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Intrusion detection systems (IDS) play a pivotal role in network security and
anomaly detection and are significantly impacted by the feature selection
(FS) process. As a significant task in machine learning and data analysis, FS
is directed toward pinpointing a subset of pertinent features that primarily
influence the target variable. This paper proposes an innovative approach to
FS, leveraging the forward selection search algorithm with hybrid
objective/fitness functions such as correlation, entropy, and variance. The
approach is evaluated using the BoT-loT and TON_IloT datasets. By
employing the proposed methodology, our bidirectional long-short term
memory (BiLSTM) model achieved an accuracy of 98.42% on the TON_loT
dataset and 98.7% on the BoT-loT dataset. This superior classification
accuracy underscores the efficacy of the synergized BiLSTM deep learning
model and the innovative FS approach. The study accentuates the potency of
the proposed hybrid approach in FS for IDS and highlights its substantial
contribution to achieving high classification performance in internet of
things (10T) network traffic analysis.
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1. INTRODUCTION

The proliferation of the Internet and its associated technologies has led to an unprecedented surge in

data communication among devices. This upsurge underscores the increasing reliance on digital channels and
the growing need to ensure the integrity and security of the transmitted information. As a linchpin of modern
network security, IDSs are critical in safeguarding data against potential threats and breaches.

Recent years have seen the meteoric rise of 10T devices, revolutionizing everything from home
automation to industrial processes. While these devices bring numerous advantages, they also present
significant challenges, primarily due to the sheer volume of data they generate. Processing and managing this
colossal real-time data necessitates solutions beyond traditional cloud computing paradigms. Enter fog
computing: an evolutionary step from cloud computing, which emphasizes decentralized, local data
processing, offering real-time insights closer to the source of data generation [1].

However, as with any evolutionary technology, fog computing introduces its own set of challenges.
While advantageous for processing, decentralization inadvertently amplifies potential security threats. Given
the critical nature of many loT applications, these threats can have severe repercussions. As such, the role of
IDSs becomes even more crucial in the context of fog computing environments [2].
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Historically, IDSs have shown limitations when confronted with the high-dimensional nature of
network data, especially in scenarios blending 10T with fog computing [3]. Recognizing this, the research
community posited feature selection (FS) as a potential solution. By reducing dimensionality and enhancing
data interpretability, FS promises to rejuvenate the effectiveness of IDSs [4]. However, the existing FS
methodologies, predominantly relying on singular statistical measures, often fail to address the multifaceted
challenges of fog environments.

Traditional FS methods that hinge on a single statistical measure might provide insights into specific
aspects of the data but often miss out on capturing the holistic nature of the information. For instance, while
correlation can offer insights into linear relationships between features, it might not capture intricate non-
linear interdependencies that other metrics like entropy or variance can elucidate. Consequently, relying
solely on one measure can inadvertently lead to omitting critical features or including redundant ones.

This research aims to bridge this gap by proposing an innovative method for FS that marries the
strengths of the forward selection algorithm with hybrid objective functions. These functions are a cocktail of
correlation, entropy, and variance metrics designed to select features that balance being informative and
ensuring mutual exclusivity. Such a balance is no longer a luxury but a necessity when dealing with high-
dimensional IDS data [5], [6].

But the innovation doesn’t stop at FS. Recognizing the potential of deep learning, this research
further integrates the bidirectional BiLSTM model into the IDS framework. BiLSTM, an advanced avatar of
the traditional recurrent neural network (RNN), is renowned for its capability to interpret sequential data,
making it an ideal choice for network traffic analysis [7].

In a realm inundated with intrusion detection methodologies, the bespoke approach to feature
selection tailored for fog computing environments sets this research apart. While traditional systems have
relied on singular metrics or straightforward algorithms, this work pioneers a synergistic approach,
combining the robustness of forward selection, intricate statistical measures, and the predictive prowess of
BIiLSTM. Such a holistic technique, to the best of our knowledge, has not been explored, and especially
within the context of fog computing architectures [8].

To encapsulate, the study’s vision is twofold: first, to introduce and validate a novel FS
methodology tailored for IDSs in fog computing environments, and second, to harness the power of deep
learning. Specifically, BiILSTM enhances the detection accuracy of intrusion detection.

The contributions of this research are manifold:

— The introduction of a bespoke FS method for IDSs, meticulously crafted for the challenges of fog
computing environments.

— A pioneering approach that synergizes forward selection, intricate statistical measures, and BiLSTM to
push the frontiers of intrusion detection.

— A proactive response to the pressing security demands of the 10T era, ensuring robust, resilient, and
efficient IDS performance within fog computing architectures.

As the internet security landscape continues to evolve, it’s imperative to delve deeper into the
intricacies of the methodologies that promise to safeguard its future. The subsequent sections aim to unravel
this meticulous research journey. The discussion commences with a detailed exploration of related works,
setting the stage for a deeper understanding of the research context. Moving forward, the manuscript delves
into the proposed methodology, elucidating the nuances of the hybrid objective function, the forward
selection algorithm, and the configuration specifics of the BiLSTM model. Central to this research evaluation
is using the Bot-l1oT and TON_IoT datasets. These datasets, chosen for their comprehensive representation of
diverse network scenarios, are the foundation for assessing the system’s efficacy. The results, benchmarked
against crucial metrics like accuracy, precision, recall, and F1 score, offer a rigorous evaluation of the
system’s capabilities, ensuring that the presented contributions are firmly rooted in empirical evidence.

2. BACKGROUND

More details about fog computing, its security flaws, cyberattacks, and IDS will be presented here.
Following a brief introduction to fog computing and its significance, various security concerns and malicious
attacks that can affect 1oT devices and fog are outlined. Finally, the various types of IDS and their
significance in addressing these issues will be discussed.

2.1. Fog computing

The hierarchical architecture of fog computing integrates cloud resources with edge devices, and fog
nodes see Figure 1. Cloud resources provide storage and global-scale services, while fog nodes process data
locally, reducing network congestion and latency [9]. 10T devices collect and generate data at the bottom
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layer. This architecture improves data processing efficiency, reduces network traffic, and enables real-time
applications in domains like smart cities and healthcare.
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Figure 1. Fog computing architecture [10]

Fog systems, mini-clouds situated at the network’s edge near the user, possess scalable memory,
processing, and storage capacities [11]. They support real-time applications by reducing latency through fog
nodes like access points, switches, servers, controllers, routers, gateways, and storage devices [12]. End users
interact with these nodes instead of cloud data centers, which saves energy and enhances response time. Fog
nodes can be classified into two types: ones that only produce and sense data and intelligent ones that sense
data and perform initial data processing using advanced computational abilities [13]. Fog computing assists
in load balancing, reducing latency, and maintaining service quality.

2.2. Fog security issues

The fog platform interposed between users and the cloud engenders numerous potential
vulnerabilities, making it susceptible to multiple attacks. Currently, fog computing is employed to improve
website performance. They can handle HTTP requests using fog computing, receiving and processing
multiple requests simultaneously while managing various user files [14]. This makes fog computing
vulnerable to attacks like cross-site scripting (XSS) and injection attacks based on lousy input that has not
been checked. Fog nodes participate in mutual communication with many (1oT) devices. This leaves them
open to a security threat known as a man-in-the-middle (MITM) attack. In such an attack, a malefactor
positioned in the network’s core intercepts communications modifies data, and impairs service provision.
Figure 1 shows that the fog platform can connect to sensors, laptops, phones, and other 10T devices used by
regular people. This connectivity can be either wired or wireless. Given the accessibility of the fog platform,
it becomes prone to resource exploitation attacks, such as denial of service (DoS) and distributed denial of
service (DDoS) [15]. Such attacks pose significant threats to the IoT infrastructure, negatively impacting its
performance and causing substantial harm. For instance, scanning attacks seek to gather data, like available
system services and open ports, while backdoor attacks leverage concealed malware to control IoT systems
remotely. Techniques for breaching the passwords of I0T devices are prevalent within the fog environment.
Furthermore, fog computing is susceptible to ransomware attacks, which inhibit a user’s ability to access an
10T device or service [16].

2.3. Intrusion detection system

Fog networks, susceptible to numerous security risks such as traffic interception and malware
distribution, employ security measures like firewalls, encryption, and Intrusion IDS for protection [17]. IDSs,
utilized in fog nodes, analyze data using machine learning and deep learning to spot threats [18]. They come
in two types-network intrusion detection systems (NIDSs) that scan network traffic for harmful activity and
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host intrusion detection systems (HIDSs) that monitor hosts for malicious actions [19]. These systems are
anomaly-based, detecting unusual behavior, or misuse-based, looking for known attack patterns. They
operate in distributed or centralized architectures, with NIDSs embedded in fog nodes for broader network
coverage [20]. The development of IDSs in fog computing is an ongoing process due to the emergence of
new threats [21].

2.4, Features selection

FS is a critical process in deep learning and data mining, especially with large datasets [22]. It
identifies the most essential features, reduces data dimensionality, and boosts model performance by
removing unneeded features [23]. FS methods include filter methods, which evaluate feature importance
independently [24]; wrapper methods, which use predictive models to score feature subsets; and embedded
methods, which perform FS during model training. Recently, hybrid methods combining the strengths of
individual methods have emerged. FS is crucial in intrusion detection systems, as it enhances the
performance of models by focusing on the most informative features [25]. This improves efficiency,
increases accuracy, reduces overfitting, and strengthens the detection and classification of intrusive activities
in 1oT environments [26], [27].

3. RELATED WORK

The related work section explores the prior research and methodologies that form the foundation for
the proposed approach. Various FS techniques will be explored, focusing on the forward selection method.
We’ll examine the incorporation of hybrid objective or fitness functions in FS and how pairwise measures
such as correlation, entropy, and variance play a crucial role in this process.

Improving the accuracy of IDS is the primary focus of the hybrid neural network (HNN) model, as
introduced in the study [28]. This model performs better by combining multi-feature correlation analysis and
temporal-spatial analysis. Through real-world dataset experiments, it surpasses traditional ML algorithms in
accuracy, precision, recall, and F1-score measures. The effectiveness of this model in detecting intrusion
activities is amplified by its ability to capture complex feature relationships and analyze temporal-spatial
patterns.

Continuing in the same direction, enhancing the efficiency of IDS by employing an FS strategy is
the focus of the study [29]. In response to the complexity of voluminous network traffic data, the researchers
propose FS and eliminating irrelevant ones to improve the accuracy of classification algorithms. The study
introduces three FS and ranking techniques-information gain, gain ratio, and correlation FS to select and rank
the top features. The narrowed-down selection of six features from an initial set of 41 is then tested using
three classifiers-k-nearest neighbor, naive bayes, and neural network-based multilayer perceptron. The
findings indicate that a high attack classification accuracy can be achieved by combining the best features
from different methods.

Simultaneously, a novel method for anomaly detection in fog computing is introduced in the study
[30], utilizing genetic algorithm (GA) based FS and naive bayes classification. Recognizing fog computing’s
pivotal role in handling massive 10T data and its vulnerability to security threats, the authors employ a GA
for selecting features that substantially aid in anomaly detection. This process improves classification
efficiency by reducing data dimensionality. The naive bayes classifier, a probabilistic tool premised on
feature independence, is used for classification. The fusion of GA-based FS and naive bayes improves
anomaly detection in fog computing environments, lowers false alarm rates, and boosts detection rates, thus
offering an efficient security solution.

A unique approach for FS and extraction in anomaly-based (IDS) within the (10T) ecosystem is the
crux of the study [31]. Addressing the difficulties of exploiting all features due to the diverse characteristics
of 10T, the authors utilize two entropy-based methods-information gain (1G) and gain ratio (GR) for FS and
extraction. Mathematical set theory is also employed for optimal feature extraction. Training and testing of
the model are conducted on the 10T intrusion dataset 2020 (1o0T1D20) and NSL-KDD dataset using four ML
algorithms. The outcome reveals that the method successfully identifies relevant features and outperforms
other state-of-the-art studies.

The performance of ML techniques for anomaly detection, with and without FS, is examined in the
study [32]. The authors utilize the KDD99 dataset, encompassing many network traffic records. An
evaluation is conducted on four ML techniques: decision trees, support vector machines, naive bayes, and
k-nearest neighbors, along with two FS techniques: information gain and chi-squared. The findings reveal
that FS can enhance the performance of ML techniques for anomaly detection. The decision tree classifier
achieves the most significant results with the information gain FS technique. The authors infer from their
findings that FS is a promising approach for augmenting the performance of IDSs.
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An innovative approach for augmenting the performance of a deep neural network (DNN) based
(IDS) is proposed in the study [33]. The authors acknowledge the growing use of DL techniques and their
powerful capacity to learn data in depth. Their study focuses on enhancing the DNN-based IDS through a
unique FS strategy that employs a fusion of statistical importance using standard deviation and the difference
of mean and median. The approach aims to prune features based on their rank, derived from the fusion of
statistical importance, to identify relevant features that exhibit high discernibility and deviation, thus aiding
in more effective data learning. The performance of the proposed approach is tested using three different
intrusion detection datasets: NSL-KDD, UNSW_NB-15, and CIC-IDS-2017. The study reports on
performance regarding various evaluation metrics and provides a comparative analysis with existing FS
techniques. The results undergo statistical testing using the wilcoxon signed rank test.

Building on this theme of combining traditional and modern techniques for 10T security, [34]
crafted an intrusion detection system that harnesses the combined power of machine learning and deep
learning. When evaluated on the BoT-10T dataset, their system showcased an accuracy rate exceeding 99%.
Notably, their experimentation revealed the prowess of decision tree and multilayer perceptron models in
detecting specific threats like DDoS and DoS attacks. However, a comprehensive comparison with other
state-of-the-art methods, especially regarding computational efficiency, was a noticeable gap in their
research.

Further pushing the boundaries of innovation in this domain, [35] embarked on a journey to address
the challenges of hybrid cloud-fog computing in loT. Their brainchild, the ConvNeXt-Sf model, is a
testament to their ingenuity source. This model is not just another deep learning architecture; it’s a
reimagined version of ConvNeXt, meticulously transformed to cater to loT’s unique challenges and
constraints. When tested on datasets like TON_loT and BoT-10T, the results were remarkable. The model’s
parameters were a mere 1.25% of the original ConvNeXt, and it achieved staggering reductions in training
and prediction times by 82.63% and 56.48%, respectively.

4. METHOD

IDS for 10T networks necessitates a precise and reliable framework to safeguard the security and
operability of interconnected devices amidst the burgeoning threats in cyberspace. While existing IDS
paradigms exhibit robustness, they often encounter computational efficiency and precision challenges,
particularly when navigating through high-dimensional data where discerning feature relevance and
redundancy are pivotal. These challenges underscore the imperative to explore innovative data classification
and feature selection approaches, especially in scenarios inundated with voluminous and diverse data.

To navigate these challenges, this study introduces a nuanced deep-learning framework,
emphasizing a bespoke hybrid FS algorithm intricately crafted to sift through dataset features with
meticulousness and focus. The hybrid FS algorithm, central to this research, transcends being a mere iterative
feature selector. It is a methodological innovation carefully designed to scrutinize and select attributes that
are inherently crucial and augment the predictive veracity of subsequent modeling stages. Distinct from
conventional methods, which may predominantly rely on a single evaluative metric [36], our algorithm fuses
various evaluative lenses, ensuring a comprehensive, balanced, and rigorous feature selection process. This
methodological choice, governed by a meticulously tuned fitness score, ensures selections are halted upon
reaching a predetermined feature count or when the score descends below a rigorously tested threshold,
herein set at 0.2 to ensure the selection of only the most paramount features.

A BILSTM classifier is meticulously trained and validated upon establishing the selected features.
This is not merely enacted as a predictive model but is finessed as a strategic instrument that adapts its
parameters to mitigate overfitting and enhance generalization across diverse datasets. The intricate parameter
tuning and validation stages, elaborated in subsequent sections, ascertain that the model is robust and
adaptable to varied 10T data landscapes.

This research transcends the development of the framework, extending into its rigorous validation.
By employing new datasets, TON_IoT and BoT-1oT, the model is subjected to meticulous testing, ensuring
its efficacy, reliability, and applicability are validated and contrasted against extant frameworks, thereby
substantiating its theoretical robustness and practical applicability, as illustrated in Figure 2.

4.1. Data pre-processing

Data pre-processing is the initial phase in preparing raw data for further stages like feature selection
and model training in IDS [37]. It involves transforming raw network traffic data into a meaningful format,
helping to eliminate irrelevant or redundant information that could hamper detection performance and
increase computational time. The process consists of three main sub-stages: data encoding, handling missing
values, and normalization, each of which refines the data for more effective subsequent analysis [38].
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4.1.1. Data encoding

Undertaking label encoding is paramount in this study, serving as an integral pre-processing step to
transmute categorical data into a numerical format, rendering it amenable for DL models. Each unique
category within the dataset is assigned a distinct integer, ensuring a seamless transition from categorical to
numerical data. The methodology involves iterating through each column, identifying ‘object’ type data
indicative of categorical data, and converting it into an integer representation, ensuring comprehensive data
utilization across subsequent analytical stages.

Stage 3
/ Attack Detection \
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Feature Selection Classifier(BILSTM)
Training & validation
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hybrid objective feature Selested subset
selaction of features e—

Dataset
Subset
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Figure 2. The proposed IDS model architecture
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Figure 3 illustrates the encoding process for attacks. Thus, any abnormal traffic, irrespective of the
attack form it experiences, is classified under a singular attack category and numerically represented as
integer number 1.
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Figure 3. Attacks encoding

4.1.2. Data cleansing and handling missing values
Data cleansing was an imperative phase, crucial for enhancing the quality and reliability of the
datasets: TON_loT and BoT-loT. This process encompassed several vital steps:

a. Handling missing values: absent data can notably impact the subsequent analysis’ accuracy and
reliability. In this study, missing values were addressed through mean imputation, a statistical technique
wherein missing entries are replaced with the mean value of the non-missing data. The mean was
calculated using (1):

Mean (X) = (Zx) /n @
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where Xx; denotes the sum of all observed values for the variable, and n signifies the total number of

observed values.

Utilizing mean imputation under the assumption that data was missing completely at random
(MCAR) ensured the preservation of the dataset’s overall distributional properties and prevented the loss of
crucial information [38].

b. Detecting and removing duplicates: to maintain our analysis’s integrity and unbiased nature, duplicate
entries within the datasets were identified and eliminated. This prevented the over-representation of
specific instances.

c. ldentifying and managing outliers: outliers were detected and managed using the interquartile range
(IQR) method. Outliers are points that significantly differ from the rest of the data, which can skew the
analysis and subsequent results. The steps for calculating IQR and identifying outliers were:

— Calculate the IQR as Q3 — Q1, where Q3 is the third quartile, and Q1 is the first quartile.
— Any data point that fell below Q1 — 1.5 = IQR or above Q3 + 1.5 * IQR was considered an outlier.

Following these steps in the data cleansing stage ensured that the datasets feeding into the
subsequent stages of transformation and normalization were reliable, consistent, and of high quality [39].

4.1.3. Data normalization

Data pre-processing often includes normalization to ensure all features are on a consistent scale.
One standard method for achieving this is Min-Max scaling. This process transforms each feature in the
dataset by subtracting the minimum value of the feature and then dividing it by the difference between the
maximum and minimum values of that feature. This transformation ensures that the resulting values lie
within the range of [0, 1], as shown by (2):

X—Xmin
Z= Xmax ~Xmin (2)
The feature value is denoted by x, while the value after normalization is represented by Z. The
maximum and minimum values of the feature are denoted by Xmax and Xmin, respectively.
The datasets, namely TON_loT and BoT-loT, had been successfully encoded, cleansed, and
normalized, as evidenced by the snapshots (Figures 4 and 5) illustrating the state of the data
post-preprocessing.

src_ip  sfc_port dst_ip dst_port proto  service src_bytesconn_stamissed_|src_pkts src_ip_bydst_pkts dst_ip_b dns_que dns_qcladns_qtypdns_rcoddns_AA dns_RD dns_RA dns_reje ssl_versi ssl_ciphessi_resuiss|_estalssl_subj

053351 072115 030329 0.23806 1 0 0 05 0 005556 0.0163 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 0.02867 07598 0.7902 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 C
087993 052332 07598 0.16026 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087933 07112 1 0.00081 1 033333 0 1 0 0 0 013333 0.02191 1 0 0 0 0 0 0 0 0 0 0 0 d
053351 050765 0.30329 0.23806 1 0 0 05 0 005556 0.0163 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 052332 07598 0.16026 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 d
087993 0.02867 07598 0.7902 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 002867 07598 0.7902 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 052332 07598 0.16026 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 C
053351 057219 0.30329 0.23806 1 0 0 05 0 005556 0.0163 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 052332 07598 0.16026 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 0.02867 07598 0.7902 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
053351 0.63025 0.30329 0.23806 1 0 0 05 0 005556 0.0163 0 0 1 0 0 0 0 0 0 0 0 0 0 0 d
087933 0.79438 1 0.00081 1 033333 0 1 0 0 0 013333 0.02191 1 0 0 0 0 0 0 0 0 0 0 0 C
087993 052332 07598 0.16026 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 0.02867 07598 07902 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 C
053351 0.87588 0.30329 0.23806 1 0 0 05 0 005556 0.0163 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 0.02867 07598 07902 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 d
087933 052332 07598 0.16026 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
053351 0.88778 0.30329 0.23806 1 0 0 05 0 005556 0.0163 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 052332 07598 0.16026 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 C
087993 002867 07598 0.7902 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢
0.87993 0.55528 2.50€-05 0.00676 05 0 0 1 0 005556 0.01346 0.13333 0.00644 1 0 0 0 0 0 0 0 0 0 0 0 ¢
0.87993 0.72742 1 0.00081 1 033333 0 1 0 0 0 013333 002191 1 0 0 0 0 0 0 0 0 0 0 0 ¢
087993 052332 07598 0.16026 05 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 d

0 05 0 1 0 0 0 0 0 0 0 0 0 0 0 ¢

053351 09161 030329 0.23806 1 0

005556  0.0163 0 0

Figure 4. Snapshot of TON_IoT dataset after pre-processing stage

4.2. The proposed hybrid objectives feature selection method for intrusion detection systems

This study introduces a specialized two-stage FS methodology for identifying crucial attributes in
large datasets, particularly for IDS. This hybrid objective FS method integrates various statistical and
informational criteria, offering a comprehensive and holistic approach to feature assessment and selection,
diverging from traditional FS methods that may rely on a single metric. Subsequent sections will delve into
each methodology component, highlighting its innovative contributions and advantages over existing FS
methodologies in the IDS domain while providing a transparent and replicable guide for its application.

Bulletin of Electr Eng & Inf, Vol. 13, No. 4, August 2024: 2586-2603



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 2593

pkseqiD  stime  flgs flgs_numkproto  proto_nunsaddr  sport  daddr  dport  pkts bytes  state  state_numitime  seq dur mean  stddev  sum min max spkts
0.000000 0.57826 0 063093 019872 0.19262 051139 057805 09257 033869 0.88966 071311 033665 060979 098915 0.21282 0 022231 0 005107 005107 0 048
0000002 0.57826 0 063093 019872 019262 051139 057805 09257 033869 0.88966 071311 033665 060979 098915 021282 0 022231 0 005107 005107 0 048
0.000003 0.57826 0 063093 019872 019262 051139 057805 09257 033869 088966 071311 033665 060979 098915 021282 0 022231 0 005107 005107 0 048
0.000005 0.57826 0 063093 019872 019262 051139 057805 09257 033869 0.88966 071311 033665 060979 098915 021282 0 022231 0 005107 005107 0 048
0.000007 0.57826 0 063093 019872 019262 051139 057805 09257 033869 088966 071311 033665 060979 098915 021282 0 022231 0 005107 005107 0 048
0.000008 0.57826 0 063093 019872 019262 051139 057805 09257 033869 088966 071311 033665 060979 098915 021282 0 022231 0 005107 005107 0 048
0.000010 0.57826 0 063093 019872 0.19262 051139 057805 09257 033869 0.88966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0.000012 0.57826 0 063093 0.19872 0.19262 051139 057805 09257 033869 0.88966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0.000013 0.57826 0 063093 019872 0.19262 051139 057805 09257 033869 0.88966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0.000015 0.57826 0 063093 0.19872 0.19262 051139 057805 09257 033869 0.88966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0.000017 0.57826 0 063093 019872 0.19262 051139 057805 09257 033869 088966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0.000018 0.57826 0 063093 019872 0.19262 051139 057805 09257 033869 0.88966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0.000020 0.57826 0 063093 019872 0.19262 051139 057805 092571 033869 088966 071311 033665 060979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0000022 0.57826 0 063093 019872 019262 051139 057805 092571 033869 088966 071311 0.33665 060979 098915 0.21282 0 022231 0 005107 005107 0 048
0000023 0.57826 0 063093 019872 019262 051139 057805 092571 033869 088966 071311 033665 060979 098915 021282 0 022231 0 005107 005107 0 048
0000025 0.57826 0 063093 019872 019262 051139 057805 092571 033869 0.88966 071311 033665 060979 098915 021282 0 022231 0 005107 005107 0 048
0000027 057826 0 063093 019872 019262 051139 057805 092571 033869 0.88966 071311 033665 060979 098915 021282 0 022231 0 005107 005107 0 048
0000028 0.57826 0 063093 019872 019262 051139 057805 092571 033869 088966 071311 0.33665 060979 098915 021282 0 022231 0 005107 005107 0 048
0.000030 0.57826 0 063093 019872 0.19262 051139 057805 092571 033869 0.88966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0000031 0.57826 0 063093 0.19872 0.19262 051139 057805 092571 033869 0.88966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0.000033 0.57826 0 063093 0.19872 0.19262 051139 057805 092571 033869 0.88966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0.000035 0.57826 0 063093 0.19872 0.19262 051139 057805 092571 033869 0.88966 071311 0.33665 0.60979 098915 0.21282 0 022231 0 005107 0.05107 0 048
0 o 0 o

0.000036 0.57826

0.63093 0.19872 0.19262 051139 057805 0.92571 0.33869 0.88966 0.71311 0.33665 0.60979 0.98915 0.21282

0.22231 0.05107 0.05107

0.48

Figure 5. Snapshot of BoT-10T dataset after pre-processing stage

4.2.1. Hyper-objective function

The proposed hybrid objective function forms the crux of our approach, evaluating a feature’s
significance by simultaneously considering its relevance and redundancy. The relevance of a feature is
ascertained through its correlation with the target variable, which indicates how much it can contribute to
predicting the target. On the other hand, redundancy is measured by the average correlation of the feature
with those already selected. The lower the correlation, the less redundant the feature is considered; thus, it
brings new, distinct information to the model. The hybrid objective function is calculated using (3):

F=0U-C/H~=*V) 3)

where | represent the mutual information, indicating the relevance of the feature; C stands for average
correlation, used to measure redundancy; H is the entropy of the feature, which reflects the amount of
information or ‘surprise’ the feature offers; and V denotes variance, a measure of how much values of the
feature differ, thus capturing its diversity.

Through this, the objective function aims to maximize mutual information and diversity (entropy and
variance) while minimizing redundancy, leading to an efficient and more precise feature selection for the IDS.

4.2.2. Mutual information

The correlation between a feature and the target is evaluated using the concept of mutual
information (MI). By observing the other, MI quantifies the “amount of information” obtained about one
random variable [40]. It’s calculated using (4):

10GY) = [ p(x,y) log (22 dx dy @)

where p(x,y) refers to the combined probability density function of X and Y, p(x) and p(y) are the
marginal probability density functions of X and Y, respectively.

In the context of the proposed FS methodology, MI serves as a pivotal metric to ascertain the
relevance of a feature by measuring the information gain about the target variable resulting from the feature.
The merit of employing MI in this scenario is its non-parametric nature, which enables it to capture
non-linear dependencies between variables, thereby enhancing the robustness and comprehensiveness of the
feature evaluation process, especially in complex, high-dimensional spaces prevalent in 10T data.

4.2.3. Pearson’s correlation coefficient

The pearson correlation coefficient is vital in assessing linear relationships between variables in the
proposed hybrid FS methodology. Utilized within the algorithm, it quantifies the degree of linear dependence
between selected features and the target variable, thereby offering a measure to evaluate and mitigate
redundancy among selected features. Its computation is facilitated through (5):

__ Cov(X)Y)
Pxy = —————

(®)

oxoy

let’s break down the components of this formula:
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Cov(X,Y) is the covariance between X and Y. It measures how much two random variables vary together.
It’s calculated as the expected value (or mean) of the product of the differences between each variable and
their respective means:

Cov(X,Y) = E[(X — E[XD(Y —E[Y])] (6)

where (E[X])and(E[Y]) are the means of X and Y, respectively, and (E) is the expectation or average value.
(ox) and (ay) are the standard deviations of X and Y. It’s calculated as the square root of the variance:

ox = \Var(X) = JE[(X — E[X])?] 7

oy =Var(Y) = JE[(Y — E[Y])?] 8)
where (Var(X)) and (Var(Y)) are the variances of X and Y, respectively.

4.2.4. Variance

The variance, denoted as Var(X), serves not merely as a statistical measure indicating the deviation
of a random variable X from its mean y, but also as a pivotal factor in assessing the dispersion of feature
values within the context of our proposed methodology. It quantitatively portrays how much each feature
diverges from its mean, providing insights into its distribution and information dispersion. Integrating
variance into the hybrid objective function ensures that features exhibiting a higher degree of dispersion and
potentially possessing more informative aspects are assigned elevated fitness scores. This strategy aligns to
select features that maximize information gain. The computation of variance adheres to (9):

Var(X) = E[(X — p)?] ©)]

Where Var(X) is signifies the variance of the random variable X. variance serves as a dispersion metric,
denoting the degree to which data points deviate from the mean. A heightened variance implies a substantial
spread of data points around the mean, while a diminished variance suggests they are closely packed around
the mean; E represents the expectation operator, often interpreted as a long-run average value of a random
variable. It’s also known as the expected value or the mean; X is the random variable. A random variable can
be any outcome from some chance process, like your set of possible results from a data group; and u
represents the mean (average) of X. It’s calculated by summing all the data points and dividing by the
number of data points.

In essence, for each data point, the variance formula takes the difference of the data point from the
mean, squares it (to make all differences positive), and then takes an average of these squared differences.

4.2.5. Entropy
Entropy measures the uncertainty, randomness, or impurity in a data set. The entropy (H) of a
random variable X is defined as (10):

HX) = - X p(x) logp (x;) (10)

Where H(X) represents the entropy of the random variable X. In information theory, entropy means the
expected amount of ‘information’ contained in a message. In other words, it measures the unpredictability or
uncertainty of a random variable; 2 is the summation symbol. The following expression is added for all
values from i=1 to n; p(x;) is the probability mass function of X. It gives the probability that the random
variable X equals some value. In the context of entropy, p(x_i) represents the probability of a particular
outcome; and logp(x;) is the logarithm of the probability mass function of X. In the context of entropy,
taking the logarithm of the probabilities provides a measure of ‘information’. The base of the logarithm
determines the unit of entropy. If the logarithm is base 2, the entropy is measured in bits.

In the context of the proposed FS methodology, entropy is not merely a statistical measure; it is a
critical component ensuring that the selected features embody a spectrum of information about the dataset,
thereby enhancing the predictive model’s robustness and generalizability. Particularly for high-dimensional
loT data, which often encompasses diverse and non-linear features, the inclusion of entropy in the FS
methodology enables the model to discern and prioritize features that encapsulate varied and rich
informational content, thereby mitigating the risk of overfitting and enhancing model interpretability.
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The innovative methodology outlined for feature selection in IDS seamlessly integrates mutual
information, pearson’s correlation coefficient, variance, and entropy into a unified hyper-objective function,
presenting a comprehensive and balanced approach. This union of various metrics assures a meticulous
evaluation and selection of features, maximizing relevance while ensuring diversity and minimizing
redundancy. Unlike alternative methodologies such as recursive feature elimination [41], correlation-based
feature selection (CFS) [42], linear discriminant analysis (LDA) [43], and principal component analysis
(PCA) [44], the proposed method concurrently optimizes multiple critical aspects, enhancing the predictive
accuracy and computational efficiency of the IDS. This nuanced approach provides a robust foundation for
further research and applications within cybersecurity, demonstrating substantial practical and theoretical
value. Algorithm 1 shows a pseudocode of the proposed hybrid objective feature selection methodology for
IDS is provided, illustrating the detailed, step-by-step breakdown of the method.

Algorithm 1. Pseudocode of the proposed hybrid objective feature selection methodology for IDS

Input:
X: the dataset of features
y: the target variable
max_features: the maximum number of features to select (default is all features)
fitness_threshold: the threshold below which selection stops (default is None)
Output: selected_features the optimal subset of features

Step 1. Initialization: the algorithm begins by initializing two lists. selected features starts as an
empty list and will hold the indices of selected features. remaining_features is initialized with
the index of all features

Step 2. Function Definition: hybrid_objective (X, y, feature_idx, selected_features)

Step 3. Calculate mutual Information (correlation) between the feature at index feature_idx and
target variable y.
Step 4. If selected_features is not empty, calculate pairwise correlations between the current and

already selected features and take their mean as avg_correlation. Otherwise, set
avg_correlation to 0.

Step 5. Calculate entropy ent and variance var of the feature at index feature_idx

Step 6. Compute the fitness score as (correlation - avg_correlation) / (ent * var)

Step 7. Return the fitness score.

Step 8. Feature Selection:

Step 9. For i =0 to max_features do:

Step 10. Initialize best_fitness as negative infinity and best_feature as None.

Step 11. For each feature_idx in remaining_features do:

Step 12. Compute the fitness score using hybrid_objective(X, y, feature idx,
selected_features)

Step 13. If the fitness score is more significant than best_fitness, update best_fitness
and best_feature

Step 14. Append best_feature to selected_features and remove it from remaining_features

Step 15. Break the loop if fitness_threshold is provided and best_fitness is less than

fitness_threshold.

Step 16.  Return selected_features

X: the dataset of features that represent the input data.

y: the target variable is the variable being classified.

— max_features: the maximum number of features to select. The user can define this parameter to limit the
number of selected features. If it’s not provided, the algorithm will consider all the features from the dataset.

— fitness_threshold: this is the threshold which the selection process stops. It’s another way of controlling
the stopping condition of the FS process. If the calculated fitness score falls below this threshold, the
algorithm will stop adding more features to the selected subset. If this parameter is not provided, the
algorithm will only stop when it has considered all features or when the maximum number of selected
features has been reached.

— Initialization: the algorithm begins by initializing two lists. selected_features start as an empty list and will
hold the indices of selected features. remaining_features is initialized with the indices of all features.

— Function definition: the hybrid_objective function is crucial to the algorithm. It computes a fitness score
for a given feature, determining its relevance and suitability for inclusion in the selected feature subset.

The feature fitness score is computed as the difference between the mutual information and the

average correlation, divided by the product of the entropy and the variance according to (3).

An efficient intrusion detection systems in fog computing using forward selection and ... (Fadi Abu Zwayed)



2596 O3 ISSN: 2302-9285

The intuition behind this fitness score is to maximize the mutual information with the target
variable, minimize the redundancy with already selected features, and favor features with high entropy and
variance.

— Feature selection: the main iteration of the algorithm begins and continues until all features have been
considered or the maximum number of selected features (max_features) has been reached.

In each iteration of this loop, the algorithm considers each remaining feature and calculates its
fitness score using the hybrid_objective function. If the fitness score of a feature is higher than the best
fitness score so far, it becomes the new best feature, and the best fitness score is updated. This process
continues for all remaining features, thus ensuring that the feature with the highest fitness score in each round
is selected.

After each cycle, the chosen attribute is incorporated into the list of selected features and subtracted
from the remaining features. This principle safeguards against the repetition of the same attribute. If a fitness
threshold parameter is established and the peak fitness score dips beneath this marker, the algorithm will
prematurely cease, irrespective of the total count of selected features.

— Output: after the initial run of the algorithm, we receive a collection of selected features. This collection
can generate a simplified version of the original dataset, including only the most relevant features. These
selected features can be used later to build a classification model.

The hybrid fitness function used in the forward selection method is a robust and adaptable
algorithm. Its primary strength resides in its capacity to evaluate the significance of each feature relative to
the target variable using mutual information, as well as the redundancy of each feature concerning those
already selected using correlation. Furthermore, this strategy considers each feature’s entropy and variance.
Considering various aspects of the data enables the formation of a thorough and insightful set of features that
can result in high performance in following predictive modeling tasks.

Distinctively, this algorithm integrates the strengths of various existing methods and mitigates their
limitations by providing a balanced, well-rounded evaluative mechanism, thereby amplifying its reliability
and applicability in real-world scenarios. It substantiates a novel paradigm in feature selection by
concurrently maximizing mutual information and diversity while minimizing redundancy, thereby ensuring a
meticulous and nuanced selection of features that not only are relevant but also enhance the predictive
model’s robustness and generalizability.

4.2.6. Classifier (BILSTM)

The classifier utilized in this study is a BILSTM network, a variant of RNNs. BILSTM models have
gained considerable prominence in various domains due to their ability to capture long-term dependencies
and temporal patterns in sequential data. The architecture of the BiLSTM network incorporates LSTM layers
that operate in both forward and backward directions [45]. This dual-directional operation is vividly
illustrated in Figure 6. The forward LSTM mechanism examines the input sequence progressively from the
beginning to the end, capturing data from historical events.

On the other hand, the backward LSTM mechanism reviews the sequence in reverse order, acquiring
knowledge from upcoming events [46]. This two-way processing is depicted in Figure 4. The amalgamation
of outputs from these two directions enables the BiLSTM model to scrutinize the context of the input
sequence comprehensively. This results in successfully detecting and extracting relationships and patterns
over various time scales [47].
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Figure 6. BiLSTM architecture
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5. EXPERIMENTAL SETUP

The experimental design, a core part of the research methodology, sets up the framework for
evaluating the effectiveness and reliability of the proposed method in classifying loT data. Key components
include dataset selection, model configurations, evaluation metrics, and verification methods. Datasets
TON_loT and BoT-loT, which contain a variety of loT activities, are used. The BILSTM classifier’s
parameters and hyperparameters are defined to enhance learning efficiency. The evaluation uses metrics like
accuracy, precision, recall, and F1-score. Validation techniques like train-test splits prevent overfitting and
test the model’s generalizability. Adherence to best practices in experimental design and statistical analysis
ensures a robust framework for assessing the proposed IoT data classification approach.

5.1. Datasets
In this study, the BoT-10T [48] and TON_IloT [49] datasets are utilized, capturing a diverse range of
10T activities and offering valuable insights for evaluating the proposed approach in intrusion detection.

5.1.1. BoT-loT dataset

The BoT-loT dataset was created by utilizing industrial 10T (I1loT) smart home appliances in
collecting 1oT traffic samples within the Cyber Range Lab of The Center of UNSW Canberra Cyber. This
dataset encompasses many smart IloT devices, such as thermostats, motion-controlled lights, remotely
controlled garages, fridges and freezers, and weather monitoring systems. Two versions of the dataset are
available: the full version, consisting of over 72 million records, and the 10% version, which includes
approximately 3.6 million records. For our experimentation, a subset of the dataset, specifically 5% of the
entire dataset, has been chosen for analysis. The focus is on the top ten features that demonstrate the best
performance.

5.1.2. TON_IloT dataset

The TON-IoT dataset used in this study is a comprehensive collection of heterogeneous data from a
medium-scale 10T network. It includes telemetry data, operating system records, and network traffic data.
The dataset is labeled, indicating normal behavior or attacks such as ransomware, password attacks, DoS, and
DDoS. The dataset was created in collaboration between UNSW Canberra 10T Labs and the Cyber Range
and can be accessed in CSV format [50].

5.2. Model training

The model training involves defining the architecture of the BILSTM deep learning model,
compiling the model with appropriate parameters, and training the model using the training dataset. For a
detailed overview of the hyperparameters and configuration used in this process, refer to Table 1. This table
outlines critical parameters such as the number of epochs, batch size, learning rate, and loss function, which
are crucial for the training and performance of the BiLSTM model.

Table 1. Hyperparameters and configuration for BiLSTM model training

Parameter Value
Epochs 100
Batch size 32
Learning rate 0.001
Loss function  Binary cross entropy
Optimizer Adam

5.3. Evaluation metrics

The evaluation metrics play a crucial role in assessing the performance of the classification model in
this work. Standard evaluation metrics, such as accuracy, precision, recall, and F1-score, provide quantitative
measures of the model’s effectiveness in classifying normal and malicious loT activities. These metrics can
be represented using (11) to (14):

Number of correctly classified instances

Accuracy = 11
y Total number of instances ( )
.. True Positives
Precision = — — (12)
True Positives+ False Positives
True Positives
Recall = (13)

True Positives+ False Negatives
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PrecisionX Recall
Fl-score = 2 X recisionx Reca (1 4)

Precision+ Recall

6. RESULTS

The presented methodology for constructing an efficient (IDS) in fog computing demonstrates its
proficiency through our study’s results. Evaluation metrics quantitatively express this proficiency, including
accuracy, precision, recall, and F1-score.

6.1. Feature selection

The proposed hybrid objective FS algorithm significantly reduced the dimensionality of the initial
datasets. As depicted in Figures 7 and 8, the features declined substantially through the TON_IoT and
BoT-loT datasets selection process.

Reduction of Features for TON_loT Dataset Reduction of Features for BoT_loT Dataset

Number of Features
5B o8 B8 &
Number of Features
5 8 & &

=
7}

10 15 20 25 30 35 40 10 15 20 25 30 35 40

Selection Stage Selection Stage
Figure 7. Reduction of features for the TON_loT Figure 8. Reduction of features for the BoT-loT
dataset dataset

The process began with a comprehensive set of features, and the list was methodically culled to
include only those with a fitness score less than the defined threshold of 0.2. This refined FS contributes to a
more efficient and manageable workflow, with the most pertinent data being preserved for further steps. The
details of feature reduction in the TON_loT and BoT-loT datasets are shown in Table 2.

Table 2. Feature selection in TON 10T and BoT-1oT datasets
Dataset Initial number of features  Number of features after selection

TON_loT 45 14

BoT-loT 46 13

The tables indicate that the initial number of features was significantly reduced after applying our
hybrid objective FS algorithm. For instance, in the TON_loT dataset, we started with 45 features and
narrowed the list to only 14 significant features. Similarly, in the BoT-loT dataset, the initial feature set
containing 46 features was reduced to 13. This reduction not only streamlined the datasets but also improved
the efficiency of the following stages in the workflow, including training the BILSTM classifier.

6.2. Performance on TON_loT and BoT-loT dataset

In Table 3, the BILSTM model achieved high performance on the TON_IoT and BoT-loT datasets.
The accuracy for TON_IoT was 98.42%, and BoT-10T’s was 98.7%. The precision values were 98.3% for
TON_IoT and 98.1% for BoT-1oT. The model exhibited a recall of 97.7% for both datasets. Additionally, the
F1 scores for both datasets were 98%. These performance metrics indicate the model’s accuracy, precision,
recall, and balanced performance in predicting activities for both TON_IoT and BoT-loT datasets.

Table 3. Performance metrics of the BILSTM model on TON 10T and BoT-loT datasets
Metric Value (%) (TON_IoT)  Value (%) (BoT-loT)

Accuracy 98.42 98.7

Precision 98.3 98.1
Recall 97.7 97.7

F1-score 98 98
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6.3. Overall performance

The combination of the hybrid FS method and the BILSTM classifier exhibited remarkable
efficiency in discerning normal from potentially malicious loT activities. The high performance on both
TON_loT and BoT-loT datasets significantly advances 10T security. These findings suggest that ML and DL
techniques, such as BILSTM maodels, hold great potential for constructing robust IDS within fog computing.

Figures 9 and 10 illustrate the trajectory of training and validation losses during the model training
process. It is an essential tool for monitoring model performance, allowing the identification of possible
overfitting or underfitting situations by comparing the behavior of loss on both the training and validation
datasets over the training epochs.
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Figure 9. Training and validation loss curve for Figure 10. Training and validation loss curve for
TON_loT BoT-loT

Figures 11 and 12 display the model’s accuracy on the training and validation datasets over the
training epochs. This allows for tracking the model’s learning progress and assessing whether the model
might be overfitting or underfitting.
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Figure 11. Training and validation accuracy curve  Figure 12. Training and validation accuracy curve for
for TON_loT BoT-loT

The hybrid objective function in the study is an integral part of the algorithm, computing a fitness
score for each feature to ascertain its relevance and suitability for inclusion in the selected feature subset. The
function calculates the feature fitness score using an equation that measures the difference between the
mutual information and the average correlation, divided by the product of entropy and variance. The
underlying intuition of this fitness score is to maximize the mutual information with the target variable,
thereby ensuring that the feature contributes meaningful information for classification. It also aims to
minimize redundancy with already selected features, ensuring that each selected feature brings new, distinct
information to the model. Lastly, by favoring features with high entropy and variance, the algorithm
prioritizes features with a high degree of information richness and diversity.

This objective function plays a crucial role in improving the performance of the IDS. Accurately
gauging the importance of each feature ensures that the model learns from the most pertinent and informative
features, leading to a more accurate and efficient intrusion detection system. The performance of the
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BiLSTM IDS is benchmarked against several premier IDSs using the evaluation metrics specified in Section
5.3. This comparative assessment aids in determining the accuracy, precision, recall, and F-measure of the
BiLSTM IDS for identifying attacks within a fog environment compared to similar IDSs. Included in the
comparison are IDSs like the LSTM-IDS [51], CNN-IDS [52], RNN-IDS [53], and GRN-RNN IDS [54],
chosen as benchmark models due to their analogous performance levels. Table 4 showcases the evaluation
metrics for the BiLSTM IDS and these leading-edge IDSs. The data from Table 4 highlights the BiLSTM
IDS’s supremacy over all the examined IDSs in accuracy, precision, recall, and F-measure. This exceptional
performance is credited to the system’s effective hyper objectives feature selection model, which markedly
improves its ability to identify attacks in the fog environment.

Table 4. Comparison with state-of-the-art IDSs
Metric __ Proposed LSTM-IDS _CNN-IDS __RNN-IDS _ GRN-RNN IDS

Accuracy 98.7 97.7 95.5 91.7 92

Precision 98.1 97 96 99 99
Recall 97.7 95 97 90.2 92.05

F1-score 98 96 97 94.6 95.75

7. CONCLUSION

The effectiveness of the proposed BiLSTM model in 10T data classification tasks was validated by
our experimental results, with high performance demonstrated on both the BoT-1oT and TON_IoT datasets.
In our experiments, the BiLSTM model achieved an accuracy of 98.42% on the TON_IoT dataset and 98.7%
on the BoT-1oT dataset. The precision was recorded at 98.3% for TON_IoT and 98.1% for BoT-IoT, while
recall was consistent at 97.7% for both datasets. The F1 score stood at 98% across both datasets. This
robustness suggests the model’s capability across diverse 0T activities, displaying remarkable precision in
identifying malicious activities and high recall rates, proving its real-world applicability. In feature selection,
the benefits of using hybrid objective/fitness functions such as correlation, entropy, and variance stand out.
By combining multiple statistical measures, these hybrid methods offer a comprehensive assessment of
feature relevance, capturing intricate relationships between features and leading to improved model
performance, reduced overfitting, and a more interpretable feature set.

However, the performance of deep learning models, like the implemented BIiLSTM, can be
influenced by various factors, including hyperparameters, architecture complexity, and dataset
characteristics. Further research and fine-tuning might be essential for optimal performance across contexts.
While we acknowledge the importance of real-time detection, especially in fog computing, this study focused
on offline training and testing modes. The real-time aspect, crucial for actual environments, remains outside
this work’s scope but is a focal point for our future research endeavors.

In summary, this research underscores the potential of deep learning methodologies, specifically
BIiLSTM, in complex classification tasks within the 10T and fog computing domains, paving the way for
future advancements in data classification and intrusion detection.
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