
Bulletin of Electrical Engineering and Informatics 

Vol. 13, No. 1, February 2024, pp. 67~75 

ISSN: 2302-9285, DOI: 10.11591/eei. v13i1.7087      67  

 

Journal homepage: http://beei.org 

Multi-objective optimization of distributed energy resources 

based microgrid using random forest model 
 

 

Jayati Vaish1, Anil Kumar Tiwari2, Seethalekshmi Kaimal3 
1Department of Electronics and Communication Engineering, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India 

2Department of Electrical and Electronics Engineering, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India 
3Department of Electrical Engineering, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India 

 

 

Article Info  ABSTRACT  

Article history: 

Received Jun 27, 2023 

Revised Aug 2, 2023 

Accepted Aug 30, 2023 

 

 Microgrids (MG) in integration with distributed energy resources (DERs) 

are one of the key models for resolving the current energy problem by 

offering sustainable and clean electricity. This research presents a novel 

approach to address the complex challenges of optimizing a DERs based 

microgrid while considering multiple objectives. In this paper, the utilization 

of a popular machine learning algorithm, random forest (RF) model is 

proposed to optimize the DERs based MG configuration. The research 

commences by collecting historical data on energy consumption, renewable 

energy production, electricity prices, weather conditions, and other relevant 

factors of Bengaluru City (Karnataka, India) for different seasons. This 

research covers the conflicting objectives by finding optimal seasonal sizing 

of the battery, minimum generation cost, and reduction in battery charging 

cost. The optimization and analysis are done using an ensemble learning-

based RF model. The findings from the RF model are compared with meta-

heuristics and artificial intelligence (AI) methods such as particle swarm 

optimization (PSO) and artificial neural networks (ANN) for different 

seasons, i.e., winter, spring and autumn, summer, and monsoon. 
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1. INTRODUCTION 

In last few decades, the depletion of fossil fuels has had a substantial impact on energy consumption, 

making it more difficult to meet the rising energy needs of economies and populations. Therefore, the 

development of the power industry over the past few years has been greatly aided by the switch from a 

traditional grid to a sustainable energy grid. The integration of distributed energy resources (DERs) such as 

wind, solar, hydro, combined heat and power (CHP) units, fuel cell (FC), micro-gas turbine (MT), and battery 

energy storage systems into the grid system has become a recent trend in power systems. A microgrid with 

DERs is a localized power system that operates independently or in conjunction with the main electrical grid. 

It provides reliable and sustainable electricity to a specific geographic area, such as a neighborhood, 

community, or industrial facility [1]–[3]. One of the key challenges of incorporating renewable energy sources 

such as solar, wind, and hydro into the microgrid (MG) system is the variability of these sources. To overcome 

this difficulty, energy storage systems like batteries and flywheels can be utilized to store extra energy produced 

during periods of shortages and discharge it during periods of increased demand [4], [5]. The use of battery 

energy storage systems (BESS) in MG helps to reduce the energy cost, careful planning, and management. 

This includes selecting the appropriate battery technology and capacity and installing monitoring and control 
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systems to regulate the energy flow. Also, several studies and analyses are done for optimal sizing and 

charging and discharging of batteries when renewable energy systems (RESs) are also considered in MG [6]. 

The literature has provided a variety of metaheuristic optimization solutions over the past few decades for 

solving the sizing and cost problem [7]–[9]. The usage of traditional procedures based on iterative, 

numerical, or analytical methods has significantly decreased because of their delayed reaction and results. 

Numerous studies have examined the use of such algorithms to address the battery sizing problem of 

renewable energy systems producing better outcomes [10], [11]. Recently, due to the advancement in 

artificial intelligence (AI) tools, machine learning-based optimization techniques are implemented in MG for 

fast convergence and more accurate results [12], [13]. 

In this paper, multi-objective optimization of the proposed DERs based MG system is performed 

using the ensemble learning based random forest (RF) method to determine the optimal sizing of batteries for 

various seasons and reduce the cost of battery charging. To analyze the proposed MG system, the real-time 

load data, meteorological variables of wind speed, and solar radiation for Bengaluru City (Karnataka, India) 

for 24 hours a day for the year 2022, i.e., from January 1st, 2022, to December 31st, 2022, are considered. The 

novelty of this research is to propose an MG system that will able to accumulate charging of batteries from 

DERs during off-peak hours to minimize the generation cost and battery charging cost from the main grid. In 

this case, FC and MT generation is kept on least priority to minimize generation cost or it can be used when 

demand increases. Seasonal battery sizing will become essential in designing and managing electric vehicle 

(EV) charging infrastructure for different load patterns of the year [14]. This proposed model will help in the 

advancement of MG with the increasing adoption of EVs. Few studies have examined and explored grid-

connected MG system optimization using machine learning techniques until now [15]. Researchers choosing 

an MG system for their sizing and scheduling might utilize the assessment presented in this case study as a 

useful reference for their future work. 

The main contribution of this research is: i) the optimal generation scheduling of DERs for 24 hours a 

day is analyzed. The optimal seasonal battery size, total cost (TC) minimization of the system, and reduction in 

the cost of battery charging are also estimated and ii) the performance of the grid-connected MG system is 

examined and compared using the ensemble learning technique based on RF, meta-heuristic technique based on 

particle swarm optimization (PSO), and artificial neural network (ANN) for different seasons of the year. 

The paper has been organized in the following sections. Section 1 explains the introduction of the 

research work. The description of the main computational method is covered in section 2. Section 3 presents 

the proposed MG system and problem formulation for the evaluation. In section 4, the comparison and 

analysis of the outcomes from various methodologies are presented. The conclusion is covered in section 5. 

 

 

2. RANDOM FOREST METHOD 

The RF learning model is a powerful and widely used machine learning algorithm that belongs to 

the ensemble learning family. It is particularly effective in both classification and regression tasks and has 

gained popularity due to its ability to provide accurate predictions and handle complex datasets. RF is based 

on the concept of decision trees, which are tree-like models that make predictions by partitioning the input 

space into regions and assigning a class or value to each region. RF combines the predictions of multiple 

decision trees to make more robust and accurate predictions. Instead of relying on a single decision tree, it 

creates an ensemble of decision trees, where each tree is trained on a different subset of the training data and 

features [16]. Randomness is introduced in two ways: random sampling of the training data and random 

feature selection. During the training process, each tree is trained on a bootstrap sample of the original 

training data, which means that some instances may be repeated and others may be left out. This sampling 

technique is known as bagging. Furthermore, at each node of a decision tree, RF only considers a random 

subset of features for splitting, rather than using all available features. By doing so, RF decorrelates the 

decision trees, reducing their tendency to make similar predictions and increasing the diversity within the 

ensemble. To make predictions, RF aggregates the predictions of all the individual trees. In regression tasks, 

it takes the average or the median of the predicted values from all the trees [17]. Recently, the RF model is 

used in the optimization of microgrids to improve the performance and stability of the system [14], [18]. The 

mean squared residual at the node is a common splitting criterion in the context of regression if the response 

values at the node are 𝑦1, 𝑦2. . . . . 𝑦𝑛.  
 

𝑄 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑛

𝑖=1 )2  (1) 

 

Where 𝑛𝑡 is the number of elements at node and 𝑦 =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  is the estimated values of each node object. A 

common splitting criterion 1, . . 𝑘 in the context of regression, where 𝐾 classes are denoted, is the Gini index. 
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𝑄 = ∑ 𝑝̂𝐾
𝐾
𝐾=𝐾′ 𝑝̂𝐾′  (2) 

 

Where 𝑝̂𝐾  is the proportion of observations of class 𝑘 in the node. Figure 1 shows the layout of the RF 

method. 

 

 

 
 

Figure 1. RF model 

 

 

The steps used for creating the RF approach there are: 

a. Generation 

Step I: take bootstrap sample 𝑆1,  𝑆2. . . . 𝑆𝑁 of size 𝑁 from test data. 

Step II: required parameters: i) number of trees 𝑁𝑇𝑟𝑒𝑒; ii) variables that are separated at each split in number 

𝑀𝑇𝑟𝑦. Breiman proposes a general formula for this parameter 𝑀𝑇𝑟𝑦 = 𝐿𝑜𝑔2(𝑀 + 1); and iii) size of 

minimum is given by 𝑁𝑚𝑖𝑛. Here, number of trees, 𝑁𝑇𝑟𝑒𝑒=500, number of candidate variables in each split=3, 

minimum node size=2. 

b. Construction 

For 𝑁 = 1 to 𝑁𝑇𝑟𝑒𝑒 

Step III: use the bootstrap sample 𝑆1, 𝑆2. . . . 𝑆𝑁. 

Step IV: the following steps should be repeated recursively for each terminal node of the tree until the 

minimal node size 𝑁𝑚𝑖𝑛 is attained in order to grow a RF tree (𝐷1, 𝐷2. . . 𝐷𝑁) to the bootstrapped data. 

i) Choose 𝑀 predictors at random from the 𝑝 available predictors. 

ii) Choose the most suitable variable or split point 𝑀 from those from step (i) based on the Gini index. 

iii) Using the split from step (ii), divide the node into two descendant nodes. 

c. Prediction 

Step V: to make a prediction at a new point 𝑥. 

i) Each decision tree creates its own unique prediction 𝑅1, 𝑅2, . . . 𝑅𝑁 for the nth RF tree. 

ii) The final forecast is determined by averaging the predictions (using regression). 

 

𝑓(𝑥) =
1

𝑁
∑ 𝑅𝑖

𝑁
𝑖=1 (𝑥)  (3) 

 

 

3. PROPOSED MG SYSTEM 

A proposed grid-connected microgrid with DERs (solar photovoltaic (PV), wind turbine (WT), FC, and 

MT) is shown in Figure 2. BESS are used in conjunction with DERs to maintain stability in the system [19]–[23]. 

The power generated from DERs is used to supply power to alternating current (AC) loads such as 

commercial, industrial and residential. 

 

 

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 1, February 2024: 67-75 

70 

 
 

Figure 2. Systematic layout of microgrid system 

 

 

3.1.  Problem formulation 

The main objective of this paper is to evaluate: i) MG system’s total system cost (TSC); ii) to 

achieve the optimum battery size; and iii) to determine reduction in cost of battery charging. The proposed 

challenge is presented as a multi-objective optimization problem. The objective function is comprised of the 

costs of the following items: i) the cost of the solar PV system (𝐶𝑃𝑉
𝑡 ), cost of WT (𝐶𝑊𝑇

𝑡 ), total cost of FC and 

MT (𝑇𝐶𝐹𝐶
𝑡  and 𝑇𝐶𝑀𝑇

𝑡 ), and cost of BESS (𝐶𝐵𝐸𝑆𝑆
𝑡 ); ii) the cost of operation and maintenance 𝐶𝑂𝑀

𝑡 ; iii) the cost 

of generation 𝐶𝐺
𝑡 ; and iv) the cost of buying and reselling power from/to the grid, 𝐶𝐵𝑢𝑦

𝑡  and 𝐶𝑆𝑒𝑙𝑙
𝑡  for time 𝑡 in 

Rs/MWh. This section exemplifies the objective function and its associated constraints. 

 

𝑀𝑖𝑛𝑇𝑆𝐶(𝑋) = ∑ (𝑁𝑇
𝑡=1 𝐶𝑃𝑉

𝑡 + 𝐶𝑊𝑇
𝑡 + 𝑇𝐶𝑀𝑇

𝑡 + 𝑇𝐶𝐹𝐶
𝑡 + 𝐶𝐺

𝑡 + 𝐶𝐵𝐸𝑆𝑆
𝑡 + 𝐶𝑂𝑀

𝑡 ) + ∑ (𝐶𝐵𝑢𝑦
𝑡𝑁𝑇

𝑡=1 − 𝐶𝑆𝑒𝑙𝑙
𝑡 )  (4) 

 

Start-up and running expenses are the two elements of the thermal power generator. A quadratic function of 

the power is frequently used to express an operation’s cost is expressed as (5): 

 

𝐶𝐺
𝑡 = ∑ ((𝑎𝑖𝑃𝐺𝑖,𝑡

2 + 𝑏𝑖𝑃𝐺𝑖,𝑡 + 𝑐𝑖) + 𝑆𝑈𝐶𝐺𝑖,𝑡(𝑢𝐺𝑖,𝑡 − 𝑢𝐺𝑖,𝑡−1))𝑁
𝑖=1  (5) 

 

Where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖  are coefficients of the 𝑖𝑡ℎ thermal producing units at time 𝑡, 𝑃𝐺𝑖
𝑡 (𝑡) is the 𝑖𝑡ℎ generator’s 

output power at time 𝑡, 𝑆𝑈𝐶𝐺𝑖(𝑡) cost of start-up of 𝑖𝑡ℎ generator at time and 𝑢𝐺𝑖(𝑡) is binary variable 

showing the thermal unit’s commitment condition at time 𝑡. The constant operational and maintenance cost 

of dispatchable and non-dispatchable units are: 

 

𝐶𝑂𝑀
𝑡 = 𝑂𝑀𝑀𝑇

𝑡 + 𝑂𝑀𝐹𝐶
𝑡 + 𝑂𝑀𝑃𝑉

𝑡 + 𝑂𝑀𝑊𝑇
𝑡 + 𝑂𝑀𝐺

𝑡  (6) 

 

The price of batteries includes both the initial, fixed cost (FC) 𝐹𝐶𝐵,𝑡 and continual maintenance and repair 

(MC) 𝑀𝐶𝐵,𝑡 costs. The cost of installed batteries may be calculated using: 

 

𝐶𝐵𝐸𝑆𝑆
𝑡 =

𝐶𝐵,𝑚𝑎𝑥

365(
𝐼𝑅(1+𝐼𝑅)𝐿𝑇

(1+𝐼𝑅)𝐿𝑇−1
𝐹𝐶𝐵,𝑡+𝑀𝐶𝐵,𝑡)

 (7) 

 

Where 𝐶𝐵,𝑚𝑎𝑥 is maximum size of battery and 𝐼𝑅 is interest rate for installing batteries. The following 

equations represent the functions of power purchase cost and power selling revenue: 

 

𝐶𝐵𝑢𝑦
𝑡 = 𝑐𝐵𝑢𝑦(𝑡)𝑃𝐵𝑢𝑦,𝑡𝛥𝑡  

𝐶𝑠𝑒𝑙𝑙
𝑡 = 𝑐𝑆𝑒𝑙𝑙(𝑡)𝑃𝑆𝑒𝑙𝑙,𝑡𝛥𝑡 

 (8) 

 

Where 𝑐𝐵𝑢𝑦(𝑡) and 𝑐𝑆𝑒𝑙𝑙(𝑡) are cost of power purchased from the grid and sold to the grid in Rs/MWh. 
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4. RESULTS AND DISCUSSION  

4.1.  Data and generation analysis 

In this case the real-time load data of Bengaluru City (Karnataka, India) for various seasons of year 

2022 i.e., from January 1st, 2022, to December 31st, 2022, is considered [24], [25]. Figure 3(a) shows the 

monthly average of 24-hour load demand for different seasons. Figures 3(b) and (c) shows the solar radiation 

(SR) and wind speed for 24 hours considered for the generation of solar energy and wind energy for MG 

operation. Figure 3(d) shows the main grid buy and sell price of variable load for 24 hours. It is considered 

for different energy sources of MG also. The optimal power generated from solar PV, WT, FC, and three 

MTs is shown in Figures 4(a) to (d) for different seasons. For the proposed MG system, a population size of 

25 for 100 iterations is used as a comparison for different techniques to confirm the results. At 0.98 lagging 

power factor in the current work, all distributed generations (DGs) produce active power. The constraints of 

charging the battery from DERs from 12 noon to 6 noon (i.e., during off-peak hours) are also adhered to for 

MG system. 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 3. 24 hours real time data of Bengaluru City (Karnataka, India) for different seasons: (a) load data, 

(b) solar radiation, (c) wind speed, and (d) grid price 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 4. Optimal power generation from DERs for different seasons: (a) winter season, (b) spring and 

autumn season, (c) summer season, and (d) monsoon season 
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4.2.  Result analysis 

The optimal total power generation obtained from PSO, ANN, and RF methods is depicted in Figure 5. 

From Figure 5(a) it can be seen that as compared to PSO, RF generates the majority of power during the 

winter, whereas ANN produces the least power. As a result, a larger battery size is required when the ANN 

approach is used. The weather and temperature changes are more responsible for the load variations in the 

spring and autumn season. Therefore, as shown in Figure 5(b), the maximum and lowest generation for RF 

and ANN varies across spring and autumn. The electricity demand also rises throughout the summer due to 

the hot and humid conditions as a result it becomes challenging to match the load demand during peak hours. 

Figure 5(c) demonstrates that RF produces the maximum energy and satisfies the load demand, whereas 

ANN produces the least. Maximum and minimum generation for RF and ANN change during the monsoon 

season as shown in Figure 5(d). Therefore, when PSO and ANN approaches are applied to the suggested MG 

system, the requirement for battery sizing is more, while it is lower when compared to RF technology. Table 1 

compares the analysis of power generation and surplus electricity sent to the grid using various methodologies. 

From comparative analysis, it can be seen that RF approach produces maximum excess power generation 

resulting in more savings in generation cost. 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 5. Optimal total electrical power generation using PSO, ANN and RF for different seasons: (a) winter 

season, (b) spring and autumn season, (c) summer season, and (d) monsoon season 

 

 

Table 1. Comparative analysis of power generation for different seasons 

Seasons Methods 
Estimation of generation and load 

Total power generated 

from RESs (MW) 

Total load 

demand (MW) 

Excess power 

generated (MW) 

Winter PSO 220809 217717 -3092 
ANN 219710 217717 -1993 

RF 221179 217717 -3462 

Spring and autumn PSO 209551 206750 -2801 
ANN 208068 206750 -1318 

RF 209796 206750 -3046 

Summer PSO 240124 239512 -611 
ANN 240702 239512 -1190 

RF 242252 239512 -2739 

Monsoon PSO 206527 203749 -2778 
ANN 205644 203749 -1896 

RF 206778 203749 -3030 
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4.2.1. Battery charging analysis 

Figure 6 depicts the optimal battery charging and discharging state when various techniques are 

implemented in the proposed MG system. As seen in Figures 6(a) to (d), the most effective time to charge 

batteries using DERs is from 12:00 PM to 6:00 PM i.e., during off-peak hours. The FC and MT are kept on 

the least priority when RESs are not able to fulfill load demand and battery charging. Since at peak hours, the 

cost of charging batteries will also increase and scheduling of batteries will also become a tedious job. 

Therefore, battery charging during off-peak hours will lower the price and burden on MG. In the winter season 

(Figure 6(a)), the load demand is minimal therefore less battery capacity is required whereas in the summer 

season (Figure 6(c)) the load demand increases which increases the requirement of battery capacity also. In the 

summer season, as load demand is maximum, therefore FC and MT generation power is also required. 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 6. Optimal battery charging and discharging state for PSO, ANN and RF for different seasons:  

(a) winter season, (b) spring and autumn season, (c) summer season, and (d) monsoon season 

 

 

4.2.2. Cost analysis 

Table 2 gives the statistical analysis of the cost comparison between various techniques applied to 

the MG for various seasons. In the winter season, the load demand is minimal, therefore generation cost is 

also minimum. But in the summer season, the requirement of maximum power arises which increases the 

generation cost also. It can be seen from Table 2 that DERs with battery systems can able to meet the 

required load demand in winter, spring autumn, and monsoon season. This will reduce the heating cost and 

hydrogen costs resulting in maximum overall savings in the proposed MG system. In this system, the excess 

power left can be further used in EV charging or storing power in the battery (charging). During the winter 

season cost is minimum whereas in case of summer season cost increases with an increase in demand. 

 

 

Table 2. Comparative analysis of cost for different techniques 

Seasons Methods 

Cost estimation of generation and load 

Cost of power send to grid 

(Rs/MW) in hundreds 

Total cost of power generated 

(DERs) (RS/MW) in hundreds 

Reduction in battery 

charging cost (Rs/MWh) 

Winter PSO 1558 1543 1892 
ANN 1566 1575 1539 

RF 1693 1530 1384 

Spring and autumn PSO 1578 2667 2238 
ANN 1519 2609 2140 

RF 1618 2412 1982 
Summer PSO 1708 2895 3067 

ANN 1754 2977 2809 

RF 1837 2549 1919 
Monsoon PSO 1456 2642 2940 

ANN 1426 2442 2693 

RF 1527 2334 1980 
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4.2.3.  Seasonal battery size analysis 

The research also focuses on the estimation of optimal battery size for all seasons. The annual 

revenue spent on the battery size is minimal when all the DERs are considered for optimization. The optimal 

battery size obtained from various techniques for various seasons is depicted in Figure 7. The comparison 

shows that seasonal battery size estimated using the RF method gives better outcomes when compared with 

ANN and PSO techniques. Thus, the findings demonstrate the optimal battery size, reduction in battery 

charging cost, and cost of total power generation accomplished through the RF approach delivers the most 

beneficial results as compared to ANN and PSO. 

 

 

 
 

Figure 7. Comparison between optimal battery size for different seasons 

 

 

5. CONCLUSION 

Microgrids can offer dependable and affordable power to communities while lowering carbon 

emissions and boosting grid resilience by using the advantages of DERs. They can smoothly integrate with 

the current utility grid, enabling the two systems to operate together in harmony by using modern control 

algorithms and communication technology. This will allow future expansion as well as smooth integration of 

plug-in hybrid electric vehicles. In this paper, a case study using real-time load data of various seasons is 

taken for the multi-objective optimization of DERs based MG using ensemble learning-based RF model. The 

results show that optimal battery size, reduction in battery charging cost, and total cost of the proposed MG 

system with DERs are minimal in the case of the RF model.  
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