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Convolutional neural networks (CNN)-based indoor positioning systems
(IPS) have gained significant attention over the past decade due to their
ability to provide precise localization accuracy. However, the use of CNNs
in these systems comes with a higher computational cost. To tackle this
issue, recent studies have introduced knowledge distilled positioning
schemes to mitigate the computational burden. Despite the clear possibility
of performance degradation due to signal fluctuations, there remains a lack
of investigation into the performance of knowledge distilled and CNN based
indoor positioning schemes in dynamic indoor environment. To fill this
research gap, this paper investigates the practicality of implementing
knowledge distilled-based indoor positioning schemes in real-world by
analyzing the impact of indoor layout change on these schemes. Results
demonstrate that in the case of layout change, the knowledge distilled-based
indoor positioning schemes without teaching assistant can still achieve good

performance, with an improvement of 11.56% in average positioning error
compared to simple CNN model, while taking only 49.05% of the complex
CNN model’s execution time. However, the knowledge distilled-based
indoor positioning scheme with teaching assistant fails under the same
condition as the inclusion of teacher assistant leads to increased error in
modeling the received signal strengths (RSS) and locations relationship.
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1. INTRODUCTION

The demand for pragmatic and efficient solutions to everyday problems has risen as people seek for
higher living standards. The deployment of numerous context-aware services and protocols is made possible
through accurate real-time indoor localization of users and devices [1]. As a result, research efforts on indoor
positioning and localization significantly increased over the previous decade [2]. The limitations of the global
positioning systems in a complex indoor environment have prompted the exposure of other positioning
technologies and techniques, including the fingerprinting approach which is currently favored by many
researchers. A fingerprint-based localization system requires a pre-constructed database to predict the
location of the user or the device [3] and thus, this technique is realized in two phases which is the offline
training phase and the online localization phase. During the offline phase, a radio map of indoor environment
is established by collecting fingerprint information at every point of interest known as the reference point
(RP) which are evenly distributed throughout the indoor space. At each location, the mobile device will
receive packets of data transmitted from every detectable access point (AP) or beacon. In the localization
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phase, real-time fingerprints collected at the user’s current position is compared with the fingerprints in the
database using a pattern recognition or matching algorithm to select the most suitable RP as the predicted
location. The wireless technology used for positioning comprises radio frequency identification (RFID), Wi-Fi,
Bluetooth, Zigbee [4], [5] long range (LoRa) [6], and ultra-wideband (UWB) [7] because the radio waves can
easily travel through walls and human bodies [8]. It is also noted that among the previously mentioned radio
technologies, fingerprint-based indoor positioning systems (IPS) predominantly utilize Wi-Fi and Bluetooth
low energy (BLE), a variation of the Bluetooth standard, since these technologies are easy to set up with
reasonable implementational cost [1], [8] as it makes use of available infrastructure unlike RFID and UWB
which demands specialized hardware. Additionally, current mobile devices such as smart phones and laptops
support Bluetooth and Wi-Fi [1], [3]. There are several works [9]-[11] that fuses these two technologies
together to achieve complementary advantages [12].

Generally, the form of fingerprints that the system adopts are the received signal strength (RSS)
which is the measurement of signal power received [13]. The indoor environment is complex as it contains
various obstacles, e.g., wall and door, leading to non-line-of-sight propagation [14]. Wireless signal
localization systems typically demand an accurate propagation model which can be difficult to established
since the wireless signal fluctuates as it experiences diffraction, reflection and scattering [2] and does not
follow the conventional path loss model. Even so, multiple studies have reported that the fingerprinting-based
system produced good localization performance in complex indoor environment as compared to propagation
modelling and geometric approach because the constructed radio map has taken into account the complicated
signal patterns caused by reflection, shadowing and fading [15], [16]. Nevertheless, it cannot be claimed that
the fingerprinting method is without drawbacks because the accuracy of the system is greatly influenced by
the quality of radio map [17] and thus, each RP requires multiple signal samples collected from varying angle
to ensure that the database is able to capture all the possible RSS variation. However, even with multiple RSS
sample being collected, the dynamic indoor environments, where permanent and transient changes take place,
could have a detrimental effect on the localization performance [18]. The structure, layout and presence of
human can bring significant impact towards wireless signal [2]. Therefore, whenever an alteration happens to
the surrounding, such as different placement of heavy objects, wireless signal will fluctuate [13]. According
to earlier observations, fingerprinting expects the real-time data collected from the user device to closely
matched with those in the training database obtained at the same position because a larger gap between those
two data creates a higher positioning error [16]. This would mean that constant update of the database is
required to maintain the accuracy of system which is an undesirable task because constructing a radio map is
a time-consuming process and conducting a site survey can also be labour intensive [1], [2], [19].

Ultimately, it is critical to apply a robust learning algorithm that could assist in minimizing the
positioning error of the system. In general, k-nearest neighbour (k-NN) algorithm has been the benchmark for
more recent works. Extensive research has been conducted on the k-NN algorithm, as demonstrated in [20],
which has shown satisfactory performance in positioning systems. However, numerous efforts have been
made to further enhance the performance of these systems by minimizing the estimation error in positioning.
Most of these studies have shifted their focus to deep learning rather than simple machine learning due to its
great learning capability as deep learning algorithm is able to automatically perform feature extraction. A
Wi-Fi fingerprint localization method using a four-layer deep neural network pre-trained by a stacked auto
encoder for coarse localization was proposed [21]. Then, a hidden Markov model (HMM) localizer is used to
further refine the initial position estimation. Kim et al. [22], the DNN-based positioning system follows a
hierarchical approach for building and floor classification where Wi-Fi fingerprints were taken as input.
Furthermore, the dimensionality of the input data was reduced by incorporating stacked auto encoder. The
researchers [23], [24] constructed an image from received signal strength indicator (RSSI) fingerprint so that
it could be fed into a 2-dimensional (2D) convolutional neural network (CNN) for indoor positioning
whereas in [25], a 1-dimensional (1D) CNN was used. The DeepFi [26] and ConFi [27] positioning system
also uses a CNN framework, however, the fingerprint information used are CSI which requires additional
hardware.

The latest works in [28], [29] have integrated knowledge distillation to the CNN-based positioning
system and the motivation behind it is to increase the positioning accuracy of a simple CNN network by
leveraging knowledge distillation to acquire valuable knowledge possessed by a pre-trained complex CNN
network. From the results shown in [28], [29], it has been proven that the knowledge distilled IPS is a great
alternative to be used in a resource-constraint devices for real-time localization as compared to a complex
system as it exhibits a high localization accuracy while maintaing lower processing and execution time.
Although these knowledge distilled positioning techniques seem promising, it is still unknown if they would
be greatly affected by variation of wireless signals caused by changes in the positioning environment.

Given the high probability of its real-world deployment in a dynamic setting, an ideal positioning
system must be resilient to changes in its surroundings. To the best of our knowledge, there is no existing
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literature that has explored the effects of alterations in environmental layout on the localization performance
using knowledge distilled positioning methods. In order to address the crucial research gap concerning the
unavailability of the study related to the practicality of knowledge distilled positioning techniques in real-world
dynamic environments, which is essential for ensuring seamless user experience in real-world scenarios, this
paper aims to examine the robustness of various knowledge distilled based positioning techniques in the
presence of a layout change in the target space, which may impact the RSSs of wireless signals. The presence
of obstacles within the target space can result in attenuation and multipath fading issues, thereby inducing
substantial signal fluctuation throughout both the offline and online phases. Specifically, the study focuses on
two knowledge distilled positioning techniques, namely knowledge distilled based indoor positioning with
and without a teacher assistant, and benchmarks their performance to those of the CNN models with different
architectures and sizes. A comprehensive evaluation of various positioning systems considered is conducted
using a real-world hybrid dataset with Wi-Fi and BLE fingerprints that encompasses a variety of multi-floor
indoor layouts. The impacts of changes in layout on the performance of the systems are also thoroughly
analysed. The findings of this study are highly significant as they provide valuable insights to designers and
operators of IPS, empowering them to improve the system’s resilience to layout changes and deliver
consistent and precise location-based services.

The remainder of this paper is structured as follows. Section 2 expounds on the working principles
of knowledge distilled CNN based positioning systems, both with and without teacher-assistant. In section 3,
the experimental environment for the collection of the indoor positioning dataset is elucidated. Following
this, section 4 delineates the configurations of the knowledge distilled CNN based positioning systems and
the evaluation metrics employed for performance comparisons. In section 5, the results and discussions of
findings are presented. Finally, section 6 summarizes the important findings, discusses their impacts, and
suggests avenues for future research.

2. METHODS

In the first part of this section, the details on the CNN-based indoor localization scheme are
presented. Then, the remaining part of this section offers a comprehensive explanation on the working
principles of the knowledge distilled CNN-based IPS and the teacher-assistant knowledge distilled CNN-
based IPS. The primary goal of integrating the knowledge distillation schemes to the CNN-based IPS is to
create a precise positioning system with low complexity, allowing the system to be easily installed on devices
with constrained resources.

2.1. Convolutional neural network-based positioning system

Based on the findings from authors [28], [29], the primary algorithm employed for location
classification is a 2D CNN algorithm. The number of location class will be equal to the number of RPs
established in the target space. Given an indoor area with M RPs, the total number of training samples will be
noted as N = ¥M_, g, where the total number of samples at the mth RP is represented by g,,,. The system
takes in the RSSI input denoted by {r™|n = 1,2, ..., N} in which r™ is the nth samples of RSSI vector as (1):

=7 .., ¢l 1)

where itk = 1,2, ..., K denotes the RSSI detected from the kth AP and K is the total number of available AP
as well as its corresponding ground truth which is denoted by {y™|n = 1,2, ..., N}. Since the system is using a
2D-CNN algorithm, the 1D RSSI vector needs to be reshaped into a square 2D fingerprint image X" of size
Q. X Q. To ensure that the 1D RSSI vector can be converted to a square fingerprint image, r" is padded
with zeroes if K # c?where c is an integer. After passing the 2D fingerprint image as the input, it will go
through the several convolutional layers and pooling layers for feature extraction and then it will be flattened
and sent to the dense network where each neuron in the layer is connected to all the neuron in the adjacent
layer for classification. In the final layer of the fully connected network, a softmax activation function,
formulated by (2), is applied to compute the probability of each class.

e¥J

fsoftmax(xj) = m (2)
Where x; and x,;, | = 1,2, ..., Lis the logit of the jth neuron and Ith neuron, respectively, and L is the total
number of neurons for the layer considered. The number of neurons in the last fully connected layer is set to
the total number location classes and the output of this layer will be a vector of size 1 x M containing the
probability for each location class. The output vector is indicated as (3):
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Probability of each location class consist of numbers ranging from 0 to 1 and the total probability
for all location classes is 1. The class exhibiting the highest probability among the location classes is assumed
to be the final position of the target. The algorithm is optimized by reducing the cross-entropy loss between
the predicted output and the ground truth through (4):

I‘CE (Zn’ yn) =H (fsoﬁmax (Zn)' yn)

v o @)
= _kz—:l fsoftmax (Zk )IOg(yk )
where is H(@, &) = — XX, ¥ log(&,) written as the cross-entropy loss function and z" = [zI, z%, ..., z}] is

the vector of logits produced at the final fully connected layer for the nth input sample.

2.2. Knowledge distilled convolutional neural network-based positioning system

According to the assertions made in [28], [29], it has been noted that although CNNs demonstrate
impressive learning capabilities, the networks necessary to achieve satisfactory localization often exhibit high
complexity, making them unsuitable for deployment on edge computing systems. To facilitate the operation
of the system on resource-constrained devices, a knowledge distillation process is employed. This enables the
positioning system to utilize an algorithm with reduced complexity, while still preserving a high level of
positioning accuracy. Knowledge distillation is a concept of model compression that was popularized by [30]
and the works in [28], [29] have applied the fundamental principle of knowledge distillation to enable a
simple CNN algorithm to provide greater localization accuracy by relying on the informative dark knowledge
from another CNN network with higher complexity. Evidently, two CNN models of varying complexity, i.e.,
the basic model being referred to as the student model and the pre-trained complex model known as the
teacher model, are needed to accomplish knowledge distillation. Insightful knowledge that the student model
obtained from the teacher model includes the softened probabilities of the teacher network rather than the
hard prediction provided by the softmax activation function. Using (2), the output probabilities for all classes,
except the correct class, will be relatively low, while the correct class will exhibit a significantly high
probability. From there, not much information can be obtained to train the student network. Hence, logits of
the teacher model must be scaled by a temperature parameter to softened the probability distribution,
resulting a distinguishable inter-class relationship, using higher temperature. Firstly, the knowledge distilled
positioning system operates by inputting the 2D fingerprint images to the pre-optimized teacher network
which will then map out those images to logit vector z = [z, z,, ..., zy,]. After that, soft labels are created by
applying a temperature-scaled softmax activation function to the aforementioned logits. The temperature-
scaled softmax activation function by (5):

Zi

eT

(®)

pPi = fTS—Softmax(Zi) = Z;
i, eT

where the temperature parameter is indicated by T >1. It is recorded that when T=1,
fTS—Softmax(Zi) = fsoftmax(zj)'

At the same time, the 2D fingerprint image is also fed to the student network which will generate the
hard and soft outputs using (2) and (5), respectively. The student model is trained using an altered loss
function formulated as (6):

L = aLcg(zg,y™) + BLgp (23, 2t) (6)

where Lqg (2%, y™) represents the cross-entropy loss between predicted output of the student network and its
ground truth, and L, (2%, z7) is the distillation loss. The significance of Loz (23, y™) and Lgp (23, z}) is
represented by a and B, respectively, where is « = 1 — g and a € [0,1]. A higher value of « indicates that
the student is trained in a manner that is following more closely to the student loss than it is to the distillation
loss and vice versa. The distillation loss is written as (7):

Lgp(23,2}) = T?Dyy, (fTS—Softmax (Z?)thS—Softmax(Z?)) )
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where Dy, (Wr, &) = X Yrlog (f—:) is the Kullback-Leibler (KL) divergence, z7 and z} are the logit

vector of the nth sample generated by the student and the teacher network, respectively. The KL divergence
function is applied to assess the divergence between the softened probability distribution of the student
network and the teacher network.

2.3. Teacher-assistant knowledge distilled convolutional neural network-based positioning system

It has been demonstrated that a positioning system trained on a basic student model can accomplish
a low localization error comparable to the localization error of a positioning system trained on a large teacher
model through the application of knowledge distillation. Nevertheless, using knowledge distillation might not
always be beneficial, particularly if there is a substantial complexity gap between the student network and the
teacher network employed to supervise the student network. Given the large disparity in complexity between
the simple student model and the cumbersome teacher model, the student model may not posses the capacity
to replicate the performance of the teacher network. Furthermore, a highly complex teacher model is more
confident in its predictions and thus, making the logits less soft, reducing the effectiveness of knowledge
distillation. Therefore, a solution to bridge the teacher-student network gap is to introduce a teacher-assistant
network in the indoor positioning scheme [29]. It is crucial to note that the teacher-assistant network will act
as an intermediary network and hence, the size and complexity of the network must lie between that of the
student network and the teacher network.

The working principle of the teacher-assistant knowledge distilled CNN-based positioning system is
quite similar to the working principle of knowledge distilled CNN-based positioning system discussed in
section 2.2. However, the student network does not directly receive the knowledge from the teacher network.
Instead, the information passes through the teacher-assistant network first and only then, the teacher-assistant
network will pass down the useful knowledge to the student network. During the training of the teacher-
assistant network, the cost function applied by the teacher-assistant network can be formulated as (8):

LTA_TAKD = aLCE (Z?a' yn) + BLKD (Z?a' Z?) (8)

where Lcg (22, y™) represents the cross-entropy loss between predicted output of the teacher-assistant
network and its ground truth, and Lk, (27, zF) is the distillation loss. The significance of L.z (z},, y™) and
Lgp(z%,, z}) is represented by a and 8, respectively, where is « = 1 — g and a € [0,1]. The distillation loss
between the teacher-assistant network and teacher network is expressed as (9):

Lygp(2tq, 2t) = T?Dyy, (fTs—Softmax (i), fTS—Softmax (=) %)

where z 7, and z7 are the logit vector of the nth sample generated by the teacher-assistant network and the
teacher network, respectively.

Subsequently, the student network is trained by leveraging the information provided by the ground
truth and the information acquired from the soft logits of both the student and teacher networks. The
following loss function is utilized when training the student network as (10):

L37TAKD = qLLop (23, y™) + BLip (25, 21,) (10)

where L. (z%, y™) represents the cross-entropy loss between predicted output of the student network and its
ground truth, and Lgp (22, z7,) is the distillation loss. The significance of Lgz (2%, y™) and Ly, (2%, 27,) is
represented by a and 3, respectively, where is « = 1 — g and a € [0,1]. The distillation loss between the
student network and teacher-assistant network is written as (11):

Lyp (23, 2¢,) = TZDKL (fTS—Softmax (z%), fTS—Softmax (%) (11)

where z7 and z}, are the logit vector of the nth sample generated by the student and the teacher-assistant
network, respectively.

3. EXPERIMENTAL ENVIRONMENT

In real-world scenario, the indoor environment is dynamic and wireless signal tends to fluctuate
with changes that occur in the indoor space, i.e., change in furniture placement, addition of obstacles and
object movements. Since the aim of this work is to study the feasibility of the knowledge distilled positioning
schemes in dynamic indoor environments, the dataset required must consist of the RSS map gathered in the
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same space with at least two different set ups. Therefore, we have decided to utilize the hybrid-fingerprint data
layout change (HDLC) dataset [31] because this dataset provides training and testing data with different layouts.
The layout used to train the positioning systems is without any obstacles and it will be referred as the original
layout. In order to evaluate the performance of the positioning systems, the considered systems will be tested
with the original layout as well as another layout that contains obstructions, referred to as altered layout. The
obstructions comprise partition boards with 1.8 m in length, 1.5 m in width, and 0.0127 m in thickness.

The measurement campaign for this dataset was conducted in the Faculty of Engineering (FOE),
Multimedia University, Cyberjaya and calibration point was set on the ground, first and second floor of Wing C
of the FOE building. There are 96 RPs established in the ground floor and 144 RP each in the first and second
floor, resulting in a total of 384 RPs altogether. Note that all of the RPs are evenly spaced, at a distance of 1 m.
To ensure that a full range of delectable RSSI were captured, 30 samples were gathered at each RP, whereby
20 samples were stored as training data and the remaining 10 samples being stored as testing data. There are
42 Wi-Fi APs and 17 BLE beacons used to transmit signals. The RSSI readings from the Wi-Fi APs and BLE
beacons are stored along with the floor level, x-coordinate and y-coordinate of RPs, resulting in a database
with 62 attributes. The entire floor plan of the indoor space along with the arrangement of partition boards is
illustrated in Figure 1. Figures 1(a) to (c) are the floor plans for the ground floor, first floor and second floor,
respectively.
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Figure 1. Floor plan of the experimental environments with partition board; (a) ground floor, (b) first floor,
and (c) second floor
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4.  SIMULATION SETUP
4.1. Convolutional neural network model configuration

For this study, three CNN models were established, labelled as the teacher model, student model and
the teacher assistant model. Python 3.7.12 is utilized to carry out the simulations and Keras 2.7.0 is used to
established the deep learning models. The configuration of the three models is tabulated in the Table 1. The
models are presented in the order of decreasing complexity: teacher model, teacher-assistant model, and
student model; whereby the teacher model, teacher-assistant model and student model consist of six
convolutional layers, four convolutional layers and one convolutional layer, respectively.

Table 1. Configuration of models considered
CNN model Settings

Teacher No of convolutional layers: 6
Filter size: 2x2
No of filters: 4,4,8,8,16,16
Activation function after convolutional layers: ReLU
No of max pooling layers: 3
Kernel size: 2x2
Strides: 1x1
Hidden layer: 500 (dropout=0.3)
Output node: 384 nodes

Teacher-assistant No of convolutional layers: 4
Filter size: 2x2
No of filters: 4,4,16,16
Activation function after convolutional layers: ReLU
No of max pooling layers: 2
Kernel size: 2x2
Strides: 1x1
Hidden layer: 500 (dropout=0.3)
Output node: 384 nodes

Student No of convolutional layers: 1
Filter size: 2x2
No of filters: 32
Activation function after convolutional layers: ReLU
No of max pooling layers: 1
Kernel size: 2x2
Strides: 1x1
Output node: 384 nodes

Four positioning schemes, namely CNN-IPS (TM), CNN-IPS (SM), KD-CNN-IPS and TAKD-
CNN-IPS, were developed by utilizing either a single basic model or a combination of the basic models.
More specifically, the first scheme is the CNN-IPS (TM) and it solely employs the teacher CNN model. The
second scheme is the CNN-IPS (SM) and it comprises only the student model. These two schemes, CNN-IPS
(TM) and CNN-IPS (SM) serve as the baseline models and are expected to exhibit a trade-off between the
positioning accuracy and execution time. On the other hand, the other two schemes incorporate knowledge
distillation. KD-CNN-IPS framework is designed by having the student model trained under the supervision
of the teacher model so that the student model is able to exploit the dark knowledge from the teacher model.
Lastly, TAKD-CNN-IPS utilizes all the three models and the knowledge is transferred from the teacher
model to the student model by passing it through the intermediary teacher-assistant model. Table 2 provides a
clearer depiction of models utilized and the training process for each of the positioning schemes considered
in this study. To simulate layout change, the positioning systems are trained and tested with datasets that are
collected under two distinct arrangements for the same indoor space. The two different layouts can be
produced by introducing obstacles, such as divider boards. As mentioned in section 3, the positioning
schemes are initially trained using the original layout dataset. Subsequently, to assess their practicality in
dynamic environments, they are tested using the altered layout dataset.

Table 2. Models utilized in the positioning schemes

Positioning scheme Models
CNN-IPS (TM) Teacher
CNN-IPS (SM) Student
KD-CNN-IPS Teacher > student
TAKD-CNN-IPS Teacher - teacher-assistant - student
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4.2. Performance metrics

The performance metrics used to measure the practicality of the positioning schemes in this work
include location class accuracy, floor accuracy, average positioning error and execution time. The location
class accuracy y. and floor accuracy yrare defined by (12) and (13), respectively:

Yo = x—; X 100% (12)
Ve = x—: X 100% (13)

where N is the number of correctly predicted class samples, Ngis the number of correctly predicted floor
samples and Ny is the total number of test samples. As for the average errors, both 3D and 2D positioning
errors are considered to provide a comprehensive analysis and they are expressed by (14) and (15),
respectively:

esp = 3-Znls V Gn = )2 + G = I)? + (Zn = 20)? (14)
1 = S = =~
e2p = 3- YL@ — %) + Gy — 97)° (15)

where (X, ¥, Z,) and (X, ¥, Z,) are the ith true and predicted coordinate, respectively.
To provide a deeper insight into the impact of indoor layout change on the systems’ localization
performance, the degradation in location class accuracy due to the layout change is calculated as (16):

Ayc =vE —vé (16)

where y¢ and y# represent the location accuracy of the original layout and altered layout, respectively.
Intuitively, a positive value of Ay implies a reduction in accuracy and vice versa.

Since the primary goal of this study is to examine whether the knowledge distilled frameworks can
still improve the localization performance of a simple CNN positioning scheme after the wireless conditions
of the indoor space has altered, two evaluation metrics, which are the performance gains of the systems
against the CNN-IPS (SM) in terms of 3D average positioning error P;, and the performance gains of the
systems against the 2D average positioning errors, are introduced. The performance gains are formulated as (17):

ef—el/

P, = %55 % 100% 17)

&

where e? is the average positioning error of baseline CNN-IPS (SM) and e is the average positioning error
of the system considered; P, represents the 3D performance gain if € = 3D, whereas it signifies the 2D
performance gain if ¢ = 2D.

5. RESULTS AND DISCUSSION

This section investigates the impact of layout change on the positioning performance of KD-CNN-
IPS and TAKD-CNN-IPS. It is worth highlighting that these knowledge distilled schemes are supposed to
produce better positioning accuracy than a CNN network of the same complexity and possess a shorter
executing time than a CNN model with higher complexity. Thus, to investigate whether the schemes are
working as intended in the given circumstances, a thorough analysis is conducted by benchmarking the
performance of the two schemes against both CNN-IPS (TM) and CNN-IPS (SM). Table 3 tabulates the
location class accuracy, training time and testing time of the CNN-IPS (TM) and CNN-IPS (SM). During the
training phase, both schemes are trained using the data from the original layout. As anticipated, the results
indicate that CNN-IPS (TM) achieves a higher training accuracy compared to CNN-IPS (SM) as its network
incorporates more convolutional layers. However, this improvement in accuracy comes at the expense of
longer training time. Specifically, CNN-IPS (TM) exhibits a 28.61% higher training accuracy than CNN-IPS
(SM), but the training time is increased by 87.34% as a trade-off. In the testing phase, where the two schemes
are evaluated using the testing data of the original layout and the altered layout, it is observed that CNN-IPS
(TM) outperforms CNN-IPS (SM) in terms of testing accuracy for both layouts. Additionally, the testing time
of CNN-IPS (TM) is also higher than that of the CNN-IPS (SM) for both layouts. These observations are
consistent with the results obtained during the training phase.
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Table 3. The classification performance of CNN-IPS (TM) and CNN-IPS (SM)

Training phase Testing phase
Technique o . Original layout Altered layout
e  Tme®) o) Times)  ye(%)  Time(s)
CNN-IPS (TM) 35.52 51.47579 12.55 14271 4,77 1.3119
CNN-IPS (SM) 6.91 6.5139 6.35 0.6959 331 0.7181

The results in Table 3 clearly demonstrate that the size and structure of CNN play a crucial role in
ensuring good localization performance. Generally, a larger and more complex network leads to a more
accurate positioning system at the price of increased training and execution time. This is because a more
complex model typically possesses an enhanced capability to decipher the underlying complex nonlinear
relationship between the RSSIs and the user locations. However, the complexity of such model may pose a
significant challenge when it comes to practical implementation on resource-constrained devices. To address
the inherent trade-off between localization performance and execution time, the knowledge distilled
positioning frameworks were designed. These frameworks aim to strike a balance by improving the
classification accuracy and reducing the positioning error of a simple CNN-based localization system while
maintaining the execution time of the system. Another important observation from Table 3 is that the
positioning accuracies for both the CNN-IPS (TM) and CNN-IPS (SM) degrade when tested with the altered
layout. When the CNN-IPS (TM) and CNN-IPS (SM) are assessed using the data from the altered layout, the
positioning accuracy of CNN-IPS (TM) and CNN-IPS (SM) decreases by 7.78% and 3.04%, respectively.
This performance degradation is due to the presence of partition boards that obstruct certain APs, resulting in
signal transmission being influenced by reflections and fading. Consequently, the distribution of signal vector
received at each point of interest might deviate from those stored in the database. As mentioned previously,
the accuracy of a fingerprint-based localization system heavily relies on the database. Hence, any changes to
the layout of the indoor space will inevitably result in a deterioration of the positioning systems’
performance.

In this work, more emphasis is placed on the localization performance of the knowledge distilled
positioning schemes as the primary objective is to examine the robustness of these schemes to changes in the
indoor layout. Figure 2 shows the degradation in location class accuracy caused by the layout change for
CNN-IPS (TM), CNN-IPS (SM), KD-CNN-IPS, and TAKD-CNN-IPS. As expected, all schemes are
negatively affected by the layout change. Based on Figure 2, CNN-IPS (TM) suffers the highest degradation
in location class accuracy from the layout change. It is also observed that the impact of layout changes on
CNN-IPS (SM) and KD-CNN-IPS are almost similar. More specifically, when the indoor layout varies,
CNN-IPS (SM) suffers a performance degradation in positioning accuracy of 3.04%, while the positioning
accuracy of KD-CNN-IPS drops by 3.05%. In comparison to CNN-IPS (SM) and KD-CNN-IPS, the
performance loss due to layout change is more severe for TAKD-CNN-IPS, with a performance loss of
3.44%. The reason for these performance trends can be elucidated as follows. When the layout of the indoor
environment changes, the trained teacher model’s ability to capture the relationship between RSSIs and
locations for the new environment deteriorates. This issue is exacerbated when TAKD-CNN-IPS is adopted
as it involves an additional network than KD-CNN-IPS, i.e., teaching assistant. The modeling errors will be
propagated from the teacher model to the teacher assistant and subsequently to student model, which will
further degrade the RSSs and location relationship modeling capability. As a result, TAKD-CNN-IPS
experiences a more pronounced decrease in performance due to the layout change.

Aside from the location class accuracy, it is important to examine the performance of other
evaluation metrics such as the positioning error and the floor accuracy as these metrics can provide valuable
insight to the study. Table 4 presents the positioning performance of different schemes considered during the
testing phase, encompassing floor accuracy, 2D and 3D average positioning errors for both the original and
altered layouts. From the Table 4, it is evident that when the layouts of the training and testing phases are the
same, all schemes achieve 100% accuracy in predicting the correct floor. Since the floor accuracies for all
schemes are 100%, the 2D and 3D average positioning errors are identical. Both the 2D and 3D average
positioning errors follow a decreasing trend in the sequence of CNN-IPS (SM), KD-CNN-IPS, TAKD-CNN-
IPS, and CNN-IPS (TM). The performance gains of CNN-IPS (TM), KD-CNN-IPS and TAKD-CNN-IPS
over the CNN-IPS (SM) in terms of 3D and 2D average positioning error during the testing phase are
illustrated in Figures 3 and 4, respectively. Notably, the incorporation of knowledge distillation in KD-CNN-
IPS and TAKD-CNN-IPS lead to an improvement in the positioning error of the baseline CNN-IPS (SM) by
3.46% and 10.04%, respectively. The superior performance of KD-CNN-IPS and TAKD-CNN-IPS over
CNN-IPS (SM) can be attributed to their ability to retain the high-quality performance of the complex teacher
model through the utilization of softened probabilities acquired from the teacher network. By harnessing
these softened probabilities, which encapsulates richer inter-class relations, the learning process is
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significantly enhanced. Furthermore, the reason that TAKD-CNN-IPS outperforms its KD-CNN-IPS
counterpart in this scenario is due to the utilization of an intermediate network as teacher assistant. This
enables the student model of TAKD-CNN-IPS to acquire a greater amount of knowledge by being trained
with the soft distribution generated by a network that possesses a closer capacity, resulting in lower
distillation and student losses.

10

Ay, (%)

N (.»J

[

CNN-IPS (TM) CNN-IPS (SM) KD-CNN-IPS TAKD-CNN-IPS
Technique

o

Figure 2. The loss in testing accuracy performance for different technique considered resulting from
modifications in the indoor layout

Table 4. The floor accuracy and average positioning error evaluated for both the original and altered layouts
during the testing phase

Original layout

Altered layout

. 3D average Floor 2D average 3D average 2D average
Technique S S . Floor ol

positioning accuracy positioning positioning accuracy (%) positioning

error (m) (%) error (m) error (m) Y error (m)

CNN-IPS (TM) 2.5647 100 2.5647 7.9133 78.67 5.6052
CNN-IPS (SM) 3.4078 100 3.4078 10.1980 79.48 6.1182
KD-CNN-IPS 3.2900 100 3.290 9.0192 82.89 8.0509
TAKD-CNN IPS 3.0655 100 3.0655 11.6409 75.47 8.0739
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Figure 3. The performance gains of CNN-IPS (TM), KD-CNN-IPS, and TAKD-CNN-IPS over the CNN-IPS

.
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(SM) in terms of 3D average positioning error during the testing phase
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Figure 4. The performance gains of CNN-IPS (TM), KD-CNN-IPS, and TAKD-CNN-IPS over the CNN-IPS
(SM) in terms of 2D average positioning error during the testing phase

When the indoor layout is altered, it can be observed that the floor accuracies and the average
positioning errors for all techniques degrade. More explicitly, KD-CNN-IPS demonstrates the highest floor
accuracy of 82.89%, followed by CNN-IPS (SM), CNN-IPS (TM), and TAKD-CNN-IPS with floor
accuracies of 79.48%, 78.67%, and 75.47%, respectively. From the findings, it is evident that TAKD-CNN-
IPS suffers the highest degradation in terms of floor accuracy, followed by CNN-IPS (TM) and CNN-IPS
(SM), while KD-CNN-IPS experiences the smallest degradation. These findings indicate that although the
CNN-IPS (TM) has the best performance without any layout change, its performance is more susceptible to
the layout change as compared to the KD-CNN-IPS. Although CNN-IPS (TM) does not have the best floor
accuracy among the positioning schemes under consideration, it still provides the lowest 2D and 3D
positioning errors. Nevertheless, CNN-IPS (TM) shows a large performance degradation in terms of average
positioning error, specifically the 3D average positioning error. More specifically, CNN-IPS (TM) still
demonstrates a higher degradation of 208.55% as compared to KD-CNN-IPS and CNN-IPS (SM), which
degrades by 174.13% and 199.25%, respectively. This further substantiates that, in comparison to the KD-
CNN-IPS and CNN-IPS (SM), the CNN-IPS (TM) positioning scheme is more sensitive to the environmental
dynamics. It also implies that under more severe changes in the indoor environment, CNN-IPS (TM) may
perform worse than the KD-CNN-IPS scheme.

From the performance gains of CNN-IPS (TM), KD-CNN-IPS and TAKD-CNN-IPS over the CNN-
IPS (SM) in terms of 3D and 2D average positioning error depicted in Figures 3 and 4, another observation
that can be seen is that the KD-CNN-IPS framework exhibits a lower 3D average positioning error than
CNN-IPS (SM), but it has a higher 2D average positioning error. Considering that the wrongly predicted
floor is discarded in the calculation of 2D average positioning error, it is safe to presume that most samples
which CNN-IPS (SM) provided an incorrect floor prediction carry a significant distance error. Ultimately,
this implies that knowledge distillation implemented in the KD-CNN-IPS still has the ability to improve the
positioning performance of the baseline CNN-IPS (SM). Conversely, the knowledge distillation framework
implemented in the TAKD-CNN-IPS fails to bring any improvement over the CNN-IPS (SM). In fact, both
the floor accuracy and average positioning performance of TAKD-CNN-IPS are worse than those of the
CNN-IPS (SM). When the indoor layout changes, wireless signals at every RP are affected differently,
depending on the adjustments made. As a result, the wireless signal distribution could be entirely different
from the radio map. It is well known that the performance of fingerprint-based localization depends greatly
on the radio map. Higher error counts may result from a wide disparity between the target RSSI vector and
the radio map. Evidently, the training process of the TAKD-CNN-IPS occurs sequentially. The student model
in the positioning scheme learns from teacher-assistant model that is pre-trained by a teacher model. If an
error is made during the learning process of the teacher model, the same error will undoubtedly be passed
down to both the teacher-assistant model and student model as proclaimed in [32], leading to a substantial
error accumulation. This argument would justify the deterioration in positioning accuracy of TAKD-CNN-
IPS.

As mentioned previously, the knowledge distilled positioning schemes are designed to reduce the
complexity of deep learning techniques. In comparison to the conventional deep learning strategies,
knowledge distilled positioning approaches are more practical to be deployed on devices with limited
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resources. This is due to their reduced computational requirements, resulting faster positioning times. Such
efficiency is particularly crucial for real-time positioning systems to ensure an excellent user experience.
Table 5 provides insights into the execution time of the different positioning techniques examined. The
results in Table 5 reveal that KD-CNN-IPS and TAKD-CNN-IPS have almost similar execution times to the
CNN-IPS (SM) for both the original and altered layouts. This is because only the student model of KD-CNN-
IPS and TAKD-CNN-IPS are executed during the online localization phase. Since the student model of KD-
CNN-IPS and TAKD-CNN-IPS have the same architecture as CNN-IPS (SM), the execution times of all
three positioning systems will be similar. Furthermore, due to the substantially simpler architecture of the
student model employed in CNN-IPS (SM), KD-CNN-IPS, and TAKD-CNN-IPS compared to CNN-IPS
(TM), the execution times for all three systems for both the original and modified layouts are only
approximately 50% of those required by CNN-IPS (TM). This solidifies the effectiveness of knowledge
distilled frameworks in minimizing the execution time, which is vital for real-time positioning systems to
deliver a seamless user experience.

Table 5. Execution time of different positioning schemes tested on original and altered layouts during the
testing phase
Execution time (s)

Technique Original layout  Altered layout
CNN-IPS (TM) 14271 1.3119
CNN-IPS (SM) 0.7181 0.6959
KD-CNN-IPS 0.7000 0.6866
TAKD-CNN-IPS 0.7157 0.6857

6. CONCLUSION

This paper investigates the robustness of knowledge distilled frameworks, specifically
KD-CNN-IPS and TAKD-CNN-IPS, to layout changes and obstacles that could obstruct the wireless signal
propagation, resulting in attenuation and multipath fading issues. To assess their robustness, datasets with
different training and testing environments are utilized. The knowledge distilled frameworks rely on a
pre-trained network known as the teacher network to transfer the informative knowledge. The teacher
network indicated by CNN-IPS (TM) along with CNN-IPS (SM), which is a positioning system with the
same architecture as the student model of KD-CNN-IPS and TAKD-CNN-IPS, are used as baseline models
for the knowledge distilled framework.

Our results reveal that in a static indoor environment, both the knowledge distilled frameworks
exhibit superior positioning accuracy than CNN-IPS (SM) and maintain similar execution time as CNN-IPS
(SM). In addition, their model complexities are lower and their execution times are shorter compared to those
of CNN-IPS (TM), rendering them appealing solutions for deployment on resource-constrained devices.
However, when the layout of the indoor environment changes, although all the knowledge distilled schemes
are still able to maintain the execution time of CNN-IPS (SM), only KD-CNN-IPS manage to achieve a
better localization performance than CNN-IPS (SM). Conversely, due to the more severe propagation of
RSSIs and location modeling errors incurred by the teacher assistant in TAKD-CNN-IPS, TAKD-CNN-IPS
fails to perform as anticipated when the layout of the indoor environment is altered, resulting in a 14.15%
degradation in average positioning error. Aside from that, our results demonstrate that the KD-CNN-IPS is
less vulnerable to layout change compared to other schemes, as evidenced by its minimal degradation when
the indoor layout changes. Consequently, KD-CNN-IPS is a preferable choice for dynamic environments
compared to TAKD-CNN-IPS, whereas TAKD-CNN-IPS is more suitable for static environments.

The insights derived from this work are highly valuable for both the research community and
industry. They empower designers and operators of IPS to enhance the system’s robustness to layout changes
and consistently deliver precise real-time location-based services on resource constrained devices, such as
edge devices, smartphones and embedded sensor nodes. These location-based services encompass a wide
range of applications, which include but are not limited to positioning, tracking, and navigation. Furthermore,
the insights uncovered in this study hold significant implications across diverse domains, such as activity
recognition, facial recognition, and autonomous drone and self-driving car technologies. Future research
endeavors may explore the integration of lifelong learning mechanisms into KD-CNN-IPS and
TAKD-CNN-IPS to enhance their robustness in dynamic environments.
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