physikalisch-Technische 

Bundesanstalt (PTB), the National Metrology Institute of Germany, has provided this compilation of digitised 
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ECGs for CVD studies that contain 549 ECG recordings from 290 subjects recorded using the prototype ECG 

devices [29]. Like PhysioNet 2017, the PTB dataset has various lengths of ECG recording, from 10 seconds to 

2 minutes long. Khan et al. [30] established a dataset that consists of paper-based ECG images that contain 

ECG from MI patients. The ECG recording was recorded using the EDAN 3-series on 1937 patients. The 

duration of the recording is not reported. Besides, another dataset called the European ST-T Database is built 

to evaluate MI by analysing ST and T-wave changes [31]. The ECG recording was taken from 79 subjects with 

a range of ages from 30 to 84 years old. 

Besides, several studies utilise private datasets. These include the Hualien Tzu Chi database [32], the 

first China ECG intelligent competition dataset [33], and the provincial key laboratory of CHD, Guangdong 

Cardiovascular Institute (GCI) database [20], [34], [35]. In addition, since ECG patterns differ for everyone 

according to demographic factors, several researchers collect their dataset for CVD detection. For instance, 

[36] collected raw ECG recordings from PDF versions and then converted them into PNG format, resulting in 

over 51 thousand images of ECG. Sun et al. [37] obtained 12-lead resting ECG signals from 285 AFib patients 

categorised as mild and severe. In addition to using an MIT-BIH ARR, Asif et al. [38] also captures real-time 

ECG, known as real-time cardiac arrhythmia (RT-CarArr).  

 

3.4.  Transfer learning 

In ML, despite receiving considerable attention recently, transfer learning is still a work in progress. 

Establishing a strategy for transfer learning mostly depends on the availability of data and the similarity 

between the original and new tasks. According to Pan and Yan [39], there are three strategies for setting up 

transfer learning. The first setting strategy is inductive transfer learning, which is used when there are data 

labels in the target domain regardless of whether labelled data is available in source domain or not. The second 

setting strategy is called transductive transfer learning. This is used when data labels are only available in the 

source domain and not in the target domain. The third type of setting is unattended or unsupervised transfer 

learning, which is used when no labelled data exists in the source or target domain. Figure 3 illustrates this 

transfer learning placement strategy. 

 

 

 
 

Figure 3. Transfer learning setting strategies [39] 

 

 

Transfer learning has seen recent trends such as utilizing pre-trained models to transfer knowledge 

between domains [40], [41], developing novel approaches for few-shot and one-shot learning [42], and 

applying transfer learning to reinforcement learning [43]. Pre-trained models, in particular, have become a 

common and productive tactic in transfer learning [44] and typically fall under the inductive transfer learning 

setting. These models are first trained on large datasets, such as imagenet, before being fine-tuned on smaller, 

domain-specific datasets. Many pre-trained models are now accessible to users through deep-learning 

frameworks like TensorFlow [45] and PyTorch [46]. 

AlexNet [47], visual geometry group (VGG) [48], GoogLeNet [49], residual network (ResNet) [50], 

and DenseNet [51] are regarded as the most popular models among the numerous pre-trained models of transfer 

learning because of their great performance on various benchmarks for recognition tasks. LeNet-5 is originally 

presented by LeCun in the late 1990s, about a decade before the establishment of AlexNet in 2012. Owing to 

the computing capacity restriction, it was difficult to implement LeNet until roughly 2010 [52]. On the other 

hand, in comparison to LeNet, AlexNet has an architecture that is more extensive and detailed, and it was 

successful in beating out all of the other conventional methods of recognition in the imagenet competition in 

2012 [47]. 

At the imagenet large scale visual recognition challenge (ILSVRC) in 2014, GoogLeNet won first 

place [49], while VGG took second place [48]. GoogLeNet is the first to propose the idea of an "inception 

layer," also known as Inception-V1, which ultimately led to the successful use of dimensionality reduction. 

Inception-V2, Inception-V3, and Inception-V4 are a few examples of the latest updates to this design [53]. 
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Nevertheless, VGG demonstrates that a network's depth is crucial for improving recognition accuracy, and 

three different VGG based models have been developed, namely, VGG-11, VGG-16, and VGG-19, where the 

numbers are with respect to the number of layers they have.  

In 2015, a network called ResNet [50] was developed with many layers, and it ended up winning the 

2015 ILSVRC. Among all the designs, the ResNet50 architecture has become the most widespread, featuring 

a composition of 49 convolutional layers and a single fully connected layer located at the network's end. After 

some time, a number of developments were made, one of which is the proposal of combining Inception with 

the residual network, which is referred to as inception-ResNet [53]. 

DenseNet was developed in 2017 by Huang et al. [51]. By implementing the concept of feature reuse, 

the number of parameters required for a network is drastically decrease. DenseNet has greater classification 

performance while utilizing small datasets. There are many other additional pre-trained models available today 

in addition to these five popular, and choosing which one to use depends on the application as well as the 

resources that are at your disposal. The development of a pre-trained model of transfer learning throughout the 

period is shown in Figure 4. 

 

 

 
 

Figure 4. Evolution of pre-trained model of transfer learning 

 

 

According to Salem et al. [54], DenseNet was proposed as a tool for extracting features from ECG 

recordings containing 12 different irregular heartbeats along with normal sinus rhythms to classify various 

ECG rhythms. In this method, ECG signals were preprocessed and converted into two-dimensional (2D) 

images before being fed into a DenseNet for feature extraction. The authors then used the chi-squared test to 

identify the most important feature maps and applied the support vector machine (SVM) to classify the data. 

This approach achieved an impressively high accuracy of 97.23% in the classification of ECG ARRs. 

Similarly, Qayyum et al. [55] used ResNet, GoogleNet, AlexNet, and VGG 16 and 19 models that 

had already been trained to classify AF with ECG spectrogram images. These pre-trained models were applied 

in two different ways: as feature extractors feeding SVM or Ensemble classifiers or as AF classifiers. Overall 

accuracy was up to 97.89%. The authors also recommended conducting additional research using new models 

like recurrent neural networks (RNN) and larger datasets. 

Diker et al. [56] used the PTB database to classify abnormal ECG that was first turned into 

spectrogram images and then fed as input to three different transfer learning algorithms: AlexNet, VGG16, and 

ResNet18. With an accuracy of 83.82%, AlexNet is the best of these three transfer learning algorithms at 

classifying an abnormal ECG, and ResNet18 and VGG16 come in second and third, respectively. Interestingly, 

the authors of this paper also recommended further investigation to gain a more comprehensive understanding 

of transfer learning in the future. 

Mashrur et al. [57] proposed an automated ARR identification based on the AlexNet model in their 

study. Before the classification procedure, ECG data were transformed into spectrograms, which were then 

passed into AlexNet to identify ARRs. The proposed approach was effective in achieving 97.90% accuracy. 

For improved results, the author recommended tuning the AlexNet or combining it with another pre-trained 

model. Furthermore, the proposed approach must be evaluated using various datasets to determine its efficacy. 

Moreover, deep transfer learning was presented as a method to identify MI where a VGG-Net is used 

to analyze ECG data to extract features and fine-tune the model [14]. In addition, the author suggested using 

data augmentation and dropout methods in order to prevent the system overfitting and increase its accuracy. 

Then, the authors applied the model to the PTB database, which includes ECG recordings taken from 

individuals both with and without MI to assess the performance of their method. As a result, the method attained 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 5, October 2024: 3288-3300 

3294 

99.22% MI detection rate. This illustrates the promise of deep transfer learning as a tool for efficient and 

accurate diagnosis in urban healthcare environments. 

In addition, Almalchy et al. [58] proposed automated ECG diagnosis for AF using AlexNet due to its 

excellent performance and low training duration. Similar to previous studies, they converts a 30-second ECG 

recording to images before passing it to AlexNet. The authors also tested out the efficacy of data augmentation 

with transfer learning. However, they found that augmenting the ECG images affected the ECG features, 

leading to incorrect classification (51.59% accuracy). Transfer learning without data augmentation gives the 

best accuracy at 99.21%. 

Singh and Sharma [18] presented a method for diagnosing atrial fibrillation that is based on transfer 

learning. The proposed approach commences with utilizing ResNet50 as a feature extractor and then proceeds 

to employ a fully connected neural network for classification purposes. This technique achieves a classification 

accuracy of up to 99% and demonstrated the potential use in aiding medical professionals in the early diagnosis 

of disease. 

In another study, Weiman and Conrad [59] utilized ResNet-18V2, ResNet-34V2, and ResNet-50V2 

as feature extractors, followed by a fully connected neural network for ECG classification, using the PTB 

Diagnostic ECG Database with five unique cardiac disease diagnoses. The results demonstrated that transfer 

learning can significantly improve the classification accuracy of ECG signals, achieving an overall accuracy 

rate of 95.64%. Additionally, authors indicate that transfer learning outperforms models developed from 

scratch, emphasizing its potential as a valuable tool for developing effective diagnostic solutions for cardiac 

diseases. 

Using transfer learning, Pal et al. [60] constructed a system that they called CardioNet to categorize 

the many different forms of ARRs that may be seen on an ECG. By using the pre-trained weights from 

DenseNet, VGG, ResNet, and ResNetV2 architectures to fine-tune CardioNet on two separate ECG datasets 

the PTB Dataset and MIT-BIH ARRs the system achieved impressive accuracy rates. Among the models tested, 

DenseNet produced the highest accuracy rate of 98.92%, followed by VGG at 98.38% and ResNet and 

ResNetV2 at 96.1% and 95.2%, respectively. 

Since there are not many biosignal datasets available, Jang et al. [61] argue that transfer learning may 

improve the performance of ECG analysis models even when there are just a few data points available. The 

authors examine the capabilities of GoogLeNet and convolutional auto encoder (CAE) by applying them to 

two separate ECG datasets and comparing their results. The authors claim that CAE is more successful than 

GoogleNet, achieving an accuracy of 85.70% as opposed to 81.10% for GoogleNet. The findings suggest, in 

general, that transfer learning is a potentially helpful strategy for developing effective ECG analysis models 

with low amounts of training data. 

On the other hand, a method for categorizing different kinds of heartbeats from electrocardiogram 

(ECG) data by using deep transfer learning in conjunction with a convolutional neural network (CNN) and a 

short-time Fourier transform (STFT) technique was proposed in [4]. STFT was used in order to transform the 

1D ECG data into 2D spectrogram images, and ResNet18 was utilized for the purpose of ARR classification. 

With an accuracy of 90.80% on the MIT-BIH ARR database, the suggested method shows promise for clinical 

diagnosis in ECG classification. 

Furthermore, a new system called DVEEA-TL, which stands for "development and validation of 

embedded devices that prove ECG ARR by using transfer learning" was proposed in [38]. In this study, besides 

using the ECG dataset from Kaggle, the real-time ECG images were also acquired using a heart rate monitor 

sensor. The images were pre-processed and resized according to the AlexNet default parameters. The proposed 

system achieved 99.80% accuracy. 

An automated cardiovascular diseases classifier was proposed in [62]. Data augmentation was used 

in this study to balance the ECG images dataset that contains several classes of heartbeat: normal, abnormal, 

MI, previous history of MI, and COVID-19. Three pre-trained transfer learning algorithms were used to classify 

the CVDs: DenseNet, VGG-16, and ResNet-50. Among these three, DenseNet gives the best performance with 

93.33% accuracy. 

Generally, the development of pre-trained transfer learning models over time has made it possible to 

seamlessly incorporate many of these models into existing popular open-source deep-learning platforms and 

toolkits. There are many available tools that can be used with transfer learning to develop detection systems 

for cardiovascular disease. Therefore, the platforms, frameworks, and toolkits that are compatible with the pre-

trained transfer learning model and associated data sources are listed in Table 1. The overview of previous 

studies is shown in Table 2 [3], [4], [10], [14], [17]–[26], [32]–[38], [54]–[58], [60], [63]–[77] (in Appendix). 
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Table 1. Tools for transfer learning specific to cardiac disease 
Tool Descriptions Sources 

TensorFlow 
Hub 

Open-source platform. Large repository of pre-trained models no initial 
training required. 

https://www.tensorflow.org/ 

PyTorch Hub Open-source ML library, easy to apply transfer learning via feature extraction 

and fine-tuning. 

https://pytorch.org/ 

Keras Open-source software library. Keras' API powers most transfer learning and 

fine-tuning workflows. 

https://keras.io/ 

Hugging 
Face 

Transformers 

Platform with APIs to use pre-trained models. Support framework 
interoperability between pytorch, tensorflow allow to share ML models and 

datasets. 

https://huggingface.co/docs/transfor
mers/index 

NVIDIA 
TAO Toolkit 

Built on tensorflow and pytorch easy integration with pre-trained models. 
No need AI expertise or large training datasets. 

https://developer.nvidia.com/tao-
toolkit 

Transfer 

Learning 
Library 

Based on pytorch easy integration with pre-trained models. Easily develop 

new algorithms or apply existing algorithms. 

https://github.com/thuml/Transfer-

Learning-Library 

CardIO 

Toolbox 

Deal with ECG signals in several different forms. AI-based PQRST segment 

detection, ECG feature calculation, and heart disease diagnosis. Able to work 

with python and the jupyter notebook. 

https://doi.org/10.5281/zenodo.1156

085 

ECG-kit 

Toolbox 

Works with different ECG file types. Statistical-based ECG wave 

segmentation and QRS complex identification. MATLAB-compatible and 
capable of heartbeat classification. 

http://marianux.github.io/ecg-kit/ 

 

 

4. DISCUSSIONS 

The proposed system in the reviewed papers includes but is not limited to the classification of ARR, 

MI, atrial fibrillation, and abnormal ECG. Since there are abundant publicly available ECG datasets, detailed 

analysis and consideration should be taken before choosing a database that is the most suitable for the study 

purposes and to avoid a negative impact on detection performance. Additionally, since ECG differs according 

to individual and demographic factors, adding self-collected data is recommended to allow a broad overview 

of CVD studies according to demographic division. 

Most pre-trained transfer learning models take input in images or in a 2D ECG format. Hence, among 

the articles that were reviewed, some recommended efforts to transform a 1D ECG into a 2D ECG [18], [14], 

[60] or a time-frequency spectrogram image [4], [54], [61] image before feeding it to a model that had already 

been pre-trained were made. Despite this, Weiman and Conrad [59] opted not to change the input format of the 

ECG and instead chose to make just a minor adjustment to the convolutional layer, moving it from 2D to 1D. 

The accuracy attained for both input formats is good. This is an excellent chance to explore the reliance of the 

data input format on the performance of transfer learning. Additionally, there might be an influential factor in 

implementing CVD detection based on the combination of ECG input with different algorithms, which suggests 

further investigation. 

ResNet, GoogleNet/Inception, AlexNet, VGG, and DenseNet are the top pre-trained models used in 

reviewed articles, as shown in Table 2. Most of the articles utilized 2D ECG in their studies, but several studies 

utilise 1D ECG and have succeeded in obtaining more than 90% accuracy [23]. Therefore, conducting further 

research on these models would be beneficial to establish an optimal pre-trained model for cardiovascular disease 

detection systems. In addition, Rouzrokh et al. [78] mentioned that transfer learning is more useful towards the 

performance of the detection model with similar imaging features, suggesting that transfer learning from medical 

data to medical data should be further studied to establish more effective approaches to detecting CVD. 

 

 

5. CONCLUSION 

This paper examines the latest advancements in CVD detection systems using ECG signals, focusing 

on pre-trained transfer learning models. It can be inferred that transfer learning can enhance the accuracy of 

cardiovascular disease detection, particularly when dealing with ECG signals. Additionally, transfer learning 

can address challenges associated with limited medical data and promote the development of more dependable 

and resilient detection systems. This approach can aid medical professionals in heart-related diseases and other 

diseases. 
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[63] MI Ali Haider ECG images / 
    

/ 
   

[21] MI  Ali Haider ECG printed images 
 

/ 
 

/ 
     

[22] MI  Ali Haider ECG images 
  

/ / / 
 

/ 
  

[3] MI  Ali Haider; PTB ECG printed images 
 

/ 
 

/ / 
  

/ 
 

[20] MI  GCI; PTB ECG spectrogram 
 

/ 
      

/ 

[35] MI  GCI; PTB ECG spectrogram 
 

/ 
       

[32] MI  Hualizen Tzu Chi ECG images 
 

/ / / / 
 

/ 
  

[34] ARR and MI ICBEB; GCI ECG spectrogram 
 

/ 
       

[64] ARR MIT-BIH Long-

Term AF; MIT-BIH 
AFib  

ECG spectrogram 
      

/ 
  

[18] ARR MIT-BIH AFib; 

MIT-BIH NSR 

ECG images 
   

/ 
     

[54] ARR MIT-BIH AFib; 

MIT-BIH VT; 

MIT-BIH NSR; 
European ST-T 

ECG spectrogram 
    

/ 
    

[65] ARR MIT-BIH ARR ECG images 
    

/ 
    

[66] ARR MIT-BIH ARR ECG spectrogram 
   

/ 
     

[67] ARR MIT-BIH ARR ECG images 
   

/ 
     

[23] ARR MIT-BIH ARR ECG raw data / / 
 

/ 
     

[17] ARR MIT-BIH ARR ECG images / 
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[68] ARR MIT-BIH ARR ECG spectrogram 
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[69] ARR MIT-BIH ARR ECG spectrogram 
 

/ / / / 
 

/ / 
 

[70] ARR MIT-BIH ARR Beat Score Map 
(BSM) image 

  
/ 
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ECG images 
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MIT-BIH ARR; 

MIT NSR 

ECG error signal 
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/ / / / 
    

/ 

[73] ARR  MIT-BIH ARR; 
MIT-BIH LT; MIT-

BIH Long-Term AF 

ECG raw data  /        

[25] ARR  MIT-BIH ARR; 
MIT-BIH NSR; 

BIDMC CHF 

ECG raw data, ECG 
scalogram 

/ /  / / /   / 

[74] ARR and 
congestive 

heart failure 

MIT-BIH ARR; 
MIT-BIH NSR; 

MIT-BIH AFib; 

BIDMC CHF 

ECG scalogram   /       

[75] ARR  MIT-BIH ARR; 
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MIT-BIH VT; 
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MIT-BIH SV; QT; 

INCART 

ECG images        /  
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Own dataset (RT-
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ECG images /         

[19] ARR  MIT-BIH VT; 
MIT-BIH VFib; 

MIT-BIH ARR; 

CUDB 

ECG images / / /       

[36] ARR  Own ECG images  /  / /    / 

[37] ARR  Own ECG images       /   
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[26] ARR and 

Congestive 

Heart Failure 

MIT-BIH ARR; 

MIT-BIH NSR; 

BIDMC CHF 

ECG scalogram, 

spectrogram, 

attractor, and 
Poincare plot 

/ / 
   

/ 
   

[77] ARR  PhysioNet 2017 ECG spectrogram 
       

/ 
 

[24] ARR  PhysioNet 2017 ECG spectrogram and 
scalogram 

 
/ 

 
/ / / 

   

[55] ARR  PhysioNet 2017 ECG spectrogram / / / / 
     

[57] ARR  PhysioNet 2017 ECG spectrogram / 
        

[58] ARR  PhysioNet 2017 ECG images / 
        

[33] ARR  PhysioNet 2017; 

The First China 

ECG Intelligent 

Competition 

ECG raw data 
   

/ 
     

[56] ARR  PTB ECG spectrogram / 
 

/ / 
     

[10] MI  PTB ECG spectrogram 
 

/ 
       

[14] MI  PTB ECG images 
  

/ 
      

[60] ARR  PTB; MIT-BIH 
ARR 

ECG images 
    

/ 
    

*Others consist of the pre-trained network that has been once among 44 papers reviewed, which includes MnasNet, NasNet, and 

ShuffleNet. 
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