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 Convolutional neural networks (CNN)-based indoor positioning systems 

(IPS) have gained significant attention over the past decade due to their 

ability to provide precise localization accuracy. However, the use of CNNs 

in these systems comes with a higher computational cost. To tackle this 

issue, recent studies have introduced knowledge distilled positioning 

schemes to mitigate the computational burden. Despite the clear possibility 

of performance degradation due to signal fluctuations, there remains a lack 

of investigation into the performance of knowledge distilled and CNN based 

indoor positioning schemes in dynamic indoor environment. To fill this 

research gap, this paper investigates the practicality of implementing 

knowledge distilled-based indoor positioning schemes in real-world by 

analyzing the impact of indoor layout change on these schemes. Results 

demonstrate that in the case of layout change, the knowledge distilled-based 

indoor positioning schemes without teaching assistant can still achieve good 

performance, with an improvement of 11.56% in average positioning error 

compared to simple CNN model, while taking only 49.05% of the complex 

CNN model’s execution time. However, the knowledge distilled-based 

indoor positioning scheme with teaching assistant fails under the same 

condition as the inclusion of teacher assistant leads to increased error in 

modeling the received signal strengths (RSS) and locations relationship. 
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1. INTRODUCTION 

The demand for pragmatic and efficient solutions to everyday problems has risen as people seek for 

higher living standards. The deployment of numerous context-aware services and protocols is made possible 

through accurate real-time indoor localization of users and devices [1]. As a result, research efforts on indoor 

positioning and localization significantly increased over the previous decade [2]. The limitations of the global 

positioning systems in a complex indoor environment have prompted the exposure of other positioning 

technologies and techniques, including the fingerprinting approach which is currently favored by many 

researchers. A fingerprint-based localization system requires a pre-constructed database to predict the 

location of the user or the device [3] and thus, this technique is realized in two phases which is the offline 

training phase and the online localization phase. During the offline phase, a radio map of indoor environment 

is established by collecting fingerprint information at every point of interest known as the reference point 

(RP) which are evenly distributed throughout the indoor space. At each location, the mobile device will 

receive packets of data transmitted from every detectable access point (AP) or beacon. In the localization 

https://creativecommons.org/licenses/by-sa/4.0/
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phase, real-time fingerprints collected at the user’s current position is compared with the fingerprints in the 

database using a pattern recognition or matching algorithm to select the most suitable RP as the predicted 

location. The wireless technology used for positioning comprises radio frequency identification (RFID), Wi-Fi, 

Bluetooth, Zigbee [4], [5] long range (LoRa) [6], and ultra-wideband (UWB) [7] because the radio waves can 

easily travel through walls and human bodies [8]. It is also noted that among the previously mentioned radio 

technologies, fingerprint-based indoor positioning systems (IPS) predominantly utilize Wi-Fi and Bluetooth 

low energy (BLE), a variation of the Bluetooth standard, since these technologies are easy to set up with 

reasonable implementational cost [1], [8] as it makes use of available infrastructure unlike RFID and UWB 

which demands specialized hardware. Additionally, current mobile devices such as smart phones and laptops 

support Bluetooth and Wi-Fi [1], [3]. There are several works [9]–[11] that fuses these two technologies 

together to achieve complementary advantages [12]. 

Generally, the form of fingerprints that the system adopts are the received signal strength (RSS) 

which is the measurement of signal power received [13]. The indoor environment is complex as it contains 

various obstacles, e.g., wall and door, leading to non-line-of-sight propagation [14]. Wireless signal 

localization systems typically demand an accurate propagation model which can be difficult to established 

since the wireless signal fluctuates as it experiences diffraction, reflection and scattering [2] and does not 

follow the conventional path loss model. Even so, multiple studies have reported that the fingerprinting-based 

system produced good localization performance in complex indoor environment as compared to propagation 

modelling and geometric approach because the constructed radio map has taken into account the complicated 

signal patterns caused by reflection, shadowing and fading [15], [16]. Nevertheless, it cannot be claimed that 

the fingerprinting method is without drawbacks because the accuracy of the system is greatly influenced by 

the quality of radio map [17] and thus, each RP requires multiple signal samples collected from varying angle 

to ensure that the database is able to capture all the possible RSS variation. However, even with multiple RSS 

sample being collected, the dynamic indoor environments, where permanent and transient changes take place, 

could have a detrimental effect on the localization performance [18]. The structure, layout and presence of 

human can bring significant impact towards wireless signal [2]. Therefore, whenever an alteration happens to 

the surrounding, such as different placement of heavy objects, wireless signal will fluctuate [13]. According 

to earlier observations, fingerprinting expects the real-time data collected from the user device to closely 

matched with those in the training database obtained at the same position because a larger gap between those 

two data creates a higher positioning error [16]. This would mean that constant update of the database is 

required to maintain the accuracy of system which is an undesirable task because constructing a radio map is 

a time-consuming process and conducting a site survey can also be labour intensive [1], [2], [19].  

Ultimately, it is critical to apply a robust learning algorithm that could assist in minimizing the 

positioning error of the system. In general, k-nearest neighbour (k-NN) algorithm has been the benchmark for 

more recent works. Extensive research has been conducted on the k-NN algorithm, as demonstrated in [20], 

which has shown satisfactory performance in positioning systems. However, numerous efforts have been 

made to further enhance the performance of these systems by minimizing the estimation error in positioning. 

Most of these studies have shifted their focus to deep learning rather than simple machine learning due to its 

great learning capability as deep learning algorithm is able to automatically perform feature extraction. A  

Wi-Fi fingerprint localization method using a four-layer deep neural network pre-trained by a stacked auto 

encoder for coarse localization was proposed [21]. Then, a hidden Markov model (HMM) localizer is used to 

further refine the initial position estimation. Kim et al. [22], the DNN-based positioning system follows a 

hierarchical approach for building and floor classification where Wi-Fi fingerprints were taken as input. 

Furthermore, the dimensionality of the input data was reduced by incorporating stacked auto encoder. The 

researchers [23], [24] constructed an image from received signal strength indicator (RSSI) fingerprint so that 

it could be fed into a 2-dimensional (2D) convolutional neural network (CNN) for indoor positioning 

whereas in [25], a 1-dimensional (1D) CNN was used. The DeepFi [26] and ConFi [27] positioning system 

also uses a CNN framework, however, the fingerprint information used are CSI which requires additional 

hardware.  

The latest works in [28], [29] have integrated knowledge distillation to the CNN-based positioning 

system and the motivation behind it is to increase the positioning accuracy of a simple CNN network by 

leveraging knowledge distillation to acquire valuable knowledge possessed by a pre-trained complex CNN 

network. From the results shown in [28], [29], it has been proven that the knowledge distilled IPS is a great 

alternative to be used in a resource-constraint devices for real-time localization as compared to a complex 

system as it exhibits a high localization accuracy while maintaing lower processing and execution time. 

Although these knowledge distilled positioning techniques seem promising, it is still unknown if they would 

be greatly affected by variation of wireless signals caused by changes in the positioning environment.  

Given the high probability of its real-world deployment in a dynamic setting, an ideal positioning 

system must be resilient to changes in its surroundings. To the best of our knowledge, there is no existing 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

A study on the impact of layout change to knowledge distilled indoor positioning systems (Aqilah Mazlan) 

4195 

literature that has explored the effects of alterations in environmental layout on the localization performance 

using knowledge distilled positioning methods. In order to address the crucial research gap concerning the 

unavailability of the study related to the practicality of knowledge distilled positioning techniques in real-world 

dynamic environments, which is essential for ensuring seamless user experience in real-world scenarios, this 

paper aims to examine the robustness of various knowledge distilled based positioning techniques in the 

presence of a layout change in the target space, which may impact the RSSs of wireless signals. The presence 

of obstacles within the target space can result in attenuation and multipath fading issues, thereby inducing 

substantial signal fluctuation throughout both the offline and online phases. Specifically, the study focuses on 

two knowledge distilled positioning techniques, namely knowledge distilled based indoor positioning with 

and without a teacher assistant, and benchmarks their performance to those of the CNN models with different 

architectures and sizes. A comprehensive evaluation of various positioning systems considered is conducted 

using a real-world hybrid dataset with Wi-Fi and BLE fingerprints that encompasses a variety of multi-floor 

indoor layouts. The impacts of changes in layout on the performance of the systems are also thoroughly 

analysed. The findings of this study are highly significant as they provide valuable insights to designers and 

operators of IPS, empowering them to improve the system’s resilience to layout changes and deliver 

consistent and precise location-based services. 

The remainder of this paper is structured as follows. Section 2 expounds on the working principles 

of knowledge distilled CNN based positioning systems, both with and without teacher-assistant. In section 3, 

the experimental environment for the collection of the indoor positioning dataset is elucidated. Following 

this, section 4 delineates the configurations of the knowledge distilled CNN based positioning systems and 

the evaluation metrics employed for performance comparisons. In section 5, the results and discussions of 

findings are presented. Finally, section 6 summarizes the important findings, discusses their impacts, and 

suggests avenues for future research. 

 

  

2. METHODS 

In the first part of this section, the details on the CNN-based indoor localization scheme are 

presented. Then, the remaining part of this section offers a comprehensive explanation on the working 

principles of the knowledge distilled CNN-based IPS and the teacher-assistant knowledge distilled CNN-

based IPS. The primary goal of integrating the knowledge distillation schemes to the CNN-based IPS is to 

create a precise positioning system with low complexity, allowing the system to be easily installed on devices 

with constrained resources.  

 

2.1.  Convolutional neural network-based positioning system 

Based on the findings from authors [28], [29], the primary algorithm employed for location 

classification is a 2D CNN algorithm. The number of location class will be equal to the number of RPs 

established in the target space. Given an indoor area with M RPs, the total number of training samples will be 

noted as 𝑁 = ∑ 𝑔𝑚
𝑀
𝑚=1  where the total number of samples at the mth RP is represented by 𝑔𝑚. The system 

takes in the RSSI input denoted by {𝒓𝑛|𝑛 = 1,2, … , 𝑁} in which 𝒓𝑛 is the nth samples of RSSI vector as (1): 

 

𝒓𝑛 = [𝑟1
𝑛 , 𝑟2

𝑛 , … , 𝑟𝐾
𝑛] (1) 

 

where 𝑟𝑘
𝑛𝑘 = 1,2, … , 𝐾 denotes the RSSI detected from the kth AP and K is the total number of available AP 

as well as its corresponding ground truth which is denoted by {𝒚𝑛|𝑛 = 1,2, … , 𝑁}. Since the system is using a 

2D-CNN algorithm, the 1D RSSI vector needs to be reshaped into a square 2D fingerprint image 𝑿𝑛 of size 

𝑄1 × 𝑄1. To ensure that the 1D RSSI vector can be converted to a square fingerprint image, 𝒓𝑛 is padded 

with zeroes if 𝐾 ≠ 𝑐2where c is an integer. After passing the 2D fingerprint image as the input, it will go 

through the several convolutional layers and pooling layers for feature extraction and then it will be flattened 

and sent to the dense network where each neuron in the layer is connected to all the neuron in the adjacent 

layer for classification. In the final layer of the fully connected network, a softmax activation function, 

formulated by (2), is applied to compute the probability of each class.  

 

𝑓𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑗) =
𝑒

𝑥𝑗

∑ 𝑒𝑥𝑙𝐿
𝑙=1

 (2) 

 

Where 𝑥𝑗  and 𝑥𝑙 , 𝑙 = 1,2, … , 𝐿is the logit of the jth neuron and lth neuron, respectively, and L is the total 

number of neurons for the layer considered. The number of neurons in the last fully connected layer is set to 

the total number location classes and the output of this layer will be a vector of size 1 × 𝑀 containing the 

probability for each location class. The output vector is indicated as (3): 
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𝒚̂𝑛 = [𝑦̂1
𝑛, 𝑦̂2

𝑛, … , 𝑦̂𝑀
𝑛 ] (3) 

 

Probability of each location class consist of numbers ranging from 0 to 1 and the total probability 

for all location classes is 1. The class exhibiting the highest probability among the location classes is assumed 

to be the final position of the target. The algorithm is optimized by reducing the cross-entropy loss between 

the predicted output and the ground truth through (4): 

 

( ) ( )CE softmax

softmax
=1

, = ( ),

= ( )log( )− 

n n n n

M
n n

k k
k

L H f

f z y

z y z y

 (4) 

 

where is 𝐻(𝜓, 𝜉) = − ∑ 𝜓𝑘𝑙𝑜𝑔(𝜉𝑘)𝑀
𝑘=1  written as the cross-entropy loss function and 𝒛𝑛 = [𝑧1

𝑛, 𝑧2
𝑛 , … , 𝑧𝑀

𝑛 ] is 
the vector of logits produced at the final fully connected layer for the nth input sample. 

 

2.2.  Knowledge distilled convolutional neural network-based positioning system 

According to the assertions made in [28], [29], it has been noted that although CNNs demonstrate 

impressive learning capabilities, the networks necessary to achieve satisfactory localization often exhibit high 

complexity, making them unsuitable for deployment on edge computing systems. To facilitate the operation 

of the system on resource-constrained devices, a knowledge distillation process is employed. This enables the 

positioning system to utilize an algorithm with reduced complexity, while still preserving a high level of 

positioning accuracy. Knowledge distillation is a concept of model compression that was popularized by [30] 

and the works in [28], [29] have applied the fundamental principle of knowledge distillation to enable a 

simple CNN algorithm to provide greater localization accuracy by relying on the informative dark knowledge 

from another CNN network with higher complexity. Evidently, two CNN models of varying complexity, i.e., 

the basic model being referred to as the student model and the pre-trained complex model known as the 

teacher model, are needed to accomplish knowledge distillation. Insightful knowledge that the student model 

obtained from the teacher model includes the softened probabilities of the teacher network rather than the 

hard prediction provided by the softmax activation function. Using (2), the output probabilities for all classes, 

except the correct class, will be relatively low, while the correct class will exhibit a significantly high 

probability. From there, not much information can be obtained to train the student network. Hence, logits of 

the teacher model must be scaled by a temperature parameter to softened the probability distribution, 

resulting a distinguishable inter-class relationship, using higher temperature. Firstly, the knowledge distilled 

positioning system operates by inputting the 2D fingerprint images to the pre-optimized teacher network 

which will then map out those images to logit vector 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]. After that, soft labels are created by 

applying a temperature-scaled softmax activation function to the aforementioned logits. The temperature-

scaled softmax activation function by (5): 

 

𝜌𝑖 = 𝑓𝑇𝑆−𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒

𝑧𝑖
𝑇

∑ 𝑒

𝑧𝑗
𝑇𝑀

𝑗=1

 (5) 

 

where the temperature parameter is indicated by 𝑇 ≥ 1. It is recorded that when T=1,  

𝑓𝑇𝑆−𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) = 𝑓𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑗).  

At the same time, the 2D fingerprint image is also fed to the student network which will generate the 

hard and soft outputs using (2) and (5), respectively. The student model is trained using an altered loss 

function formulated as (6): 

 

𝐿 = 𝛼𝐿𝐶𝐸(𝒛𝑠
𝑛, 𝒚𝑛) + 𝛽𝐿𝐾𝐷(𝒛𝑠

𝑛, 𝒛𝑡
𝑛) (6) 

 

where 𝐿𝐶𝐸(𝒛𝑠
𝑛, 𝒚𝑛) represents the cross-entropy loss between predicted output of the student network and its 

ground truth, and 𝐿𝐾𝐷(𝒛𝑠
𝑛, 𝒛𝑡

𝑛) is the distillation loss. The significance of 𝐿𝐶𝐸(𝒛𝑠
𝑛, 𝒚𝑛) and 𝐿𝐾𝐷(𝒛𝑠

𝑛, 𝒛𝑡
𝑛) is 

represented by 𝛼 and 𝛽, respectively, where is 𝛼 = 1 − 𝛽 and 𝛼 ∈ [0,1]. A higher value of 𝛼 indicates that 

the student is trained in a manner that is following more closely to the student loss than it is to the distillation 

loss and vice versa. The distillation loss is written as (7): 

 

𝐿𝐾𝐷(𝒛𝑠
𝑛, 𝒛𝑡

𝑛) = 𝑇2𝐷𝐾𝐿(𝑓𝑇𝑆−𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝑠
𝑛), 𝑓𝑇𝑆−𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝑡

𝑛)) (7) 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

A study on the impact of layout change to knowledge distilled indoor positioning systems (Aqilah Mazlan) 

4197 

where 𝐷𝐾𝐿(𝜓𝑘 , 𝜉𝑘) = ∑ 𝜓𝑘𝑙𝑜𝑔 (
𝜓𝑘

𝜉𝑘
)𝑀

𝑘=1  is the Kullback-Leibler (KL) divergence, 𝒛𝑠
𝑛 and 𝒛𝑡

𝑛 are the logit 

vector of the nth sample generated by the student and the teacher network, respectively. The KL divergence 

function is applied to assess the divergence between the softened probability distribution of the student 

network and the teacher network. 

 

2.3.  Teacher-assistant knowledge distilled convolutional neural network-based positioning system 

It has been demonstrated that a positioning system trained on a basic student model can accomplish 

a low localization error comparable to the localization error of a positioning system trained on a large teacher 

model through the application of knowledge distillation. Nevertheless, using knowledge distillation might not 

always be beneficial, particularly if there is a substantial complexity gap between the student network and the 

teacher network employed to supervise the student network. Given the large disparity in complexity between 

the simple student model and the cumbersome teacher model, the student model may not posses the capacity 

to replicate the performance of the teacher network. Furthermore, a highly complex teacher model is more 

confident in its predictions and thus, making the logits less soft, reducing the effectiveness of knowledge 

distillation. Therefore, a solution to bridge the teacher-student network gap is to introduce a teacher-assistant 

network in the indoor positioning scheme [29]. It is crucial to note that the teacher-assistant network will act 

as an intermediary network and hence, the size and complexity of the network must lie between that of the 

student network and the teacher network.  

The working principle of the teacher-assistant knowledge distilled CNN-based positioning system is 

quite similar to the working principle of knowledge distilled CNN-based positioning system discussed in 

section 2.2. However, the student network does not directly receive the knowledge from the teacher network. 

Instead, the information passes through the teacher-assistant network first and only then, the teacher-assistant 

network will pass down the useful knowledge to the student network. During the training of the teacher-

assistant network, the cost function applied by the teacher-assistant network can be formulated as (8): 

 

𝐿𝑇𝐴−𝑇𝐴𝐾𝐷 = 𝛼𝐿𝐶𝐸(𝒛𝑡𝑎
𝑛 , 𝒚𝑛) + 𝛽𝐿𝐾𝐷(𝒛𝑡𝑎

𝑛 , 𝒛𝑡
𝑛) (8) 

 

where 𝐿𝐶𝐸(𝒛𝑡𝑎
𝑛 , 𝒚𝑛) represents the cross-entropy loss between predicted output of the teacher-assistant 

network and its ground truth, and 𝐿𝐾𝐷(𝒛𝑡𝑎
𝑛 , 𝒛𝑡

𝑛) is the distillation loss. The significance of 𝐿𝐶𝐸(𝒛𝑡𝑎
𝑛 , 𝒚𝑛) and 

𝐿𝐾𝐷(𝒛𝑡𝑎
𝑛 , 𝒛𝑡

𝑛) is represented by 𝛼 and 𝛽, respectively, where is 𝛼 = 1 − 𝛽 and 𝛼 ∈ [0,1]. The distillation loss 

between the teacher-assistant network and teacher network is expressed as (9): 

 

𝐿𝐾𝐷(𝒛𝑡𝑎
𝑛 , 𝒛𝑡

𝑛) = 𝑇2𝐷𝐾𝐿(𝑓𝑇𝑆−𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝑡𝑎
𝑛 ), 𝑓𝑇𝑆−𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝑡

𝑛)) (9) 

 

where 𝒛 𝑡𝑎
𝑛  and 𝒛𝑡

𝑛 are the logit vector of the nth sample generated by the teacher-assistant network and the 

teacher network, respectively. 

Subsequently, the student network is trained by leveraging the information provided by the ground 

truth and the information acquired from the soft logits of both the student and teacher networks. The 

following loss function is utilized when training the student network as (10): 

 

𝐿𝑆−𝑇𝐴𝐾𝐷 = 𝛼𝐿𝐶𝐸(𝒛𝑠
𝑛, 𝒚𝑛) + 𝛽𝐿𝐾𝐷(𝒛𝑠

𝑛, 𝒛𝑡𝑎
𝑛 ) (10) 

 

where 𝐿𝐶𝐸(𝒛𝑠
𝑛, 𝒚𝑛) represents the cross-entropy loss between predicted output of the student network and its 

ground truth, and 𝐿𝐾𝐷(𝒛𝑠
𝑛, 𝒛𝑡𝑎

𝑛 ) is the distillation loss. The significance of 𝐿𝐶𝐸(𝒛𝑠
𝑛, 𝒚𝑛) and 𝐿𝐾𝐷(𝒛𝑠

𝑛 , 𝒛𝑡𝑎
𝑛 ) is 

represented by 𝛼 and 𝛽, respectively, where is 𝛼 = 1 − 𝛽 and 𝛼 ∈ [0,1]. The distillation loss between the 

student network and teacher-assistant network is written as (11): 

 

𝐿𝐾𝐷(𝒛𝑠
𝑛, 𝒛𝑡𝑎

𝑛 ) = 𝑇2𝐷𝐾𝐿(𝑓𝑇𝑆−𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝑠
𝑛), 𝑓𝑇𝑆−𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝑡𝑎

𝑛 )) (11) 

 

where 𝒛𝑠
𝑛 and 𝒛𝑡𝑎

𝑛  are the logit vector of the nth sample generated by the student and the teacher-assistant 

network, respectively. 

 

 

3. EXPERIMENTAL ENVIRONMENT 

In real-world scenario, the indoor environment is dynamic and wireless signal tends to fluctuate 

with changes that occur in the indoor space, i.e., change in furniture placement, addition of obstacles and 

object movements. Since the aim of this work is to study the feasibility of the knowledge distilled positioning 

schemes in dynamic indoor environments, the dataset required must consist of the RSS map gathered in the 
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same space with at least two different set ups. Therefore, we have decided to utilize the hybrid-fingerprint data 

layout change (HDLC) dataset [31] because this dataset provides training and testing data with different layouts. 

The layout used to train the positioning systems is without any obstacles and it will be referred as the original 

layout. In order to evaluate the performance of the positioning systems, the considered systems will be tested 

with the original layout as well as another layout that contains obstructions, referred to as altered layout. The 

obstructions comprise partition boards with 1.8 m in length, 1.5 m in width, and 0.0127 m in thickness. 

The measurement campaign for this dataset was conducted in the Faculty of Engineering (FOE), 

Multimedia University, Cyberjaya and calibration point was set on the ground, first and second floor of Wing C 

of the FOE building. There are 96 RPs established in the ground floor and 144 RP each in the first and second 

floor, resulting in a total of 384 RPs altogether. Note that all of the RPs are evenly spaced, at a distance of 1 m. 

To ensure that a full range of delectable RSSI were captured, 30 samples were gathered at each RP, whereby 

20 samples were stored as training data and the remaining 10 samples being stored as testing data. There are 

42 Wi-Fi APs and 17 BLE beacons used to transmit signals. The RSSI readings from the Wi-Fi APs and BLE 

beacons are stored along with the floor level, x-coordinate and y-coordinate of RPs, resulting in a database 

with 62 attributes. The entire floor plan of the indoor space along with the arrangement of partition boards is 

illustrated in Figure 1. Figures 1(a) to (c) are the floor plans for the ground floor, first floor and second floor, 

respectively.  

  

  

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 1. Floor plan of the experimental environments with partition board; (a) ground floor, (b) first floor, 

and (c) second floor 
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4. SIMULATION SETUP 

4.1.  Convolutional neural network model configuration 

For this study, three CNN models were established, labelled as the teacher model, student model and 

the teacher assistant model. Python 3.7.12 is utilized to carry out the simulations and Keras 2.7.0 is used to 

established the deep learning models. The configuration of the three models is tabulated in the Table 1. The 

models are presented in the order of decreasing complexity: teacher model, teacher-assistant model, and 

student model; whereby the teacher model, teacher-assistant model and student model consist of six 

convolutional layers, four convolutional layers and one convolutional layer, respectively. 

 

 

Table 1. Configuration of models considered 
CNN model Settings 

Teacher  

 

No of convolutional layers: 6 

Filter size: 2×2 
No of filters: 4,4,8,8,16,16 

 Activation function after convolutional layers: ReLU 

 
No of max pooling layers: 3 
Kernel size: 2×2 

Strides: 1×1 

 
Hidden layer: 500 (dropout=0.3) 
Output node: 384 nodes 

Teacher-assistant 
 

No of convolutional layers: 4 
Filter size: 2×2 

No of filters: 4,4,16,16 

 Activation function after convolutional layers: ReLU 

 

No of max pooling layers: 2 

Kernel size: 2×2 

Strides: 1×1  

 
Hidden layer: 500 (dropout=0.3) 

Output node: 384 nodes 

Student  
 

No of convolutional layers: 1 
Filter size: 2×2 

No of filters: 32 

 Activation function after convolutional layers: ReLU 

 

No of max pooling layers: 1 

Kernel size: 2×2 

Strides: 1×1 
 Output node: 384 nodes 

 

  

Four positioning schemes, namely CNN-IPS (TM), CNN-IPS (SM), KD-CNN-IPS and TAKD-

CNN-IPS, were developed by utilizing either a single basic model or a combination of the basic models. 

More specifically, the first scheme is the CNN-IPS (TM) and it solely employs the teacher CNN model. The 

second scheme is the CNN-IPS (SM) and it comprises only the student model. These two schemes, CNN-IPS 

(TM) and CNN-IPS (SM) serve as the baseline models and are expected to exhibit a trade-off between the 

positioning accuracy and execution time. On the other hand, the other two schemes incorporate knowledge 

distillation. KD-CNN-IPS framework is designed by having the student model trained under the supervision 

of the teacher model so that the student model is able to exploit the dark knowledge from the teacher model. 

Lastly, TAKD-CNN-IPS utilizes all the three models and the knowledge is transferred from the teacher 

model to the student model by passing it through the intermediary teacher-assistant model. Table 2 provides a 

clearer depiction of models utilized and the training process for each of the positioning schemes considered 

in this study. To simulate layout change, the positioning systems are trained and tested with datasets that are 

collected under two distinct arrangements for the same indoor space. The two different layouts can be 

produced by introducing obstacles, such as divider boards. As mentioned in section 3, the positioning 

schemes are initially trained using the original layout dataset. Subsequently, to assess their practicality in 

dynamic environments, they are tested using the altered layout dataset. 
 

 

Table 2. Models utilized in the positioning schemes 
Positioning scheme Models 

CNN-IPS (TM) Teacher 
CNN-IPS (SM) Student 

KD-CNN-IPS Teacher → student 

TAKD-CNN-IPS Teacher → teacher-assistant → student 
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4.2.  Performance metrics  

The performance metrics used to measure the practicality of the positioning schemes in this work 

include location class accuracy, floor accuracy, average positioning error and execution time. The location 

class accuracy 𝛾𝐶 and floor accuracy 𝛾𝐹are defined by (12) and (13), respectively: 

 

𝛾𝐶 =
𝑁𝐶

𝑁𝑇
× 100% (12) 

 

𝛾𝐹 =
𝑁𝐹

𝑁𝑇
× 100% (13) 

 

where 𝑁𝐶  is the number of correctly predicted class samples, 𝑁𝐹is the number of correctly predicted floor 

samples and 𝑁𝑇 is the total number of test samples. As for the average errors, both 3D and 2D positioning 

errors are considered to provide a comprehensive analysis and they are expressed by (14) and (15), 

respectively: 

 

𝑒3𝐷 =
1

𝑁𝑇
∑ √(𝑥̃𝑛 − 𝑥̂𝑛)2 + (𝑦̃𝑛 − 𝑦̂𝑛)2 + (𝑧̃𝑛 − 𝑧̂𝑛)2𝑁𝑇

𝑛=1  (14) 

 

𝑒2𝐷 =
1

𝑁𝐹
∑ √(𝑥̃𝑓 − 𝑥̂𝑓)2 + (𝑦̃𝑓 − 𝑦̂𝑓)2𝑁𝐹

𝑓=1  (15) 

 

where (𝑥̃𝑛 , 𝑦̃𝑛, 𝑧̃𝑛) and (𝑥̂𝑛 , 𝑦̂𝑛, 𝑧̂𝑛) are the ith true and predicted coordinate, respectively. 

To provide a deeper insight into the impact of indoor layout change on the systems’ localization 

performance, the degradation in location class accuracy due to the layout change is calculated as (16):  

 

𝛥𝛾𝐶 = 𝛾𝐶
𝑂 − 𝛾𝐶

𝐴 (16) 

 

where 𝛾𝐶
𝑂 and 𝛾𝐶

𝐴 represent the location accuracy of the original layout and altered layout, respectively. 

Intuitively, a positive value of 𝛥𝛾𝐶 implies a reduction in accuracy and vice versa. 

Since the primary goal of this study is to examine whether the knowledge distilled frameworks can 

still improve the localization performance of a simple CNN positioning scheme after the wireless conditions 

of the indoor space has altered, two evaluation metrics, which are the performance gains of the systems 

against the CNN-IPS (SM) in terms of 3D average positioning error 𝑃3𝐷 and the performance gains of the 

systems against the 2D average positioning errors, are introduced. The performance gains are formulated as (17): 
 

𝑃𝜀 =
𝑒𝜀

𝐵−𝑒𝜀
𝑊

𝑒𝜀
𝐵 × 100% (17) 

 

where 𝑒𝜀
𝐵 is the average positioning error of baseline CNN-IPS (SM) and 𝑒𝜀

𝑊 is the average positioning error 

of the system considered; 𝑃𝜀  represents the 3D performance gain if 𝜀 = 3𝐷, whereas it signifies the 2D 

performance gain if 𝜀 = 2𝐷. 

 

 

5. RESULTS AND DISCUSSION 

This section investigates the impact of layout change on the positioning performance of KD-CNN-

IPS and TAKD-CNN-IPS. It is worth highlighting that these knowledge distilled schemes are supposed to 

produce better positioning accuracy than a CNN network of the same complexity and possess a shorter 

executing time than a CNN model with higher complexity. Thus, to investigate whether the schemes are 

working as intended in the given circumstances, a thorough analysis is conducted by benchmarking the 

performance of the two schemes against both CNN-IPS (TM) and CNN-IPS (SM). Table 3 tabulates the 

location class accuracy, training time and testing time of the CNN-IPS (TM) and CNN-IPS (SM). During the 

training phase, both schemes are trained using the data from the original layout. As anticipated, the results 

indicate that CNN-IPS (TM) achieves a higher training accuracy compared to CNN-IPS (SM) as its network 

incorporates more convolutional layers. However, this improvement in accuracy comes at the expense of 

longer training time. Specifically, CNN-IPS (TM) exhibits a 28.61% higher training accuracy than CNN-IPS 

(SM), but the training time is increased by 87.34% as a trade-off. In the testing phase, where the two schemes 

are evaluated using the testing data of the original layout and the altered layout, it is observed that CNN-IPS 

(TM) outperforms CNN-IPS (SM) in terms of testing accuracy for both layouts. Additionally, the testing time 

of CNN-IPS (TM) is also higher than that of the CNN-IPS (SM) for both layouts. These observations are 

consistent with the results obtained during the training phase. 
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Table 3. The classification performance of CNN-IPS (TM) and CNN-IPS (SM) 

Technique 

Training phase Testing phase 

𝛾𝐶 (%) Time (s) 
Original layout Altered layout 

𝛾𝐶 (%) Time (s) 𝛾𝐶 (%) Time (s) 

CNN-IPS (TM) 35.52 51.47579 12.55 1.4271 4.77 1.3119 

CNN-IPS (SM) 6.91 6.5139 6.35 0.6959 3.31 0.7181 

 

 

The results in Table 3 clearly demonstrate that the size and structure of CNN play a crucial role in 

ensuring good localization performance. Generally, a larger and more complex network leads to a more 

accurate positioning system at the price of increased training and execution time. This is because a more 

complex model typically possesses an enhanced capability to decipher the underlying complex nonlinear 

relationship between the RSSIs and the user locations. However, the complexity of such model may pose a 

significant challenge when it comes to practical implementation on resource-constrained devices. To address 

the inherent trade-off between localization performance and execution time, the knowledge distilled 

positioning frameworks were designed. These frameworks aim to strike a balance by improving the 

classification accuracy and reducing the positioning error of a simple CNN-based localization system while 

maintaining the execution time of the system. Another important observation from Table 3 is that the 

positioning accuracies for both the CNN-IPS (TM) and CNN-IPS (SM) degrade when tested with the altered 

layout. When the CNN-IPS (TM) and CNN-IPS (SM) are assessed using the data from the altered layout, the 

positioning accuracy of CNN-IPS (TM) and CNN-IPS (SM) decreases by 7.78% and 3.04%, respectively. 

This performance degradation is due to the presence of partition boards that obstruct certain APs, resulting in 

signal transmission being influenced by reflections and fading. Consequently, the distribution of signal vector 

received at each point of interest might deviate from those stored in the database. As mentioned previously, 

the accuracy of a fingerprint-based localization system heavily relies on the database. Hence, any changes to 

the layout of the indoor space will inevitably result in a deterioration of the positioning systems’ 

performance. 

In this work, more emphasis is placed on the localization performance of the knowledge distilled 

positioning schemes as the primary objective is to examine the robustness of these schemes to changes in the 

indoor layout. Figure 2 shows the degradation in location class accuracy caused by the layout change for 

CNN-IPS (TM), CNN-IPS (SM), KD-CNN-IPS, and TAKD-CNN-IPS. As expected, all schemes are 

negatively affected by the layout change. Based on Figure 2, CNN-IPS (TM) suffers the highest degradation 

in location class accuracy from the layout change. It is also observed that the impact of layout changes on 

CNN-IPS (SM) and KD-CNN-IPS are almost similar. More specifically, when the indoor layout varies, 

CNN-IPS (SM) suffers a performance degradation in positioning accuracy of 3.04%, while the positioning 

accuracy of KD-CNN-IPS drops by 3.05%. In comparison to CNN-IPS (SM) and KD-CNN-IPS, the 

performance loss due to layout change is more severe for TAKD-CNN-IPS, with a performance loss of 

3.44%. The reason for these performance trends can be elucidated as follows. When the layout of the indoor 

environment changes, the trained teacher model’s ability to capture the relationship between RSSIs and 

locations for the new environment deteriorates. This issue is exacerbated when TAKD-CNN-IPS is adopted 

as it involves an additional network than KD-CNN-IPS, i.e., teaching assistant. The modeling errors will be 

propagated from the teacher model to the teacher assistant and subsequently to student model, which will 

further degrade the RSSs and location relationship modeling capability. As a result, TAKD-CNN-IPS 

experiences a more pronounced decrease in performance due to the layout change. 

Aside from the location class accuracy, it is important to examine the performance of other 

evaluation metrics such as the positioning error and the floor accuracy as these metrics can provide valuable 

insight to the study. Table 4 presents the positioning performance of different schemes considered during the 

testing phase, encompassing floor accuracy, 2D and 3D average positioning errors for both the original and 

altered layouts. From the Table 4, it is evident that when the layouts of the training and testing phases are the 

same, all schemes achieve 100% accuracy in predicting the correct floor. Since the floor accuracies for all 

schemes are 100%, the 2D and 3D average positioning errors are identical. Both the 2D and 3D average 

positioning errors follow a decreasing trend in the sequence of CNN-IPS (SM), KD-CNN-IPS, TAKD-CNN-

IPS, and CNN-IPS (TM). The performance gains of CNN-IPS (TM), KD-CNN-IPS and TAKD-CNN-IPS 

over the CNN-IPS (SM) in terms of 3D and 2D average positioning error during the testing phase are 

illustrated in Figures 3 and 4, respectively. Notably, the incorporation of knowledge distillation in KD-CNN-

IPS and TAKD-CNN-IPS lead to an improvement in the positioning error of the baseline CNN-IPS (SM) by 

3.46% and 10.04%, respectively. The superior performance of KD-CNN-IPS and TAKD-CNN-IPS over 

CNN-IPS (SM) can be attributed to their ability to retain the high-quality performance of the complex teacher 

model through the utilization of softened probabilities acquired from the teacher network. By harnessing 

these softened probabilities, which encapsulates richer inter-class relations, the learning process is 
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significantly enhanced. Furthermore, the reason that TAKD-CNN-IPS outperforms its KD-CNN-IPS 

counterpart in this scenario is due to the utilization of an intermediate network as teacher assistant. This 

enables the student model of TAKD-CNN-IPS to acquire a greater amount of knowledge by being trained 

with the soft distribution generated by a network that possesses a closer capacity, resulting in lower 

distillation and student losses. 

 

 

 
 

Figure 2. The loss in testing accuracy performance for different technique considered resulting from 

modifications in the indoor layout 

 

 

Table 4. The floor accuracy and average positioning error evaluated for both the original and altered layouts 

during the testing phase 

Technique 

Original layout Altered layout 
3D average 

positioning 

error (m) 

Floor 

accuracy 

(%) 

2D average 

positioning 

error (m) 

3D average 

positioning 

error (m) 

Floor 
accuracy (%) 

2D average 

positioning 

error (m) 

CNN-IPS (TM) 2.5647 100 2.5647 7.9133 78.67 5.6052 

CNN-IPS (SM) 3.4078 100 3.4078 10.1980 79.48 6.1182 

KD-CNN-IPS 3.2900 100 3.290 9.0192 82.89 8.0509 
TAKD-CNN IPS 3.0655 100 3.0655 11.6409 75.47 8.0739 

 

 

 
 

Figure 3. The performance gains of CNN-IPS (TM), KD-CNN-IPS, and TAKD-CNN-IPS over the CNN-IPS 

(SM) in terms of 3D average positioning error during the testing phase 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

A study on the impact of layout change to knowledge distilled indoor positioning systems (Aqilah Mazlan) 

4203 

 
 

Figure 4. The performance gains of CNN-IPS (TM), KD-CNN-IPS, and TAKD-CNN-IPS over the CNN-IPS 

(SM) in terms of 2D average positioning error during the testing phase 

 

 

When the indoor layout is altered, it can be observed that the floor accuracies and the average 

positioning errors for all techniques degrade. More explicitly, KD-CNN-IPS demonstrates the highest floor 

accuracy of 82.89%, followed by CNN-IPS (SM), CNN-IPS (TM), and TAKD-CNN-IPS with floor 

accuracies of 79.48%, 78.67%, and 75.47%, respectively. From the findings, it is evident that TAKD-CNN-

IPS suffers the highest degradation in terms of floor accuracy, followed by CNN-IPS (TM) and CNN-IPS 

(SM), while KD-CNN-IPS experiences the smallest degradation. These findings indicate that although the 

CNN-IPS (TM) has the best performance without any layout change, its performance is more susceptible to 

the layout change as compared to the KD-CNN-IPS. Although CNN-IPS (TM) does not have the best floor 

accuracy among the positioning schemes under consideration, it still provides the lowest 2D and 3D 

positioning errors. Nevertheless, CNN-IPS (TM) shows a large performance degradation in terms of average 

positioning error, specifically the 3D average positioning error. More specifically, CNN-IPS (TM) still 

demonstrates a higher degradation of 208.55% as compared to KD-CNN-IPS and CNN-IPS (SM), which 

degrades by 174.13% and 199.25%, respectively. This further substantiates that, in comparison to the KD-

CNN-IPS and CNN-IPS (SM), the CNN-IPS (TM) positioning scheme is more sensitive to the environmental 

dynamics. It also implies that under more severe changes in the indoor environment, CNN-IPS (TM) may 

perform worse than the KD-CNN-IPS scheme. 

From the performance gains of CNN-IPS (TM), KD-CNN-IPS and TAKD-CNN-IPS over the CNN-

IPS (SM) in terms of 3D and 2D average positioning error depicted in Figures 3 and 4, another observation 

that can be seen is that the KD-CNN-IPS framework exhibits a lower 3D average positioning error than 

CNN-IPS (SM), but it has a higher 2D average positioning error. Considering that the wrongly predicted 

floor is discarded in the calculation of 2D average positioning error, it is safe to presume that most samples 

which CNN-IPS (SM) provided an incorrect floor prediction carry a significant distance error. Ultimately, 

this implies that knowledge distillation implemented in the KD-CNN-IPS still has the ability to improve the 

positioning performance of the baseline CNN-IPS (SM). Conversely, the knowledge distillation framework 

implemented in the TAKD-CNN-IPS fails to bring any improvement over the CNN-IPS (SM). In fact, both 

the floor accuracy and average positioning performance of TAKD-CNN-IPS are worse than those of the 

CNN-IPS (SM). When the indoor layout changes, wireless signals at every RP are affected differently, 

depending on the adjustments made. As a result, the wireless signal distribution could be entirely different 

from the radio map. It is well known that the performance of fingerprint-based localization depends greatly 

on the radio map. Higher error counts may result from a wide disparity between the target RSSI vector and 

the radio map. Evidently, the training process of the TAKD-CNN-IPS occurs sequentially. The student model 

in the positioning scheme learns from teacher-assistant model that is pre-trained by a teacher model. If an 

error is made during the learning process of the teacher model, the same error will undoubtedly be passed 

down to both the teacher-assistant model and student model as proclaimed in [32], leading to a substantial 

error accumulation. This argument would justify the deterioration in positioning accuracy of TAKD-CNN-

IPS.  

As mentioned previously, the knowledge distilled positioning schemes are designed to reduce the 

complexity of deep learning techniques. In comparison to the conventional deep learning strategies, 

knowledge distilled positioning approaches are more practical to be deployed on devices with limited 
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resources. This is due to their reduced computational requirements, resulting faster positioning times. Such 

efficiency is particularly crucial for real-time positioning systems to ensure an excellent user experience. 

Table 5 provides insights into the execution time of the different positioning techniques examined. The 

results in Table 5 reveal that KD-CNN-IPS and TAKD-CNN-IPS have almost similar execution times to the 

CNN-IPS (SM) for both the original and altered layouts. This is because only the student model of KD-CNN-

IPS and TAKD-CNN-IPS are executed during the online localization phase. Since the student model of KD-

CNN-IPS and TAKD-CNN-IPS have the same architecture as CNN-IPS (SM), the execution times of all 

three positioning systems will be similar. Furthermore, due to the substantially simpler architecture of the 

student model employed in CNN-IPS (SM), KD-CNN-IPS, and TAKD-CNN-IPS compared to CNN-IPS 

(TM), the execution times for all three systems for both the original and modified layouts are only 

approximately 50% of those required by CNN-IPS (TM). This solidifies the effectiveness of knowledge 

distilled frameworks in minimizing the execution time, which is vital for real-time positioning systems to 

deliver a seamless user experience. 

 

 

Table 5. Execution time of different positioning schemes tested on original and altered layouts during the 

testing phase 

Technique 
Execution time (s) 

Original layout Altered layout 

CNN-IPS (TM) 1.4271 1.3119 
CNN-IPS (SM) 0.7181 0.6959 

KD-CNN-IPS 0.7000 0.6866 

TAKD-CNN-IPS 0.7157 0.6857 

 

 

6. CONCLUSION 

This paper investigates the robustness of knowledge distilled frameworks, specifically  

KD-CNN-IPS and TAKD-CNN-IPS, to layout changes and obstacles that could obstruct the wireless signal 

propagation, resulting in attenuation and multipath fading issues. To assess their robustness, datasets with 

different training and testing environments are utilized. The knowledge distilled frameworks rely on a  

pre-trained network known as the teacher network to transfer the informative knowledge. The teacher 

network indicated by CNN-IPS (TM) along with CNN-IPS (SM), which is a positioning system with the 

same architecture as the student model of KD-CNN-IPS and TAKD-CNN-IPS, are used as baseline models 

for the knowledge distilled framework. 

Our results reveal that in a static indoor environment, both the knowledge distilled frameworks 

exhibit superior positioning accuracy than CNN-IPS (SM) and maintain similar execution time as CNN-IPS 

(SM). In addition, their model complexities are lower and their execution times are shorter compared to those 

of CNN-IPS (TM), rendering them appealing solutions for deployment on resource-constrained devices. 

However, when the layout of the indoor environment changes, although all the knowledge distilled schemes 

are still able to maintain the execution time of CNN-IPS (SM), only KD-CNN-IPS manage to achieve a 

better localization performance than CNN-IPS (SM). Conversely, due to the more severe propagation of 

RSSIs and location modeling errors incurred by the teacher assistant in TAKD-CNN-IPS, TAKD-CNN-IPS 

fails to perform as anticipated when the layout of the indoor environment is altered, resulting in a 14.15% 

degradation in average positioning error. Aside from that, our results demonstrate that the KD-CNN-IPS is 

less vulnerable to layout change compared to other schemes, as evidenced by its minimal degradation when 

the indoor layout changes. Consequently, KD-CNN-IPS is a preferable choice for dynamic environments 

compared to TAKD-CNN-IPS, whereas TAKD-CNN-IPS is more suitable for static environments.  

The insights derived from this work are highly valuable for both the research community and 

industry. They empower designers and operators of IPS to enhance the system’s robustness to layout changes 

and consistently deliver precise real-time location-based services on resource constrained devices, such as 

edge devices, smartphones and embedded sensor nodes. These location-based services encompass a wide 

range of applications, which include but are not limited to positioning, tracking, and navigation. Furthermore, 

the insights uncovered in this study hold significant implications across diverse domains, such as activity 

recognition, facial recognition, and autonomous drone and self-driving car technologies. Future research 

endeavors may explore the integration of lifelong learning mechanisms into KD-CNN-IPS and  

TAKD-CNN-IPS to enhance their robustness in dynamic environments.  
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