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 Intrusion detection systems (IDS) play a pivotal role in network security and 

anomaly detection and are significantly impacted by the feature selection 

(FS) process. As a significant task in machine learning and data analysis, FS 

is directed toward pinpointing a subset of pertinent features that primarily 

influence the target variable. This paper proposes an innovative approach to 

FS, leveraging the forward selection search algorithm with hybrid 

objective/fitness functions such as correlation, entropy, and variance. The 

approach is evaluated using the BoT-IoT and TON_IoT datasets. By 

employing the proposed methodology, our bidirectional long-short term 

memory (BiLSTM) model achieved an accuracy of 98.42% on the TON_IoT 

dataset and 98.7% on the BoT-IoT dataset. This superior classification 

accuracy underscores the efficacy of the synergized BiLSTM deep learning 

model and the innovative FS approach. The study accentuates the potency of 

the proposed hybrid approach in FS for IDS and highlights its substantial 

contribution to achieving high classification performance in internet of 

things (IoT) network traffic analysis. 
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1. INTRODUCTION  

The proliferation of the Internet and its associated technologies has led to an unprecedented surge in 

data communication among devices. This upsurge underscores the increasing reliance on digital channels and 

the growing need to ensure the integrity and security of the transmitted information. As a linchpin of modern 

network security, IDSs are critical in safeguarding data against potential threats and breaches. 

Recent years have seen the meteoric rise of IoT devices, revolutionizing everything from home 

automation to industrial processes. While these devices bring numerous advantages, they also present 

significant challenges, primarily due to the sheer volume of data they generate. Processing and managing this 

colossal real-time data necessitates solutions beyond traditional cloud computing paradigms. Enter fog 

computing: an evolutionary step from cloud computing, which emphasizes decentralized, local data 

processing, offering real-time insights closer to the source of data generation [1]. 

However, as with any evolutionary technology, fog computing introduces its own set of challenges. 

While advantageous for processing, decentralization inadvertently amplifies potential security threats. Given 

the critical nature of many IoT applications, these threats can have severe repercussions. As such, the role of 

IDSs becomes even more crucial in the context of fog computing environments [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Historically, IDSs have shown limitations when confronted with the high-dimensional nature of 

network data, especially in scenarios blending IoT with fog computing [3]. Recognizing this, the research 

community posited feature selection (FS) as a potential solution. By reducing dimensionality and enhancing 

data interpretability, FS promises to rejuvenate the effectiveness of IDSs [4]. However, the existing FS 

methodologies, predominantly relying on singular statistical measures, often fail to address the multifaceted 

challenges of fog environments. 

Traditional FS methods that hinge on a single statistical measure might provide insights into specific 

aspects of the data but often miss out on capturing the holistic nature of the information. For instance, while 

correlation can offer insights into linear relationships between features, it might not capture intricate non-

linear interdependencies that other metrics like entropy or variance can elucidate. Consequently, relying 

solely on one measure can inadvertently lead to omitting critical features or including redundant ones. 

This research aims to bridge this gap by proposing an innovative method for FS that marries the 

strengths of the forward selection algorithm with hybrid objective functions. These functions are a cocktail of 

correlation, entropy, and variance metrics designed to select features that balance being informative and 

ensuring mutual exclusivity. Such a balance is no longer a luxury but a necessity when dealing with high-

dimensional IDS data [5], [6]. 

But the innovation doesn’t stop at FS. Recognizing the potential of deep learning, this research 

further integrates the bidirectional BiLSTM model into the IDS framework. BiLSTM, an advanced avatar of 

the traditional recurrent neural network (RNN), is renowned for its capability to interpret sequential data, 

making it an ideal choice for network traffic analysis [7]. 

In a realm inundated with intrusion detection methodologies, the bespoke approach to feature 

selection tailored for fog computing environments sets this research apart. While traditional systems have 

relied on singular metrics or straightforward algorithms, this work pioneers a synergistic approach, 

combining the robustness of forward selection, intricate statistical measures, and the predictive prowess of 

BiLSTM. Such a holistic technique, to the best of our knowledge, has not been explored, and especially 

within the context of fog computing architectures [8]. 

To encapsulate, the study’s vision is twofold: first, to introduce and validate a novel FS 

methodology tailored for IDSs in fog computing environments, and second, to harness the power of deep 

learning. Specifically, BiLSTM enhances the detection accuracy of intrusion detection. 

The contributions of this research are manifold: 

− The introduction of a bespoke FS method for IDSs, meticulously crafted for the challenges of fog 

computing environments. 

− A pioneering approach that synergizes forward selection, intricate statistical measures, and BiLSTM to 

push the frontiers of intrusion detection. 

− A proactive response to the pressing security demands of the IoT era, ensuring robust, resilient, and 

efficient IDS performance within fog computing architectures. 

As the internet security landscape continues to evolve, it’s imperative to delve deeper into the 

intricacies of the methodologies that promise to safeguard its future. The subsequent sections aim to unravel 

this meticulous research journey. The discussion commences with a detailed exploration of related works, 

setting the stage for a deeper understanding of the research context. Moving forward, the manuscript delves 

into the proposed methodology, elucidating the nuances of the hybrid objective function, the forward 

selection algorithm, and the configuration specifics of the BiLSTM model. Central to this research evaluation 

is using the Bot-IoT and TON_IoT datasets. These datasets, chosen for their comprehensive representation of 

diverse network scenarios, are the foundation for assessing the system’s efficacy. The results, benchmarked 

against crucial metrics like accuracy, precision, recall, and F1 score, offer a rigorous evaluation of the 

system’s capabilities, ensuring that the presented contributions are firmly rooted in empirical evidence. 

 

 

2. BACKGROUND 

More details about fog computing, its security flaws, cyberattacks, and IDS will be presented here. 

Following a brief introduction to fog computing and its significance, various security concerns and malicious 

attacks that can affect IoT devices and fog are outlined. Finally, the various types of IDS and their 

significance in addressing these issues will be discussed. 

 

2.1.  Fog computing 

The hierarchical architecture of fog computing integrates cloud resources with edge devices, and fog 

nodes see Figure 1. Cloud resources provide storage and global-scale services, while fog nodes process data 

locally, reducing network congestion and latency [9]. IoT devices collect and generate data at the bottom 
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layer. This architecture improves data processing efficiency, reduces network traffic, and enables real-time 

applications in domains like smart cities and healthcare. 

 

 

 
 

Figure 1. Fog computing architecture [10] 

 

 

Fog systems, mini-clouds situated at the network’s edge near the user, possess scalable memory, 

processing, and storage capacities [11]. They support real-time applications by reducing latency through fog 

nodes like access points, switches, servers, controllers, routers, gateways, and storage devices [12]. End users 

interact with these nodes instead of cloud data centers, which saves energy and enhances response time. Fog 

nodes can be classified into two types: ones that only produce and sense data and intelligent ones that sense 

data and perform initial data processing using advanced computational abilities [13]. Fog computing assists 

in load balancing, reducing latency, and maintaining service quality. 

 

2.2.  Fog security issues 

The fog platform interposed between users and the cloud engenders numerous potential 

vulnerabilities, making it susceptible to multiple attacks. Currently, fog computing is employed to improve 

website performance. They can handle HTTP requests using fog computing, receiving and processing 

multiple requests simultaneously while managing various user files [14]. This makes fog computing 

vulnerable to attacks like cross-site scripting (XSS) and injection attacks based on lousy input that has not 

been checked. Fog nodes participate in mutual communication with many (IoT) devices. This leaves them 

open to a security threat known as a man-in-the-middle (MITM) attack. In such an attack, a malefactor 

positioned in the network’s core intercepts communications modifies data, and impairs service provision. 

Figure 1 shows that the fog platform can connect to sensors, laptops, phones, and other IoT devices used by 

regular people. This connectivity can be either wired or wireless. Given the accessibility of the fog platform, 

it becomes prone to resource exploitation attacks, such as denial of service (DoS) and distributed denial of 

service (DDoS) [15]. Such attacks pose significant threats to the IoT infrastructure, negatively impacting its 

performance and causing substantial harm. For instance, scanning attacks seek to gather data, like available 

system services and open ports, while backdoor attacks leverage concealed malware to control IoT systems 

remotely. Techniques for breaching the passwords of IoT devices are prevalent within the fog environment. 

Furthermore, fog computing is susceptible to ransomware attacks, which inhibit a user’s ability to access an 

IoT device or service [16]. 

 

2.3.  Intrusion detection system 

Fog networks, susceptible to numerous security risks such as traffic interception and malware 

distribution, employ security measures like firewalls, encryption, and Intrusion IDS for protection [17]. IDSs, 

utilized in fog nodes, analyze data using machine learning and deep learning to spot threats [18]. They come 

in two types-network intrusion detection systems (NIDSs) that scan network traffic for harmful activity and 
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host intrusion detection systems (HIDSs) that monitor hosts for malicious actions [19]. These systems are 

anomaly-based, detecting unusual behavior, or misuse-based, looking for known attack patterns. They 

operate in distributed or centralized architectures, with NIDSs embedded in fog nodes for broader network 

coverage [20]. The development of IDSs in fog computing is an ongoing process due to the emergence of 

new threats [21]. 

 

2.4.  Features selection 

FS is a critical process in deep learning and data mining, especially with large datasets [22]. It 

identifies the most essential features, reduces data dimensionality, and boosts model performance by 

removing unneeded features [23]. FS methods include filter methods, which evaluate feature importance 

independently [24]; wrapper methods, which use predictive models to score feature subsets; and embedded 

methods, which perform FS during model training. Recently, hybrid methods combining the strengths of 

individual methods have emerged. FS is crucial in intrusion detection systems, as it enhances the 

performance of models by focusing on the most informative features [25]. This improves efficiency, 

increases accuracy, reduces overfitting, and strengthens the detection and classification of intrusive activities 

in IoT environments [26], [27]. 

 

 

3. RELATED WORK 

The related work section explores the prior research and methodologies that form the foundation for 

the proposed approach. Various FS techniques will be explored, focusing on the forward selection method. 

We’ll examine the incorporation of hybrid objective or fitness functions in FS and how pairwise measures 

such as correlation, entropy, and variance play a crucial role in this process. 

Improving the accuracy of IDS is the primary focus of the hybrid neural network (HNN) model, as 

introduced in the study [28]. This model performs better by combining multi-feature correlation analysis and 

temporal-spatial analysis. Through real-world dataset experiments, it surpasses traditional ML algorithms in 

accuracy, precision, recall, and F1-score measures. The effectiveness of this model in detecting intrusion 

activities is amplified by its ability to capture complex feature relationships and analyze temporal-spatial 

patterns. 

Continuing in the same direction, enhancing the efficiency of IDS by employing an FS strategy is 

the focus of the study [29]. In response to the complexity of voluminous network traffic data, the researchers 

propose FS and eliminating irrelevant ones to improve the accuracy of classification algorithms. The study 

introduces three FS and ranking techniques-information gain, gain ratio, and correlation FS to select and rank 

the top features. The narrowed-down selection of six features from an initial set of 41 is then tested using 

three classifiers-k-nearest neighbor, naïve bayes, and neural network-based multilayer perceptron. The 

findings indicate that a high attack classification accuracy can be achieved by combining the best features 

from different methods. 

Simultaneously, a novel method for anomaly detection in fog computing is introduced in the study 

[30], utilizing genetic algorithm (GA) based FS and naïve bayes classification. Recognizing fog computing’s 

pivotal role in handling massive IoT data and its vulnerability to security threats, the authors employ a GA 

for selecting features that substantially aid in anomaly detection. This process improves classification 

efficiency by reducing data dimensionality. The naïve bayes classifier, a probabilistic tool premised on 

feature independence, is used for classification. The fusion of GA-based FS and naïve bayes improves 

anomaly detection in fog computing environments, lowers false alarm rates, and boosts detection rates, thus 

offering an efficient security solution. 

A unique approach for FS and extraction in anomaly-based (IDS) within the (IoT) ecosystem is the 

crux of the study [31]. Addressing the difficulties of exploiting all features due to the diverse characteristics 

of IoT, the authors utilize two entropy-based methods-information gain (IG) and gain ratio (GR) for FS and 

extraction. Mathematical set theory is also employed for optimal feature extraction. Training and testing of 

the model are conducted on the IoT intrusion dataset 2020 (IoTID20) and NSL-KDD dataset using four ML 

algorithms. The outcome reveals that the method successfully identifies relevant features and outperforms 

other state-of-the-art studies. 

The performance of ML techniques for anomaly detection, with and without FS, is examined in the 

study [32]. The authors utilize the KDD99 dataset, encompassing many network traffic records. An 

evaluation is conducted on four ML techniques: decision trees, support vector machines, naive bayes, and  

k-nearest neighbors, along with two FS techniques: information gain and chi-squared. The findings reveal 

that FS can enhance the performance of ML techniques for anomaly detection. The decision tree classifier 

achieves the most significant results with the information gain FS technique. The authors infer from their 

findings that FS is a promising approach for augmenting the performance of IDSs. 
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An innovative approach for augmenting the performance of a deep neural network (DNN) based 

(IDS) is proposed in the study [33]. The authors acknowledge the growing use of DL techniques and their 

powerful capacity to learn data in depth. Their study focuses on enhancing the DNN-based IDS through a 

unique FS strategy that employs a fusion of statistical importance using standard deviation and the difference 

of mean and median. The approach aims to prune features based on their rank, derived from the fusion of 

statistical importance, to identify relevant features that exhibit high discernibility and deviation, thus aiding 

in more effective data learning. The performance of the proposed approach is tested using three different 

intrusion detection datasets: NSL-KDD, UNSW_NB-15, and CIC-IDS-2017. The study reports on 

performance regarding various evaluation metrics and provides a comparative analysis with existing FS 

techniques. The results undergo statistical testing using the wilcoxon signed rank test. 

Building on this theme of combining traditional and modern techniques for IoT security, [34] 

crafted an intrusion detection system that harnesses the combined power of machine learning and deep 

learning. When evaluated on the BoT-IoT dataset, their system showcased an accuracy rate exceeding 99%. 

Notably, their experimentation revealed the prowess of decision tree and multilayer perceptron models in 

detecting specific threats like DDoS and DoS attacks. However, a comprehensive comparison with other 

state-of-the-art methods, especially regarding computational efficiency, was a noticeable gap in their 

research. 

Further pushing the boundaries of innovation in this domain, [35] embarked on a journey to address 

the challenges of hybrid cloud-fog computing in IoT. Their brainchild, the ConvNeXt-Sf model, is a 

testament to their ingenuity source. This model is not just another deep learning architecture; it’s a 

reimagined version of ConvNeXt, meticulously transformed to cater to IoT’s unique challenges and 

constraints. When tested on datasets like TON_IoT and BoT-IoT, the results were remarkable. The model’s 

parameters were a mere 1.25% of the original ConvNeXt, and it achieved staggering reductions in training 

and prediction times by 82.63% and 56.48%, respectively. 

 

 

4. METHOD 

IDS for IoT networks necessitates a precise and reliable framework to safeguard the security and 

operability of interconnected devices amidst the burgeoning threats in cyberspace. While existing IDS 

paradigms exhibit robustness, they often encounter computational efficiency and precision challenges, 

particularly when navigating through high-dimensional data where discerning feature relevance and 

redundancy are pivotal. These challenges underscore the imperative to explore innovative data classification 

and feature selection approaches, especially in scenarios inundated with voluminous and diverse data. 

To navigate these challenges, this study introduces a nuanced deep-learning framework, 

emphasizing a bespoke hybrid FS algorithm intricately crafted to sift through dataset features with 

meticulousness and focus. The hybrid FS algorithm, central to this research, transcends being a mere iterative 

feature selector. It is a methodological innovation carefully designed to scrutinize and select attributes that 

are inherently crucial and augment the predictive veracity of subsequent modeling stages. Distinct from 

conventional methods, which may predominantly rely on a single evaluative metric [36], our algorithm fuses 

various evaluative lenses, ensuring a comprehensive, balanced, and rigorous feature selection process. This 

methodological choice, governed by a meticulously tuned fitness score, ensures selections are halted upon 

reaching a predetermined feature count or when the score descends below a rigorously tested threshold, 

herein set at 0.2 to ensure the selection of only the most paramount features. 

A BILSTM classifier is meticulously trained and validated upon establishing the selected features. 

This is not merely enacted as a predictive model but is finessed as a strategic instrument that adapts its 

parameters to mitigate overfitting and enhance generalization across diverse datasets. The intricate parameter 

tuning and validation stages, elaborated in subsequent sections, ascertain that the model is robust and 

adaptable to varied IoT data landscapes. 

This research transcends the development of the framework, extending into its rigorous validation. 

By employing new datasets, TON_IoT and BoT-IoT, the model is subjected to meticulous testing, ensuring 

its efficacy, reliability, and applicability are validated and contrasted against extant frameworks, thereby 

substantiating its theoretical robustness and practical applicability, as illustrated in Figure 2. 

 

4.1.  Data pre-processing 

Data pre-processing is the initial phase in preparing raw data for further stages like feature selection 

and model training in IDS [37]. It involves transforming raw network traffic data into a meaningful format, 

helping to eliminate irrelevant or redundant information that could hamper detection performance and 

increase computational time. The process consists of three main sub-stages: data encoding, handling missing 

values, and normalization, each of which refines the data for more effective subsequent analysis [38]. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

An efficient intrusion detection systems in fog computing using forward selection and … (Fadi Abu Zwayed) 

2591 

4.1.1. Data encoding 

Undertaking label encoding is paramount in this study, serving as an integral pre-processing step to 

transmute categorical data into a numerical format, rendering it amenable for DL models. Each unique 

category within the dataset is assigned a distinct integer, ensuring a seamless transition from categorical to 

numerical data. The methodology involves iterating through each column, identifying ‘object’ type data 

indicative of categorical data, and converting it into an integer representation, ensuring comprehensive data 

utilization across subsequent analytical stages. 
 
 

 
 

Figure 2. The proposed IDS model architecture 
 

 

Figure 3 illustrates the encoding process for attacks. Thus, any abnormal traffic, irrespective of the 

attack form it experiences, is classified under a singular attack category and numerically represented as 

integer number 1. 
 

 

 
 

Figure 3. Attacks encoding 

 

 

4.1.2.  Data cleansing and handling missing values 

Data cleansing was an imperative phase, crucial for enhancing the quality and reliability of the 

datasets: TON_IoT and BoT-IoT. This process encompassed several vital steps: 

a. Handling missing values: absent data can notably impact the subsequent analysis’ accuracy and 

reliability. In this study, missing values were addressed through mean imputation, a statistical technique 

wherein missing entries are replaced with the mean value of the non-missing data. The mean was 

calculated using (1): 
 

𝑀𝑒𝑎𝑛 (𝑋)  =  (𝛴𝑥ᵢ) / 𝑛 (1) 
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where 𝛴𝑥ᵢ denotes the sum of all observed values for the variable, and n signifies the total number of 

observed values. 

Utilizing mean imputation under the assumption that data was missing completely at random 

(MCAR) ensured the preservation of the dataset’s overall distributional properties and prevented the loss of 

crucial information [38]. 

b. Detecting and removing duplicates: to maintain our analysis’s integrity and unbiased nature, duplicate 

entries within the datasets were identified and eliminated. This prevented the over-representation of 

specific instances. 

c. Identifying and managing outliers: outliers were detected and managed using the interquartile range 

(IQR) method. Outliers are points that significantly differ from the rest of the data, which can skew the 

analysis and subsequent results. The steps for calculating IQR and identifying outliers were: 

− Calculate the IQR as 𝑄3 −  𝑄1, where Q3 is the third quartile, and Q1 is the first quartile. 

− Any data point that fell below 𝑄1 −  1.5 ∗ 𝐼𝑄𝑅 or above 𝑄3 +  1.5 ∗ 𝐼𝑄𝑅 was considered an outlier. 

Following these steps in the data cleansing stage ensured that the datasets feeding into the 

subsequent stages of transformation and normalization were reliable, consistent, and of high quality [39]. 

 

4.1.3.  Data normalization 

Data pre-processing often includes normalization to ensure all features are on a consistent scale. 

One standard method for achieving this is Min-Max scaling. This process transforms each feature in the 

dataset by subtracting the minimum value of the feature and then dividing it by the difference between the 

maximum and minimum values of that feature. This transformation ensures that the resulting values lie 

within the range of [0, 1], as shown by (2): 
 

𝑍 =
𝒙−𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙−𝒙𝒎𝒊𝒏
 (2) 

 

The feature value is denoted by x, while the value after normalization is represented by Z. The 

maximum and minimum values of the feature are denoted by xmax and xmin, respectively. 

The datasets, namely TON_IoT and BoT-IoT, had been successfully encoded, cleansed, and 

normalized, as evidenced by the snapshots (Figures 4 and 5) illustrating the state of the data  

post-preprocessing. 
 
 

 
 

Figure 4. Snapshot of TON_IoT dataset after pre-processing stage 

 

 

4.2.  The proposed hybrid objectives feature selection method for intrusion detection systems 

This study introduces a specialized two-stage FS methodology for identifying crucial attributes in 

large datasets, particularly for IDS. This hybrid objective FS method integrates various statistical and 

informational criteria, offering a comprehensive and holistic approach to feature assessment and selection, 

diverging from traditional FS methods that may rely on a single metric. Subsequent sections will delve into 

each methodology component, highlighting its innovative contributions and advantages over existing FS 

methodologies in the IDS domain while providing a transparent and replicable guide for its application. 
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Figure 5. Snapshot of BoT-IoT dataset after pre-processing stage 

 

 

4.2.1. Hyper-objective function 

The proposed hybrid objective function forms the crux of our approach, evaluating a feature’s 

significance by simultaneously considering its relevance and redundancy. The relevance of a feature is 

ascertained through its correlation with the target variable, which indicates how much it can contribute to 

predicting the target. On the other hand, redundancy is measured by the average correlation of the feature 

with those already selected. The lower the correlation, the less redundant the feature is considered; thus, it 

brings new, distinct information to the model. The hybrid objective function is calculated using (3): 

 

𝐹 =  (𝐼 −  𝐶) / (𝐻 ∗  𝑉) (3) 

 

where I represent the mutual information, indicating the relevance of the feature; C stands for average 

correlation, used to measure redundancy; H is the entropy of the feature, which reflects the amount of 

information or ‘surprise’ the feature offers; and V denotes variance, a measure of how much values of the 

feature differ, thus capturing its diversity. 

Through this, the objective function aims to maximize mutual information and diversity (entropy and 

variance) while minimizing redundancy, leading to an efficient and more precise feature selection for the IDS. 

 

4.2.2. Mutual information 

The correlation between a feature and the target is evaluated using the concept of mutual 

information (MI). By observing the other, MI quantifies the “amount of information” obtained about one 

random variable [40]. It’s calculated using (4): 

 

𝐼(𝑋; 𝑌) = ∬ 𝑝(𝑥, 𝑦) log (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)  𝑑𝑥 𝑑𝑦 (4) 

 

where 𝑝(𝑥, 𝑦) refers to the combined probability density function of X and Y, 𝑝(𝑥) and 𝑝(𝑦) are the 

marginal probability density functions of X and Y, respectively. 

In the context of the proposed FS methodology, MI serves as a pivotal metric to ascertain the 

relevance of a feature by measuring the information gain about the target variable resulting from the feature. 

The merit of employing MI in this scenario is its non-parametric nature, which enables it to capture  

non-linear dependencies between variables, thereby enhancing the robustness and comprehensiveness of the 

feature evaluation process, especially in complex, high-dimensional spaces prevalent in IoT data. 

 

4.2.3. Pearson’s correlation coefficient 

The pearson correlation coefficient is vital in assessing linear relationships between variables in the 

proposed hybrid FS methodology. Utilized within the algorithm, it quantifies the degree of linear dependence 

between selected features and the target variable, thereby offering a measure to evaluate and mitigate 

redundancy among selected features. Its computation is facilitated through (5): 

 

𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
 (5) 

 

let’s break down the components of this formula: 
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𝐶𝑜𝑣(𝑋, 𝑌) is the covariance between X and Y. It measures how much two random variables vary together. 

It’s calculated as the expected value (or mean) of the product of the differences between each variable and 

their respective means: 

 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])] (6) 

 

where (𝐸[𝑋])𝑎𝑛𝑑(𝐸[𝑌]) are the means of X and Y, respectively, and (𝐸) is the expectation or average value. 

(𝜎𝑋) and (𝜎𝑌) are the standard deviations of X and Y. It’s calculated as the square root of the variance: 

 

𝜎𝑋  =  √𝑉𝑎𝑟(𝑋)  =  √𝐸[(𝑋  −  𝐸[𝑋])2] (7) 

 

𝜎𝑌 = √𝑉𝑎𝑟(𝑌) = √𝐸[(𝑌 − 𝐸[𝑌])2] (8) 

 

where (𝑉𝑎𝑟(𝑋)) and (𝑉𝑎𝑟(𝑌)) are the variances of X and Y, respectively. 

 

4.2.4. Variance 

The variance, denoted as 𝑉𝑎𝑟(𝑋), serves not merely as a statistical measure indicating the deviation 

of a random variable 𝑋 from its mean 𝜇, but also as a pivotal factor in assessing the dispersion of feature 

values within the context of our proposed methodology. It quantitatively portrays how much each feature 

diverges from its mean, providing insights into its distribution and information dispersion. Integrating 

variance into the hybrid objective function ensures that features exhibiting a higher degree of dispersion and 

potentially possessing more informative aspects are assigned elevated fitness scores. This strategy aligns to 

select features that maximize information gain. The computation of variance adheres to (9): 

 

𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2] (9) 

 

Where 𝑉𝑎𝑟(𝑋) is signifies the variance of the random variable X. variance serves as a dispersion metric, 

denoting the degree to which data points deviate from the mean. A heightened variance implies a substantial 

spread of data points around the mean, while a diminished variance suggests they are closely packed around 

the mean; 𝐸 represents the expectation operator, often interpreted as a long-run average value of a random 

variable. It’s also known as the expected value or the mean; 𝑋 is the random variable. A random variable can 

be any outcome from some chance process, like your set of possible results from a data group; and 𝜇 

represents the mean (average) of X. It’s calculated by summing all the data points and dividing by the 

number of data points. 

In essence, for each data point, the variance formula takes the difference of the data point from the 

mean, squares it (to make all differences positive), and then takes an average of these squared differences. 

 

4.2.5. Entropy 

Entropy measures the uncertainty, randomness, or impurity in a data set. The entropy (H) of a 

random variable X is defined as (10): 
 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖)
𝑛
𝑖=1 log 𝑝 (𝑥𝑖) (10) 

 

Where 𝐻(𝑋) represents the entropy of the random variable X. In information theory, entropy means the 

expected amount of ‘information’ contained in a message. In other words, it measures the unpredictability or 

uncertainty of a random variable; 𝛴 is the summation symbol. The following expression is added for all 

values from i=1 to n; 𝑝(𝑥𝑖) is the probability mass function of X. It gives the probability that the random 

variable X equals some value. In the context of entropy, p(x_i) represents the probability of a particular 

outcome; and 𝑙𝑜𝑔𝑝(𝑥𝑖) is the logarithm of the probability mass function of X. In the context of entropy, 

taking the logarithm of the probabilities provides a measure of ‘information’. The base of the logarithm 

determines the unit of entropy. If the logarithm is base 2, the entropy is measured in bits. 

In the context of the proposed FS methodology, entropy is not merely a statistical measure; it is a 

critical component ensuring that the selected features embody a spectrum of information about the dataset, 

thereby enhancing the predictive model’s robustness and generalizability. Particularly for high-dimensional 

IoT data, which often encompasses diverse and non-linear features, the inclusion of entropy in the FS 

methodology enables the model to discern and prioritize features that encapsulate varied and rich 

informational content, thereby mitigating the risk of overfitting and enhancing model interpretability. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

An efficient intrusion detection systems in fog computing using forward selection and … (Fadi Abu Zwayed) 

2595 

The innovative methodology outlined for feature selection in IDS seamlessly integrates mutual 

information, pearson’s correlation coefficient, variance, and entropy into a unified hyper-objective function, 

presenting a comprehensive and balanced approach. This union of various metrics assures a meticulous 

evaluation and selection of features, maximizing relevance while ensuring diversity and minimizing 

redundancy. Unlike alternative methodologies such as recursive feature elimination [41], correlation-based 

feature selection (CFS) [42], linear discriminant analysis (LDA) [43], and principal component analysis 

(PCA) [44], the proposed method concurrently optimizes multiple critical aspects, enhancing the predictive 

accuracy and computational efficiency of the IDS. This nuanced approach provides a robust foundation for 

further research and applications within cybersecurity, demonstrating substantial practical and theoretical 

value. Algorithm 1 shows a pseudocode of the proposed hybrid objective feature selection methodology for 

IDS is provided, illustrating the detailed, step-by-step breakdown of the method. 

 

Algorithm 1. Pseudocode of the proposed hybrid objective feature selection methodology for IDS  

 Input: 

X: the dataset of features 

y: the target variable 

max_features: the maximum number of features to select (default is all features) 

fitness_threshold: the threshold below which selection stops (default is None) 

 Output: selected_features the optimal subset of features 

Step 1. Initialization: the algorithm begins by initializing two lists. selected_features starts as an 

empty list and will hold the indices of selected features. remaining_features is initialized with 

the index of all features 

Step 2. Function Definition: hybrid_objective (X, y, feature_idx, selected_features) 

Step 3.  Calculate mutual Information (correlation) between the feature at index feature_idx and 

target variable y. 

Step 4.  If selected_features is not empty, calculate pairwise correlations between the current and 

already selected features and take their mean as avg_correlation. Otherwise, set 

avg_correlation to 0. 

Step 5.  Calculate entropy ent and variance var of the feature at index feature_idx 

Step 6.  Compute the fitness score as (correlation - avg_correlation) / (ent * var) 

Step 7.  Return the fitness score. 

Step 8. Feature Selection: 

Step 9.  For i = 0 to max_features do: 

Step 10.   Initialize best_fitness as negative infinity and best_feature as None. 

Step 11.   For each feature_idx in remaining_features do: 

Step 12.    Compute the fitness score using hybrid_objective(X, y, feature_idx, 

selected_features) 

Step 13.    If the fitness score is more significant than best_fitness, update best_fitness 

and best_feature 

Step 14.   Append best_feature to selected_features and remove it from remaining_features 

Step 15.   Break the loop if fitness_threshold is provided and best_fitness is less than 

fitness_threshold. 

Step 16. Return selected_features 

 

− X: the dataset of features that represent the input data.  

− y: the target variable is the variable being classified. 

− max_features: the maximum number of features to select. The user can define this parameter to limit the 

number of selected features. If it’s not provided, the algorithm will consider all the features from the dataset. 

− fitness_threshold: this is the threshold which the selection process stops. It’s another way of controlling 

the stopping condition of the FS process. If the calculated fitness score falls below this threshold, the 

algorithm will stop adding more features to the selected subset. If this parameter is not provided, the 

algorithm will only stop when it has considered all features or when the maximum number of selected 

features has been reached. 

− Initialization: the algorithm begins by initializing two lists. selected_features start as an empty list and will 

hold the indices of selected features. remaining_features is initialized with the indices of all features. 

− Function definition: the hybrid_objective function is crucial to the algorithm. It computes a fitness score 

for a given feature, determining its relevance and suitability for inclusion in the selected feature subset.  

The feature fitness score is computed as the difference between the mutual information and the 

average correlation, divided by the product of the entropy and the variance according to (3). 
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The intuition behind this fitness score is to maximize the mutual information with the target 

variable, minimize the redundancy with already selected features, and favor features with high entropy and 

variance. 

− Feature selection: the main iteration of the algorithm begins and continues until all features have been 

considered or the maximum number of selected features (max_features) has been reached. 

In each iteration of this loop, the algorithm considers each remaining feature and calculates its 

fitness score using the hybrid_objective function. If the fitness score of a feature is higher than the best 

fitness score so far, it becomes the new best feature, and the best fitness score is updated. This process 

continues for all remaining features, thus ensuring that the feature with the highest fitness score in each round 

is selected. 

After each cycle, the chosen attribute is incorporated into the list of selected features and subtracted 

from the remaining features. This principle safeguards against the repetition of the same attribute. If a fitness 

threshold parameter is established and the peak fitness score dips beneath this marker, the algorithm will 

prematurely cease, irrespective of the total count of selected features. 

− Output: after the initial run of the algorithm, we receive a collection of selected features. This collection 

can generate a simplified version of the original dataset, including only the most relevant features. These 

selected features can be used later to build a classification model. 

The hybrid fitness function used in the forward selection method is a robust and adaptable 

algorithm. Its primary strength resides in its capacity to evaluate the significance of each feature relative to 

the target variable using mutual information, as well as the redundancy of each feature concerning those 

already selected using correlation. Furthermore, this strategy considers each feature’s entropy and variance. 

Considering various aspects of the data enables the formation of a thorough and insightful set of features that 

can result in high performance in following predictive modeling tasks.  

Distinctively, this algorithm integrates the strengths of various existing methods and mitigates their 

limitations by providing a balanced, well-rounded evaluative mechanism, thereby amplifying its reliability 

and applicability in real-world scenarios. It substantiates a novel paradigm in feature selection by 

concurrently maximizing mutual information and diversity while minimizing redundancy, thereby ensuring a 

meticulous and nuanced selection of features that not only are relevant but also enhance the predictive 

model’s robustness and generalizability. 

 

4.2.6. Classifier (BILSTM) 

The classifier utilized in this study is a BILSTM network, a variant of RNNs. BILSTM models have 

gained considerable prominence in various domains due to their ability to capture long-term dependencies 

and temporal patterns in sequential data. The architecture of the BiLSTM network incorporates LSTM layers 

that operate in both forward and backward directions [45]. This dual-directional operation is vividly 

illustrated in Figure 6. The forward LSTM mechanism examines the input sequence progressively from the 

beginning to the end, capturing data from historical events. 

On the other hand, the backward LSTM mechanism reviews the sequence in reverse order, acquiring 

knowledge from upcoming events [46]. This two-way processing is depicted in Figure 4. The amalgamation 

of outputs from these two directions enables the BiLSTM model to scrutinize the context of the input 

sequence comprehensively. This results in successfully detecting and extracting relationships and patterns 

over various time scales [47]. 

 

 

 
 

Figure 6. BiLSTM architecture 
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5. EXPERIMENTAL SETUP 

The experimental design, a core part of the research methodology, sets up the framework for 

evaluating the effectiveness and reliability of the proposed method in classifying IoT data. Key components 

include dataset selection, model configurations, evaluation metrics, and verification methods. Datasets 

TON_IoT and BoT-IoT, which contain a variety of IoT activities, are used. The BiLSTM classifier’s 

parameters and hyperparameters are defined to enhance learning efficiency. The evaluation uses metrics like 

accuracy, precision, recall, and F1-score. Validation techniques like train-test splits prevent overfitting and 

test the model’s generalizability. Adherence to best practices in experimental design and statistical analysis 

ensures a robust framework for assessing the proposed IoT data classification approach. 

 

5.1.  Datasets 

In this study, the BoT-IoT [48] and TON_IoT [49] datasets are utilized, capturing a diverse range of 

IoT activities and offering valuable insights for evaluating the proposed approach in intrusion detection. 

 

5.1.1. BoT-IoT dataset 

The BoT-IoT dataset was created by utilizing industrial IoT (IIoT) smart home appliances in 

collecting IIoT traffic samples within the Cyber Range Lab of The Center of UNSW Canberra Cyber. This 

dataset encompasses many smart IIoT devices, such as thermostats, motion-controlled lights, remotely 

controlled garages, fridges and freezers, and weather monitoring systems. Two versions of the dataset are 

available: the full version, consisting of over 72 million records, and the 10% version, which includes 

approximately 3.6 million records. For our experimentation, a subset of the dataset, specifically 5% of the 

entire dataset, has been chosen for analysis. The focus is on the top ten features that demonstrate the best 

performance. 

 

5.1.2. TON_IoT dataset 

The TON-IoT dataset used in this study is a comprehensive collection of heterogeneous data from a 

medium-scale IoT network. It includes telemetry data, operating system records, and network traffic data. 

The dataset is labeled, indicating normal behavior or attacks such as ransomware, password attacks, DoS, and 

DDoS. The dataset was created in collaboration between UNSW Canberra IoT Labs and the Cyber Range 

and can be accessed in CSV format [50]. 

 

5.2.  Model training 

The model training involves defining the architecture of the BiLSTM deep learning model, 

compiling the model with appropriate parameters, and training the model using the training dataset. For a 

detailed overview of the hyperparameters and configuration used in this process, refer to Table 1. This table 

outlines critical parameters such as the number of epochs, batch size, learning rate, and loss function, which 

are crucial for the training and performance of the BiLSTM model. 
 

 

Table 1. Hyperparameters and configuration for BiLSTM model training 
Parameter Value 

Epochs 100 

Batch size 32 

Learning rate 0.001 
Loss function Binary cross entropy 

Optimizer Adam 

 

 

5.3.  Evaluation metrics 

The evaluation metrics play a crucial role in assessing the performance of the classification model in 

this work. Standard evaluation metrics, such as accuracy, precision, recall, and F1-score, provide quantitative 

measures of the model’s effectiveness in classifying normal and malicious IoT activities. These metrics can 

be represented using (11) to (14): 

 

Accuracy =
Number of correctly classified instances

Total number of instances
 (11) 

 

Precision =
True Positives

True Positives+False Positives
 (12) 

 

Recall =
True Positives

True Positives+False Negatives
 (13) 
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F1-score = 2 ×
Precision×Recall

Precision+Recall
 (14) 

 

 

6. RESULTS 

The presented methodology for constructing an efficient (IDS) in fog computing demonstrates its 

proficiency through our study’s results. Evaluation metrics quantitatively express this proficiency, including 

accuracy, precision, recall, and F1-score. 

 

6.1.  Feature selection 

The proposed hybrid objective FS algorithm significantly reduced the dimensionality of the initial 

datasets. As depicted in Figures 7 and 8, the features declined substantially through the TON_IoT and  

BoT-IoT datasets selection process. 
 

 

  
  

Figure 7. Reduction of features for the TON_IoT 

dataset 

Figure 8. Reduction of features for the BoT-IoT 

dataset 
 

 

The process began with a comprehensive set of features, and the list was methodically culled to 

include only those with a fitness score less than the defined threshold of 0.2. This refined FS contributes to a 

more efficient and manageable workflow, with the most pertinent data being preserved for further steps. The 

details of feature reduction in the TON_IoT and BoT-IoT datasets are shown in Table 2. 
 

 

Table 2. Feature selection in TON_IoT and BoT-IoT datasets 
Dataset Initial number of features Number of features after selection 

TON_IoT 45 14 

BoT-IoT 46 13 

 
 

The tables indicate that the initial number of features was significantly reduced after applying our 

hybrid objective FS algorithm. For instance, in the TON_IoT dataset, we started with 45 features and 

narrowed the list to only 14 significant features. Similarly, in the BoT-IoT dataset, the initial feature set 

containing 46 features was reduced to 13. This reduction not only streamlined the datasets but also improved 

the efficiency of the following stages in the workflow, including training the BILSTM classifier. 

 

6.2.  Performance on TON_IoT and BoT-IoT dataset 
In Table 3, the BILSTM model achieved high performance on the TON_IoT and BoT-IoT datasets. 

The accuracy for TON_IoT was 98.42%, and BoT-IoT’s was 98.7%. The precision values were 98.3% for 

TON_IoT and 98.1% for BoT-IoT. The model exhibited a recall of 97.7% for both datasets. Additionally, the 

F1 scores for both datasets were 98%. These performance metrics indicate the model’s accuracy, precision, 

recall, and balanced performance in predicting activities for both TON_IoT and BoT-IoT datasets. 
 

 

Table 3. Performance metrics of the BILSTM model on TON_IoT and BoT-IoT datasets 
Metric Value (%) (TON_IoT) Value (%) (BoT-IoT) 

Accuracy 98.42 98.7 

Precision 98.3 98.1 
Recall 97.7 97.7 

F1-score 98 98 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

An efficient intrusion detection systems in fog computing using forward selection and … (Fadi Abu Zwayed) 

2599 

6.3.  Overall performance 

The combination of the hybrid FS method and the BILSTM classifier exhibited remarkable 

efficiency in discerning normal from potentially malicious IoT activities. The high performance on both 

TON_IoT and BoT-IoT datasets significantly advances IoT security. These findings suggest that ML and DL 

techniques, such as BILSTM models, hold great potential for constructing robust IDS within fog computing. 

Figures 9 and 10 illustrate the trajectory of training and validation losses during the model training 

process. It is an essential tool for monitoring model performance, allowing the identification of possible 

overfitting or underfitting situations by comparing the behavior of loss on both the training and validation 

datasets over the training epochs. 

 

 

  
  

Figure 9. Training and validation loss curve for 

TON_IoT 
Figure 10. Training and validation loss curve for 

BoT-IoT 

 

 

Figures 11 and 12 display the model’s accuracy on the training and validation datasets over the 

training epochs. This allows for tracking the model’s learning progress and assessing whether the model 

might be overfitting or underfitting. 

 

 

  
  

Figure 11. Training and validation accuracy curve 

for TON_IoT 
Figure 12. Training and validation accuracy curve for 

BoT-IoT 

 

 

The hybrid objective function in the study is an integral part of the algorithm, computing a fitness 

score for each feature to ascertain its relevance and suitability for inclusion in the selected feature subset. The 

function calculates the feature fitness score using an equation that measures the difference between the 

mutual information and the average correlation, divided by the product of entropy and variance. The 

underlying intuition of this fitness score is to maximize the mutual information with the target variable, 

thereby ensuring that the feature contributes meaningful information for classification. It also aims to 

minimize redundancy with already selected features, ensuring that each selected feature brings new, distinct 

information to the model. Lastly, by favoring features with high entropy and variance, the algorithm 

prioritizes features with a high degree of information richness and diversity. 

This objective function plays a crucial role in improving the performance of the IDS. Accurately 

gauging the importance of each feature ensures that the model learns from the most pertinent and informative 

features, leading to a more accurate and efficient intrusion detection system. The performance of the 
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BiLSTM IDS is benchmarked against several premier IDSs using the evaluation metrics specified in Section 

5.3. This comparative assessment aids in determining the accuracy, precision, recall, and F-measure of the 

BiLSTM IDS for identifying attacks within a fog environment compared to similar IDSs. Included in the 

comparison are IDSs like the LSTM-IDS [51], CNN-IDS [52], RNN-IDS [53], and GRN-RNN IDS [54], 

chosen as benchmark models due to their analogous performance levels. Table 4 showcases the evaluation 

metrics for the BiLSTM IDS and these leading-edge IDSs. The data from Table 4 highlights the BiLSTM 

IDS’s supremacy over all the examined IDSs in accuracy, precision, recall, and F-measure. This exceptional 

performance is credited to the system’s effective hyper objectives feature selection model, which markedly 

improves its ability to identify attacks in the fog environment. 

 

 

Table 4. Comparison with state-of-the-art IDSs 
Metric Proposed LSTM-IDS CNN-IDS RNN-IDS GRN-RNN IDS 

Accuracy 98.7 97.7 95.5 91.7 92 

Precision 98.1 97 96 99 99 

Recall 97.7 95 97 90.2 92.05 

F1-score 98 96 97 94.6 95.75 

 

 

7. CONCLUSION  

The effectiveness of the proposed BiLSTM model in IoT data classification tasks was validated by 

our experimental results, with high performance demonstrated on both the BoT-IoT and TON_IoT datasets. 

In our experiments, the BiLSTM model achieved an accuracy of 98.42% on the TON_IoT dataset and 98.7% 

on the BoT-IoT dataset. The precision was recorded at 98.3% for TON_IoT and 98.1% for BoT-IoT, while 

recall was consistent at 97.7% for both datasets. The F1 score stood at 98% across both datasets. This 

robustness suggests the model’s capability across diverse IoT activities, displaying remarkable precision in 

identifying malicious activities and high recall rates, proving its real-world applicability. In feature selection, 

the benefits of using hybrid objective/fitness functions such as correlation, entropy, and variance stand out. 

By combining multiple statistical measures, these hybrid methods offer a comprehensive assessment of 

feature relevance, capturing intricate relationships between features and leading to improved model 

performance, reduced overfitting, and a more interpretable feature set. 

However, the performance of deep learning models, like the implemented BiLSTM, can be 

influenced by various factors, including hyperparameters, architecture complexity, and dataset 

characteristics. Further research and fine-tuning might be essential for optimal performance across contexts. 

While we acknowledge the importance of real-time detection, especially in fog computing, this study focused 

on offline training and testing modes. The real-time aspect, crucial for actual environments, remains outside 

this work’s scope but is a focal point for our future research endeavors. 

In summary, this research underscores the potential of deep learning methodologies, specifically 

BiLSTM, in complex classification tasks within the IoT and fog computing domains, paving the way for 

future advancements in data classification and intrusion detection. 
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