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 Accurate and robust estimation of channel parameters is essential in 

establishing reliable communication with characteristic optimal resource 

utilization in next-generation communication systems. Traditional 

techniques have limitations, such as the need for additional bandwidth and 

decreased spectral efficiency. Thus, there is a need for novel techniques that 

enhance the accuracy and robustness of channel parameter estimation in 

next-generation communication systems. To address this need, we propose 

in this paper a recurrent neural network (RNN)-based attention mechanism, 

to improve channel estimation accuracy and robustness in next-generation 

communication systems. The attention mechanism selectively focuses on the 

most relevant features while ignoring noise and interference. The attention 

network weights are initialized and are constantly updated in the course of 

network training. The weight values determine the significance of the 

features before passing them to the channel estimator. This allows the 

algorithm to adapt to varying channel conditions and improve its accuracy in 

challenging environments. The proposed attention-based algorithm 

performance is compared with three baseline techniques: learned denoising-

based approximate message passing (LDAMP), Wasserstein generative 

adversarial networks (WGAN), and maximum likelihood (ML). The result 

evaluations indicate that the attention-based algorithm performs better than 

the existing artificial intelligence-based channel coding algorithms, in terms 

of robustness and accuracy. 
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1. INTRODUCTION 

Next-generation networks (NGNs) have the potential to provide communication speeds of up to 100 

gigabits per second. These networks aim to support a wide range of services such as high-speed data, voice, 

video, and multimedia applications [1], [2]. However, the efficient and accurate delivery of these services 

heavily relies on the accurate representation and modeling of the channel parameters in real-time. Thus, 

improving channel coding and estimation techniques is critical in taking the full advantage of NGNs [3], [4]. 

Moreso, the ever-evolving state of communication technologies over the decades, has ensured channel 

estimation remains an open problem among researchers [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The channel estimation problem involves estimating the channel frequency response (CFR) or the 

channel impulse response (CIR) based on the received signal. The CIR is a time-domain characterization of 

the channel, while the CFR is a frequency-domain representation [6], [7]. Both representations contain 

information about the distortions introduced by the channel. Channel estimation remains a challenging 

problem especially because of variation in the characteristics of the channel under frequency and time. In 

addition, noise interference in the received signal can further complicate the estimation process. Traditional 

methods of channel estimation rely on pilot symbols, which are known symbols, that are inserted into 

transmitted signal to help estimate the channel. However, these methods can be inefficient and may not work 

well in some scenarios [8], [9].  

Since the emergence of machine learning (ML) techniques, there has been growing interest in 

leveraging ML for communication applications, including end-to-end channel coding and estimation [1]. 

ML-based approaches have the potential to adaptively learn and optimize coding schemes based on data-

driven insights, leading to improved performance and adaptability to varying channel characteristics [10]. 

Thus, ML-based channel approximation approaches offer an alternative solution to the challenges in the 

traditional methods of channel estimation. By training ML algorithms on a large dataset of known signals and 

their corresponding received signals, the algorithm can learn to detect characteristic patterns within the 

transmitted and the received information signal under various channel conditions. The trained artificial neural 

network (NN) model can then be utilized to predict channel estimation that effectively estimates channel 

characteristics from the received signals without the need for pilot symbols. 

There is a conscientious effort by authors in schorlaly literature underscoring the applications of 

deep learning-based techniques to address the associated challenges of channel coding and estimation. 

Soltani et al. [11] presented a method called ChannelNet, which uses deep learning approach to estimate the 

wireless channel in communication systems. The study considered the evaluation of mean square error 

(MSE) metric of the proposed method over a range of signal-to-noise ratios (SNRs) and further compared the 

results with three cutting-edge algorithms: minimum mean square error (MMSE), estimated MMSE, and 

approximate linear MMSE. Results as presented by the authors show a significant improvement over these 

three cutting-edge algorithms that were compared. The study presented that while the MMSE algorithm 

performance may be competitive with ChannelNet, multiple ChannelNets are superior channel estimators. 

Liao et al. [8] presented a simulation-based performance evaluation under frequency and time domain 

channel estimation techniques in a high-speed channel model with non-stationary and fast time-varying 

features. The result of the authors’ simulation described that the proposed non-linear mapping estimation 

technique is more robust than other methods considering normalized mean squared error (NMSE) and bit-

error-rate (BER), especially under high-speed scenarios. In their study, Bai et al. [12] conducted simulations to 

evaluate the performance of a NN application as a channel estimator operating under a time-varying, Rayleigh 

fading channel. The simulations utilized independent and identically distributed (IID) bit sequences and 

quadrature phase shift keying (QPSK) modulation to map the bits to symbols. The authors presented four 

distinct groups of simulation results for the NN estimator and compared its performance against traditional 

algorithms such as the MMSE estimator and the least squares (LS) estimator. The simulation results revealed 

that the sliding-block gated recurrent unit (SBGRU) estimator emerged as the optimal solution in the context 

of a time-varying channel, surpassing both the LS and “MMSE sim” estimators. Furthermore, the authors 

conducted a performance comparison between the multi-layer perceptron (MLP) and SBGRU estimators for 

different estimation block lengths. It was observed that the SBGRU estimator demonstrated effective tracking 

of the channel in most linear regions with minimal oscillation in non-linear regions. On the other hand, the LS 

and “MMSE sim” estimators exhibited significant vibration. The performance of the BGRU estimator 

exhibited a rapid decline with an increase in SNR due to the sliding operation introduction, which enabled the 

utilization of average channel information that is present within a specific time window.  

Gizzini and Chafii [6] provided a review of the deep learning approach to channel coding and 

estimation for doubly dispersive channels in dynamic environments. Traditional approaches use only a few pilot 

schemes for channel estimation which leads to degraded performance, especially considering a high mobility 

scenarios. Artificial intelligence-based schemes are low-complexity and robust, and the paper evaluates their 

performance in different scenarios such as mobility, modulation order, and frame length. Abdallah et al. [13] 

proposed a novel approach that estimates wideband cascaded channels in RIS-assisted multi-user millimeter-

wave (mmWave) massive multiple-input-multiple-output (MIMO) systems. Unlike traditional methods, this 

technique explicitly considered the beam squint phenomenon and aims to minimize the training cost. The 

approach takes advantage of the inherent sparsity property shared among subcarriers and the double-structured 

sparsity property of users’ angular cascaded channel matrices. By utilizing denoising NN algorithms to 

accurately predict and detect channel supports, this data-driven approach outperforms beam squint agnostic 

orthogonal matching pursuit (OMP) methods. It achieves a significantly lower NMSE of 5-6 dB and also 

reduces the lower bound gap to only 1 dB compared to the least-square benchmark. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 6, December 2024: 4018-4029 

4020 

Gao et al. [14] introduced a novel approach for channel estimation in hybrid analog-digital (HAD) 

architecture, which is generally adopted in practical mmWave massive MIMO systems. The HAD 

architecture offers cost and energy efficiency advantages but poses challenges for accurate channel 

estimation as a result of the limited number of radio frequency (RF) chains at transceivers. To address these 

challenges, the work proposed a deep learning-based channel approximation method that unfolds the sparse 

Bayesian learning (SBL) algorithm implementation in deep neural network (DNN). This approach leverages 

the power of deep learning NN to effectively capture complex channel sparsity structures across different 

domains. By jointly optimizing the measurement matrix, the proposed method mitigates practical effects such 

as beam squint and power leakage, which can lead to performance degradation in traditional compressive 

sensing (CS) algorithms. Through extensive evaluations, the authors demonstrate that their approach offers 

superior performance when compared with existing methods with regard to channel estimation accuracy 

while also maintaining reduced complexity. The tailored DNN architecture enables efficient representation 

and exploitation of intricate channel sparsity patterns, resulting in significant performance improvements. 

These promising results position the proposed DL-based approach as a highly viable and efficient solution 

for channel estimation in HAD systems.  

Xu et al. [15] conducted performance evaluation of a novel dual-hop free-space optical (FSO) relay 

framework for deep-space communication systems. Addressing coronal turbulence, pointing errors, and 

plasma absorption, the study uses the Málaga fading distribution algorithm to model the coronal channel’s 

scintillation index. The article presents comprehensive analytical formulations for crucial performance index 

metrics, including average bit error rate, ergodic capacity, and outage probability, considering various 

techniques including heterodyne detection, and intensity modulation with direct-detection. Through Monte 

Carlo simulations, the derived expressions are validated, demonstrating the superior performance of the 

relay-assisted system compared to a single FSO link. Additionally, the article provides analytical exploration 

into the impact of different parameters on the system performance, contributing valuable knowledge to the 

field of deep space communications. 

Xu et al. [16] conducted the system performance evaluation of unmanned aerial vehicle (UAV)-

assisted dual-hop FSO communication systems. Employing amplify-and-forward relaying and, intensity 

modulation/direct detection, the study addresses fading channels’ impact on UAV-assisted systems. The 

analysis includes factors like atmospheric turbulence, attenuation loss, pointing errors and, angle-of-arrival 

fluctuations. Málaga distribution models the FSO link between the UAV and the destination. The study 

derives closed-form expressions for outage probability and average bit error rate, considering diverse system 

and channel parameters. Comparative analyses of modulation schemes are conducted, and simulation results 

validate the analytical findings. 

A general problem with the reviewed methods is that they often rely on assuming a specific channel 

model and may not generalize well to other types of channels. Furthermore, traditional methods for channel 

estimation require known pilot symbols, which can be inefficient in high-dimensional, wideband systems [17]. 

Deep learning methods also often suffer from limitations such as poor performance in out-of-distribution 

settings and high computational complexity. Thus, to address these problems, we propose an attention-based 

channel estimation algorithm for next-generation wireless point-to-point communication systems. In 

communication systems, channel conditions can exhibit temporal variations, and recurrent neural networks 

(RNNs) are well-suited for modeling such dynamic patterns over time. The recurrent nature of these 

networks allows them to maintain a memory of past observations, enabling more effective learning and 

adaptation to changing channel states. Additionally, RNNs are suitable for scenarios where the relationship 

between input features and channel parameters is complex and non-linear, as they can capture intricate 

patterns in the data. Thus, we propose in this work, a novel approach for wireless channel coding and 

estimation using RNN and the attention mechanism.  

 

 

2. METHOD  

2.1.  System model 

We explore the case of a point-to-point MIMO communication system depicted in Figure 1 which 

comprises a transmitter 𝐾𝑇 and receiver 𝑅𝑟. The primary objective of this system would be to establish reliable 

and efficient transmission of data between a transmitter and the receiver. The key factor in signal propagation 

within this system is the channel state information (CSI) matrix, denoted as H. This matrix represents the 

characteristics of the wireless channel between the transmitter and the receiver. The matrix H has dimensions 

𝐾𝑇 × 𝑅𝑟, where 𝐾𝑇 represents the transmitter’s number of transmit antennas and, 𝑅𝑟 represents the receiver’s 

number of receive antennas. The CSI matrix characterizes the signal propagation in this system [2]. 

 

𝐻 Ɛ ℂ𝐾𝑇 × 𝑅𝑟 (1) 
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Figure 1. MIMO system model 

 

 

The CSI matrix H is a complex-valued matrix, with each entry representing the channel gain between a 

specific transmit antenna and, a specific receive antenna. These channel gains capture the effects of multipath 

propagation, fading, and other environmental factors on the wireless signal as it travels from the transmitter 

point to the receiver point. We note that since the CSI matrix H is unknown at both the transmitter and the 

receiver, an accurate model estimation of the CSI is crucial for optimizing the performance of the MIMO 

communication system [18]. Once the CSI is estimated, it is used at the transmitter to design the transmission 

strategy, to maximize received information signal quality at the receiver. At the receiver, the estimated CSI is 

used for decoding the received encoded signal and recovering the original transmitted information. 

 

2.2.  Problem formulation 

Assume we have a set of transmitted symbols [𝑥1, 𝑥2, …, 𝑥𝑇] from a transmitter to a receiver 

through a wireless channel. Let [𝑦1, 𝑦2, …, 𝑦𝑇] be the received symbols at the receiver end. There exist a 

relationship between the received symbols and the transmitted symbols represented by (2): 
  

𝑦𝑡 = ∑ ℎ𝑡,𝑖𝑥𝑖 + 𝑤𝑡
𝑇
𝑖=1  (2) 

 

where ℎ𝑡,𝑖 represents the channel coefficient between the i-th transmitted symbol and, the t-th received 

symbol and, 𝑤𝑡  is the additive white Gaussian noise with zero mean and variance. Thus, the goal is to 

estimate the channel coefficients ℎ𝑡,𝑖 for all values i and t.  

 

2.3.  Attention-based channel estimation 

We present a deep learning technique that utilizes attention mechanisms to enhance channel coding 

and estimation accuracy in wireless communication. In this approach, we have formulated the channel 

estimation problem as a sequence-to-sequence learning problem, where the input information sequence is the 

received signal and the output sequence is the CIR. The attention mechanism is used to focus on the most 

representative features of the input signal while ignoring the noise, leading to better estimation performance. 

The next subsections describe the various stages of attention-based channel estimation.  

 

2.3.1. Encoder-decoder design 

The RNN with gated recurrent units (GRU) forms a major component in the encoder design. The 

input to the encoder is the received symbols sequence [𝑦1, 𝑦2, …, 𝑦𝑇]. At each iterative time step t, the RNN 

takes the received symbol 𝑦𝑡  and the previous hidden state ℎ𝑡−1, as input and generates the current hidden 

state ℎ𝑡 as output, i.e., 
 

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑦𝑡) (3) 
 

The GRU is a type of RNN that selectively chooses what aspect of information to keep and what part of the 

information to ignore in the hidden state. This is achieved through the use of gating mechanisms that monitor 

and control information flow into and out of the hidden state [19], [20]. The sequential data long-term 

dependencies are effectively captured with the GRU application. The output signal of the encoder is a sequence 

of hidden states [ℎ1, ℎ2, …, ℎ𝑇]. These hidden states capture the relevant information in the received symbols 

sequence and are used as input to the decoder for channel coefficient estimation. Algorithm 1 describes the 

encoder operation. In this algorithm, 𝑊𝑦ℎ , 𝑊ℎℎ, and 𝑏ℎ represent weights and biases of the RNN encoder, while 

tanh represents a non-linear hyperbolic tangent activation function. The algorithm takes as input the sequence of 

received symbols y and the initial hidden state ℎ0 of the encoder RNN, and produces as output the sequence of 

hidden states H produced by the encoder RNN. The algorithm processes the received symbols sequentially. It 

computes the current hidden state ℎ𝑡 using the previous hidden state ℎ𝑡−1 and the current received symbol 𝑦𝑡  

and, then appending current hidden state ℎ𝑡 to the sequence of hidden states H. The algorithm then returns the 

sequence of hidden states H. Figure 2 is a representation of the encoder-decoder architecture. 
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Algorithm 1. Encoder operation  

Input: y  //  sequence of received symbols 

            ℎ0 // initial hidden state  

            𝑊𝑦ℎ, 𝑊ℎℎ, 𝑏ℎ // weights and biases  

Output: 𝐻: sequence of hidden states 

1. Initialize H = ℎ0 

2.  𝐹𝑜𝑟 𝑡 = 1 𝑡𝑜 𝑇:  
a. Compute the current hidden state ℎ𝑡 using the previous                      

hidden state ℎ𝑡−1 and the current received symbol 𝑦𝑡  as 

             ℎ𝑡 = tanh (𝑊𝑦ℎ 𝑦𝑡 + 𝑊ℎℎ  ℎ𝑡−1 + 𝑏ℎ) 

b. Append  ℎ𝑡 to H 

3. Return 𝐻 
 

 

 
 

Figure 2. Encoder-decoder model 
 
 

We implement the decoder as an RNN that processes the hidden states ℎ1, ℎ2, …, ℎ𝑇 produced by 

the encoder. At every iteration time step t, the decoder takes as input the previously estimated channel 

coefficient ℎ̅𝑡−1, the previous hidden state 𝑠𝑡−1 and, a context vector 𝑐𝑡 to generate as output, the currently 

estimated channel coefficient ℎ̅𝑡,𝑖, i.e.: 
 

ℎ̅𝑡,𝑖 = 𝑔(𝑠𝑡−1, ℎ̅𝑡−1,𝑖,𝑐𝑡) (4) 
 

where 𝑔 is a non-linear function feedforward NN. The context vector 𝑐𝑡 represents the weighted sum of the 

hidden states ℎ1, ℎ2, …, ℎ𝑇 produced by the encoder, where the weights are learned during iterative training 

by an attention mechanism scheme [21]. Specifically, the context vector 𝑐𝑡 is computed as (5): 
 

𝑐𝑡 =  ∑ 𝛼𝑡,𝑖ℎ𝑖
𝑇
𝑖=1  (5) 

 

where 𝛼𝑡,𝑖 is the weight assigned to the i-th hidden state for predicting the t-th channel coefficient. The 

weights 𝛼𝑡,𝑖 are computed using a soft attention mechanism, which is the dot product between the decoder 

and the encoder’s hidden states 𝑠𝑡−1 , ℎ𝑖 respectively, i.e., 
 

𝛼𝑡,𝑖 =
exp (𝑒𝑡,𝑖)

∑ exp (𝑒𝑡,𝑗)𝑇
𝑗=1

 (6) 

 

where 𝑒𝑡,𝑖 is the attention score between the decoder and encoder hidden states 𝑠𝑡−1, ℎ𝑖, respectively, and is 

calculated as (7): 
 

𝑒𝑡,𝑖 =  𝑠𝑡−1. ℎ𝑖 (7) 
 

where “⋅” denotes the dot product. During training, we minimize the mean squared error (MSE) between the 

estimated channel matrix H and, the true channel matrix H* using backpropagation and stochastic gradient 

descent. During testing, the trained attention mechanism based RNN computes efficient channel matrix H 

estimation from the received information signal y and, the known input sequence x. The channel estimation 

loss function is represented as a MSE between the estimated channel coefficients ℎ̅𝑖 and, the true channel 

coefficients ℎ𝑖, - given by (8): 
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𝐿 =
1

𝑇
∑ ∑ (ℎ𝑡,𝑖 − ℎ̅𝑡,𝑖)

2𝑇
𝑖=1

𝑇
𝑡=1  (8) 

 

where T is the length of the transmitted symbol sequence. The goal is to achieve a minimal loss function 

during training so that the model can learn to accurately estimate the channel coefficients.  

 

2.3.2. Encoder network architecture 

The encoder scheme used is a RNN architecture with a GRU that efficiently captures long-term 

dependencies in sequential data. The GRU is composed of a set of recurrently connected units, which update 

their internal state based on the input information signal at each time step and the previous internal state. 

Each unit has two gates comprising a reset gate and an update gate. The reset gate is a sigmoidal activation 

function effectively determines how much of the previous hidden state ℎ𝑡−1 information should be forgotten 

or reset., while the update gate controls the amount of new information being added to the current hidden 

state. The equations for the GRU at time step t are [22], [23]: 
 

Reset gate: 𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑟  . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑟) (9) 
 

Update gate: 𝑧𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡  ] +  𝑏𝑧 ) (10) 
 

Candidate hidden state: ℎ𝑡′ = tanh (𝑊ℎ . [𝑟𝑡 ∗  ℎ𝑡−1 , 𝑥𝑡  ] +  𝑏ℎ) (11) 
 

Hidden state: ℎ𝑡 =  𝑧𝑡 ∗  ℎ𝑡−1 + (1 −  𝑧𝑡  ) ∗  ℎ𝑡′ (12) 
 

where 𝑥𝑡 is the input at time step t, ℎ𝑡−1 is the previous hidden state, 𝑏𝑟 , 𝑏𝑧 , and 𝑏ℎ are bias terms, “*” denotes 

element-wise multiplication, 𝑧𝑡 is the update gate at time step t, 𝑊𝑟 , 𝑊𝑧 , and 𝑊ℎ are weight matrices that are 

continuously learned and updated during training. The output of the GRU at time step t is the hidden state ℎ𝑡, 

which is used as input to the next time step. The initial hidden state ℎ0 is set to a small random vector. 

 

2.3.3. Decoder architecture 

The decoder is an attention mechanism based RNN architecture. It takes as input the hidden states 

produced by the encoder and, generates the estimated channel coefficients. The decoder RNN is initialized 

with a trainable vector 𝑠0. At each time step t, the previously estimated channel coefficient ℎ̅𝑡−1,𝑖, is 

embedded using a trainable embedding matrix E, which maps each channel coefficient to a fixed-dimensional 

vector. The decoder uses an attention mechanism to generate a context vector 𝑐𝑡 as a weighted sum of the 

encoder hidden states ℎ1, ℎ2,…, ℎ𝑇. The attention weights 𝛼𝑡,𝑖 are computed using a soft attention 

mechanism, based on the dot product between the decoder and encoder’s hidden states 𝑠𝑡−1, ℎ𝑖, as (6). The 

RNN-based decoder input is the embedded previous estimated channel coefficient ℎ̅𝑡−1,𝑖,, the context vector 

𝑐𝑡 and the previous hidden state 𝑠𝑡−1 and produces the current hidden state 𝑠𝑡. The currently estimated 

channel coefficient ℎ̅𝑡,𝑖 is generated from the current hidden state 𝑠𝑡 and the context vector 𝑐𝑡 using a 

feedforward NN, as shown in (4). The decoder RNN terminates after generating the final estimated channel 

coefficient ℎ̅𝑇,𝑖. The decoder operation is summarized in Algorithm 2. 
 

Algorithm 2. Decoder operation  

1. Initialize the decoder hidden state 𝑠0 and the previously estimated channel coefficient ℎ̅0,𝑖 as zero 

vectors. 

2. For t = 1 to T, do the following: 

a. Compute the context vector 𝑐𝑡 using Equation (5). 

b. Compute the attention weights 𝛼𝑡,𝑖 using Equation (6). 

c. Compute the attention scores 𝑒𝑡,𝑖 using Equation (7). 

d. Update the decoder hidden state 𝑠𝑡.  

e. Compute the estimated channel coefficients ℎ̅𝑡,𝑖 using Equation (4). 

f. Update the previously estimated channel coefficient ℎ̅𝑡−1,𝑖 as ℎ̅𝑡,𝑖. 

3. Compute the loss function L using Equation (14). 

4. Update the decoder parameters by backpropagating the gradients of the loss function through the 

network. 

5. Repeat steps 2 to 4 for several epochs or until convergence is reached. 

 

2.3.4. Attention mechanism 

The attention mechanism scheme in our channel estimation NN model is responsible for selectively 

focusing on the most informative parts of the hidden states when predicting the channel coefficients in the 
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decoder. The attention mechanism computes a context vector 𝑐𝑡 as a weighted sum of the encoder’s hidden 

states, where the weights are iteratively updated and learned by the model during training. The attention 

mechanism is a soft attention mechanism based on the dot product between the decoder and encoder’s hidden 

states [24]. Specifically, we compute the attention scores 𝑒𝑡,𝑖 between the decoder’s hidden state 𝑠𝑡−1 and the 

i-th encoder hidden state ℎ1 as (13): 

 

𝑒𝑡,𝑖=𝑠𝑡−1
𝑇 . 𝑊ℎ𝑖 (13) 

 

where 𝑊ℎ𝑖 is the weight matrix that transforms the encoder’s hidden state ℎ𝑖 to the same dimension as the 

decoder’s hidden state 𝑠𝑡−1. The transpose operation of the decoder hidden state vector ensures that the 

dimensions of the vectors match the dot product operation. The resulting attention score 𝑒𝑡,𝑖 indicates the 

magnitude of attention that should be given to the i-th hidden state when predicting the t-th channel 

coefficient. A softmax activation function is applied to the attention scores to derive the equivalent attention 

weights 𝛼𝑡,𝑖. The context vector 𝑐𝑡  is subsequently computed as a weighted sum of the encoder hidden states 

using the attention weights as described in (5). The context vector is concatenated with the decoder’s hidden 

state 𝑠𝑡−1 and used in the decoder scheme to predict the channel coefficients ℎ𝑡,𝑖 at time t. The encoder-

decoder model with the attention mechanism is shown in Figure 3. 

 

 

 
 

Figure 3. Encoder-decoder model with attention 

 

 

2.3.5. Loss function 

The loss function is a measure of the difference between the predicted output channel coefficients 𝐻 

and the true channel coefficients H. We compute our loss function as the MSE, which is defined as (14): 

 

𝐿 =
1

𝑇
∑ (ℎ𝑡,𝑖 − ℎ̅𝑡,𝑖)

2𝑇
𝑖,𝑡=1  (14) 

 

where T represents the length of the sequence. 

The MSE loss measures the average squared difference between the predicted and the true channel 

coefficients over the entire sequence. The goal of training the RNN is to find minimal MSE loss over the 

training data. The loss is iteratively minimized by adjusting the RNN parameters, and employing a 

backpropagation through time (BPTT) algorithm process. 

 

 

3. EVALUATION PROCEDURE 

3.1.  Data description 

To evaluate our proposed attention-based mechanism scheme, we develop the CDL-A and Rician 

fading channel models by defining the parameters as shown in Table 1 for the CDL-A channel model. They 

include the center frequency, bandwidth, time duration, delay spread, maximum Doppler shift, and spatial 

correlation. We select these parameters to accurately represent real-world wireless channel characteristics. 

Using this model, we then generate channel data for both the line-of-sight (LOS) and non-line-of-sight 

(NLOS) components. The LOS component accounts for the direct path between the transmitter and receiver, 

while the NLOS component represents the reflected and scattered paths. This combination creates a 
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challenging scenario for channel estimation. Secondly, we incorporate the Rician fading channel model, by 

adding random fluctuations to the channel characteristics. The Rician factor was selected to control the 

strength of the LOS component relative to the NLOS component. This factor influences the severity of the 

fading effect, allowing us to evaluate the channel estimation method’s performance under different fading 

conditions. Next, we generate a dataset consisting of 50,000 wireless channel samples for the two models. 

Each data sample represents a snapshot of the channel at a specific time instant, including the channel gains 

and phases for the LOS and NLOS components. 

 

 

Table 1. Parameters used for the CDL-A and Rician fading channel 
Channel parameters Value 

Center frequency Cf 2.4 GHz 

Bandwidth 20 MHz 
Time duration 1 ms 

Delay spread 10 ns 

Maximum Doppler shift 100 Hz 
Spatial correlation 0.8 

Rician factor 5 

 

 

To ensure consistency within the dataset, we normalized the channel samples based on the average 

channel power observed in the training set. This normalization process eliminates variations in channel 

power levels and guarantees a fair comparison during the evaluation phase. The generated dataset has been 

partitioned into three sets: training, test, and validation using the 70%-15%-15% ratio. The training set was 

used to train the attention-based model, allowing it to learn the underlying patterns and relationships between 

the channel inputs and received signals. The validation set was employed to fine-tune the model’s 

hyperparameters and monitor its performance during the training process. To prevent overfitting, we use the 

dropout regularization technique to randomly drop units during training, preventing co-adaptation of hidden 

units. We further use early the stopping mechanism to stop training when the performance on the validation 

set stops improving. For the hyperparameters settings, weight decay is disabled (set to 0.000), and the Adam 

optimizer is chosen with initial learning rate of 0.0001, a beta1 value of 0.9, and AMSGrad set to false. For 

the training phase, a batch size of 32 and four workers are specified, with a total of 400 training epochs. 

Additionally, an annealing power of 2 is applied during training, and the logging of all sigmas is set to false. 

Finally, the test set served as an independent dataset to evaluate the model’s performance and 

compare it with existing algorithms. This model adopts an encoder-decoder with attention architecture. The 

encoder network extracts relevant feature patterns from the observed received signal information and 

produces the parameters for the attention mechanism. The decoder network generates channel estimates 

cognizant of the outputs from the attention mechanism system and the encoder’s hidden state.  

 

3.2.  Performance metrics 

To quantitatively assess the performance, we compute the NMSE metric which objectively 

measures the quality of the estimated channel distributions as compared to the ground truth channel inputs. 

The NMSE of the proposed method is then compared with three baseline approaches, i.e., Wasserstein 

generative adversarial networks (WGAN) [25], learned denoising-based approximate message passing 

(LDAMP) [26], and maximum likelihood (ML) [27]. The normalized MSE is defined in (15): 
 

𝑁𝑀𝑆𝐸 [𝑑𝐵] = 10 log10
‖𝐻𝑒𝑠𝑡−𝐻‖𝐹

2

‖𝐻‖𝐹
2  (15) 

 

The average SNR is calculated as 
𝑁𝑡

𝜎𝑝𝑖𝑙𝑜𝑡
2⁄  [28], where 𝑁𝑡 represents the number of channels and 

𝜎𝑝𝑖𝑙𝑜𝑡
2  denotes the pilot size.  

  

 

4. RESULTS AND DISCUSSION 

The results of our experiments are presented and we provide a detailed discussion on the 

performance evaluation of the proposed technique compared to three cutting-edge algorithms: LDAMP [26], 

WGAN [29], and ML. The performance metric used in our evaluation is the NMSE between the estimated 

and true channel realizations. Figure 4 displays the observed MSE for the CDL-A channel model across 

different ranges of SNR. The results of our proposed technique show it outperforms all the comparison 
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methods in terms of the NMSE. This indicates that our technique can estimate the channel parameters more 

accurately, leading to a closer match between the estimated and actual channel realizations.  

Among the comparison methods, ML shows the best performance, exhibiting lower MSE values 

compared to WGAN and LDAMP. LDAMP utilizes a powerful data-driven algorithm with deep unrolling 

and end-to-end learning, which allows it to effectively capture the underlying channel characteristics. 

However, it is important to note that our proposed technique achieves competitive performance with ML and 

surpasses WGAN and LDAMP in terms of the NMSE. The competitive performance of our technique can be 

attributed to its ability to leverage the specific characteristics of the CDL-A channel model.  

 

 

 
 

Figure 4. Channel estimation performance using methods trained on CDL-A 

 

 

Furthermore, the performance of the proposed method is evaluated in the Rician fading channel 

model. The Rician fading channel is commonly used to model wireless communication in scenarios where 

there is a dominant LOS component along with multipath fading. In terms of channel estimation, the Rician 

fading channel presents challenges due to the presence of both deterministic and random components.  

Figure 5 demonstrates the performance of the different techniques across a range of SNR values. We observe 

that the attention mechanism-based method achieved the lowest MSE across all SNR levels, indicating its 

effectiveness in capturing the channel characteristics and mitigating the effects of fading. The comparison 

methods showed competitive performance, especially in scenarios with lower and higher SNRs. This result 

highlights the potential of the proposed method in capturing the intricate nature of the Rician fading channel 

and improving channel estimation accuracy. 

 

 

 
 

Figure 5. Channel estimation performance using methods trained on Rician fading channel 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

An attention-based channel estimation algorithm for next-generation point to point … (Kayode A. Olaniyi) 

4027 

We further investigated how the variation in the number of pilots impacts the performance of the 

proposed technique. Figure 6 illustrates the results of our simulations, depicting the NMSE for different pilot 

densities. As expected, we observed a trend where decreasing the pilot density resulted in increased MSE for all 

the evaluated techniques. This is because a lower number of pilots provide less information about the channel, 

leading to less accurate estimation. In the proposed scheme, we observe that as the pilot density decreased, the 

NMSE increased gradually. However, the increase in NMSE was relatively moderate, indicating that even with 

a reduced number of pilots, this method could still provide reasonably accurate channel estimates. 
 
 

 
 

Figure 6. Channel estimation performance at different pilot densities 
 

 

In contrast, the comparison methods showed more significant sensitivity to the number of pilots. As 

the pilot density decreased, the MSE increased more rapidly compared to the proposed method. This suggests 

that these techniques rely more heavily on the availability of a sufficient number of pilots to accurately 

capture the channel characteristics. These findings provide valuable insights for designing efficient channel 

estimation strategies, considering the compromise between the number of pilots and estimation accuracy. The 

result highlights the need to carefully choose the pilot density based on the specific requirements of the 

communication system and the capabilities of the estimation techniques employed. Figure 7 reveals the BER 

performance across all SNR conditions. These results suggest that the attention mechanism is more robust in 

terms of error performance, i.e., fewer errors occur during data transmission, resulting in more reliable 

communication. It further indicates the ability to handle a wider range of channel conditions. In real-world 

scenarios, channel conditions can vary significantly, and a communication system that performs well across 

these variations is highly desirable. 
 
 

 
 

Figure 7. BER performance at different SNRs 
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5. CONCLUSION 

This paper presents an attention-based channel estimation technique for point-to-point MIMO 

communication systems. The proposed technique utilizes RNN with GRUs, and attention mechanisms to 

further improve the performance accuracy of channel coefficient estimation. The encoder-decoder 

architecture captures the relevant information in the received symbols sequence and generates estimated 

channel coefficients. The encoder processes the received information symbols sequentially and generates a 

sequence of hidden states that capture only the relevant features. The decoder uses an attention mechanism to 

focus only on the most informative parts of the encoder’s hidden states when predicting the channel 

coefficients. The attention scores are computed based on the dot product between the decoder’s hidden state 

and the encoder’s hidden state. The model has been trained and the loss function monitored using the MSE 

metric, which measures the difference between the predicted channel coefficients and the true channel 

coefficients. The goal of training is to minimize this loss function and consequently improve the accuracy of 

channel coefficient estimation. 

The proposed technique offers several advantages. It can handle the effects of multipath 

propagation, fading, and other environmental factors on the wireless signal. The attention mechanism helps 

to selectively target the most important features of the received signal, leading to improved estimation 

performance. The use of deep learning techniques allows the model to learn complex relationships and 

capture long-term dependencies in the sequential data. Future work will explore variations of attention 

mechanisms, such as self-attention or transformer-based architectures, which have shown promising results 

in other domains. 
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