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1. INTRODUCTION

The human hand is one of the most complex parts of the human body composed of 29 bones
combined with an advanced muscular and ligamentous system which makes it difficult to study [1]. One of
the main functions of the human hand is the object manipulation that allows the performance of several
activities of daily living (ADLs). Grasping is an essential part of object manipulation as it enables the initial
contact and control of the object. Once a proper grasp is achieved, the hand becomes capable of performing a
wide range of manipulation actions, facilitating interaction with both the object and the environment.
However, human grasping is a major challenge for people with prosthetic hands or who have suffered hand
diseases or injuries. The current state of commercially available prosthetic hands is far from approaching
human-level dexterity, even for relatively simple grasping activities [2]. The limited reliability, functionality
and durability of prosthetic hands have resulted in low utilization or abandonment of sophisticated devices
[3]. On the other hand, a typical consequence of traumatic brain injuries, degenerative brain diseases and
strokes is a decreased ability to grasp and manipulate objects [4]. People with impaired hand function have a
significantly lower quality of life because they are unable to perform ADLs, so the physical rehabilitation
process is of utmost importance. Therefore, the study of human grasping is an important subject in
biomechanics and medical rehabilitation, for the design of realistic prosthetic hands, the assessment of hand
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function and the development of specific rehabilitation programs [5]-[7]. In recent years, human hand motion
(HHM) analysis has become an important tool for understanding human grasping. Several studies on HHM
have been conducted in the areas of robotics, biomechanics, occupational therapy, neuroscience and artificial
intelligence [8], [9]. HHM analysis uses several sensing technologies that provides information about hand
position, force, and velocity over time for the development of computational models to study these motions
[8]. Specifically, force information plays a vital role in the analysis of HHM, and particularly in the context
of human grasping. One of the most widely used sensors for determining hand forces in HHM are the force
sensing resistors (FSRs). The FSRs are robust polymer thick film (PTF) devices with piezoresistive sensing
technology, which exhibit a reduction in resistance when force is exerted to their active area [10]. FSRs
consist of a pair of split membranes with an adhesive layer that produces an air gap between them. One
membrane is coated with a special resistive ink, while the other is printed with an interdigitated circuit
composed of multiple electrically distinct traces. The value of the FSR sensor is inversely proportional to the
applied force. When the sensor is pressed, the resistance of the FSR decreases as the force increases, due to
the conductive ink within the sensor. Additionally, FSR sensors can measure both dynamic and static forces
[11]. Recently, in order to measure and analysis human hand forces FSRs sensors have been used in several
applications in medical rehabilitation and biomechanics [12]-[17]. Lately, the use of machine learning and
deep learning (DL) algorithms using force data from FSRs, surface electromyography (SEMG), and force
myography (FMG) sensors have been used to improve the accuracy rate for the detection and classification of
Human grasp forces and motions. However, there has been limited research conducted in this area.
Li et al. [18] measured pressure distribution patterns using an array of 32 FSR sensors placed around the
forearm in combination with a support vector machine (SVM) algorithm for the classification of different
finger motions including grasping motions. On the other hand, Wan et al. [19] classify 21 distinct hand
gestures developing a k-nearest neighbor (kNN) classification algorithm using forearm electromyography
(EMG) signals acquired with a Myo armband and muscle pressure signals from the back of the hand acquired
with an array of five FSRs. Kakoty and Hazarika [20] used an SVM algorithm based on a radial basis
function (RBF) with forearm EMG signals to classify six different grasp types used during daily living
activities. Coskun et al. [21] proposed a convolutional neural network model (1D-CNN) to classify six grasp
types using as features surface EMG and sEMG signals. Jiang et al. [22] classified different types of grasping
by a linear discriminant analysis (LDA) model using an FMG system composed of an array of 16 FSR
sensors placed on the wrist. Therefore, in this study we propose the use of a deep neural networks (DNNSs)
model for multiclass classification using fingertip force as features unlike previous studies that have been
focused in forearm muscle force. Although traditional machine learning classification algorithms, such as
SVM, random forest (RF), and KNN, have been successfully used in clinical applications. In addition, DNNs
have significant advantages in transforming low-level features into complex high-level features across
neurons and thus learning more complex and nonlinear patterns [23], [24]. The aim of this work was to
classify several grasp types used in ADLs based on finger force data. Therefore, we presented the
development of a low-cost and novelty FSR glove system for finger forces measurement. The force system
was evaluated during the performance of six test that involves several grasps used in ADLs in healthy
subjects. Subsequently, the dataset obtained was used for the development of a DNN model for the
classification of the six grasp types using as features the force data obtained with the FSR glove system. This
study contributes to the development of a novel high-performance DNN model capable of recognizing and
classifying finger force patterns associated with different types of grasping used in ADLs. These advances
offer significant advantages for the design of prosthetic hands and rehabilitation programs tailored to subjects
with upper extremity impairments.

2. MATERIALS AND METHODS
2.1. The proposed FSR glove system

The design of the FSR Glove systems is described in this section. The FSRs were placed at the distal
segments of the fingers because the purpose of the system was to study the force exerted on the fingertips
during the grasping of different items in diverse activities. Therefore, based on size and the functional
characteristics of the sensor, the FSR 07 model (Ohmite Manufacturing Company, USA) was chosen. Model
FSR 07 has the following features: a thickness of 0.375 mm (including adhesive), an active area of 14.7 mm
and a sensor overall length of 56.34 mm and overall width of 18.0 mm.

2.1.2. Signal conditioning

At this phase, a sensor conditioning circuit was built to generate a variable voltage as a function of
the force applied on the sensor. Common conditioning methods include using a voltage divider and the
inverting operational amplifier (op-amp) circuit. However, several studies [25]-[27] have demonstrated that
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inverting op-amp circuits with FSRs exhibit linear behavior between voltage and pressure at both low and
high values. Since the study activities included objects of various sizes and the range of pressures would be
different in each fingertip, we decided to use an inverting op-amp for signal conditioning. In this
configuration, the output voltage (VOUT) exhibits an opposite polarity to the reference voltage (VREF).
Furthermore, as the resistance of the FSR (RFSR) increases, the VOUT decreases proportionally.
Consequently, when no pressure is applied in this configuration, the circuit generates zero VOUT as a result
of the high RFSR impedance [28]. Nonetheless, VOUT increases as force is exerted, either significantly or
minimally, based on the resistor value (RG) selected. In (1) delineates the amplifier’s output.

Vout = — ﬁ " VREF (1)
REsrR

The inverting op-amp configuration included a combination of a voltage regulator, an op-amp, and a
resistor. We chose the LM324 quad op-amp device for its cost-effectiveness and low voltage requirements.
Subsequently, the appropriate RG was determined taking into account the following considerations. Since the
microcontroller are limited to a power input of 5 V, exceeding this voltage would cause saturation and render
the circuit unusable. Additionally, the highest fingertip strength applied on the FSRs was determined with a
multimeter, reaching an RFSR value of 100 Q. Therefore, a RG of 150 Q was selected to ensure a VOUT
close to 5 V. Finally, we use a first-order active low-pass filter for attenuating high-frequency interference. A
cutoff frequency of 60 Hz was considered adequate for reducing the signal interference from the electrical
circuit. For this purpose, a 22 uF capacitor was used.

2.1.3. Calibration

Finally, FSR sensors underwent static calibration prior to application to minimize inaccuracies;
multiple studies have used comparable calibration procedures [14], [29], [30]. Throughout the test, the
VOUT was recorded using the parallax data acquisition tool (PLX-DAQ) application. Next, calibrated
weights of different magnitudes were then mounted on each FSR for generating a plot of the relationship of
the exerted force to the VOUT, which resulted in the calibration curve equations. The results indicate that the
VOUT increases proportionally to the amount of force applied. In addition, the derived equations offer the
possibility to extend the findings to higher pressures as needed. Coefficients of correlation and calibration
equations are shown in Table 1.

Once the FSR signals were conditioned, we proceed to the data acquisition phase. The
transformation from analog to digital signals followed these steps: the inverter op-amp output pins were
connected to the analog ports of an Arduino Nano to transform the analog voltage using a 10-bit analog-to-
digital converter (ADC). Next, using the equations found during the calibration process, we created a sketch
to read the analog inputs of each FSR sensor and convert them into force values. Once the force values were
acquired, they were transferred wirelessly to a user friendly graphic user interface created in unity v.2020.2.1.
The HC-05 (bluetooth module) was used for this purpose, employing the serial port protocol (SPP). Sensor
data obtained during each of the tests were collected at a frequency of 50 Hz and stored in a file of
comma-separated values (CSV). Next, the data was filtered with a 5-Hz low-pass second order Butterworth
filter, similar to previous studies of HHM analysis [31]-[34]. Finally, the FSR sensors were mounted in a
flexible glove on the distal segments of the fingers.

Table 1. Calibration equations for FSR sensors
Sensor  Calibration equation  Coefficient of correlation (R?)

1 3.6915x — 0.2895 0.994
2 3.6497x — 0.3745 0.991
3 3.7318x — 0.6047 0.992
4 3.7741x — 0.6082 0.994
5 3.7543x — 0.3652 0.990

2.2. Participants

Twenty-five healthy individuals participated in this study, 13 women and 12 men (mean age:
35.4+11.6, hand length (HL): 186.7 cm+13.1 cm, hand breadth (HB): 83.1 cm£7.6 cm). The inclusion criteria
include the following requirements: right-handed, being at least 18 years old, having no history of hand
disorders or injuries, and reported to be 100% functional with the right hand. The study was performed with
the approval of the Ethics Committee of the Universidad Politécnica de Uruapan (UPUCE/F004/2022) and
all subjects signed an informed consent for inclusion after being informed of the protocol which was in
accordance with the declaration of Helsinki.
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2.3. Experimental setup

The study was conducted at the Universidad Politécnica de Uruapan facilities. The HL and HB were
determined in each subject using a measuring tape. Participants were fitted with the FSR glove on the
right-hand, the force system was mounted on the wrist with a velcro strap, and bluetooth communication with
the user interface was tested (Figure 1). Participants were then instructed to hold, grasp, and lift each item
using the wearable device. Each participant performed the six tests three times each. Six items commonly
used in ADLs were selected for testing in this study. The items varied in size, weight, and shape, requiring
different grasping configurations and forces during each test. The grasp types used during each test were
classified according Cutkosky’s grasp taxonomy [35]. The characteristics of the objects and the grasp
classification are shown in Table 2. The force data was determined and stored in a CSV file throughout the
entire duration of each test for further statistical analysis. At the beginning of each trial, the hand was placed
horizontally on a table in a neutral position. Next, in the pre-grasp phase, no force was exerted on the object;
therefore, it was not taken into consideration in the analysis. Then, during the grasping phase, the maximum
force is reached when the object is lifted. Finally, as the participant drops the item, the force gradually
decreases and the fingers return to their initial position. As a result, the peak force values from the three trials
performed on each subject were averaged for each task. We identified these averaged values as the subject’s
maximum finger force during a task. The maximum finger forces of all 25 subjects were then averaged.

i\
f—

Figure 1. A participant wearing the FSR glove system

Table 2. Objects description and grasp classification of each test

Test Item Size Weight (g) Grasp type
1 Wooden block 10 cm?® 490 Large diameter heavy wrap
2 Wooden block 7 cm?® 195 Medium wrap
3 Wooden block 25cmd 6.5 Tripod grasp
4 Tennis ball Diameter, 6.7 cm 60 Sphere precision grasp
5 Marble Diameter, 1.8 cm 5.4 Thumb+1 finger pinch
6 Plastic tumbler with water  Diameter, 7 cm 320 Sphere power grasp

2.4. Deep neural network

DL is a subfield of machine learning, which is based essentially in artificial neural networks
(ANNS). In turn, an ANN is a computer model inspired on the flow of data processed throughout neurons in
the human brain [36]. The structure of an ANN is represented as a set of layers, which are defined as input,
hidden and output layers. The neurons in the input layer corresponds to the number of features in the dataset
and passes them to the rest of the network. The hidden layers are intermediate layers between the input and
output layers and process the data. Finally, the number of neurons in the output layer is the same as the
corresponding outputs connected to each input, and these neurons produce the final results. However, when
an ANN has multiple hidden layers between the input and output layers, this is defined as DNNs. DNNs are
often employed for their ability to model complex non-linear relationships accurately and adaptively in
classification tasks [24], [37].

2.4.1. Data preprocessing

The DNN model were developed in Anaconda (Anaconda Inc., TX, USA). Once the force data were
collected with the FSR glove system, we started the process to data pre-processing. Importantly, in the DNN
classifier we used the three maximum force values obtained for each subject during each of the six tests so a
total of 450 samples composed the dataset. Initially, we distinguish input and output variables within the data
set, commonly referred to as features and responses, respectively. In contrast, the response variables were the
classes corresponded to the grasp type, so the model has six outputs labeled. The dataset has 11 inputs also
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known as features, that includes demographic characteristics as age, gender, HB, and HL. In addition, the
weight of each object and the force values of each finger were also considered as features of the model. Next,
the categorical feature (gender) was was then converted to binary multidimensional vectors through the one-
hot encoding technique. The classes in the dataset were balanced with 25 samples in each class and no
missing values were found, so the 450 samples were employed in the DNN. Subsequently, the DNN’s overall
performance was evaluated using two validation methods. First, we use the hold-out method, in which data
set is divided into two parts: a training set and a test set. Therefore, we used 75% of the data as training set
and the remaining 25% as test set. In addition, we used k-fold cross-validation (CV) method. This method
enables us to evaluate and test the performance of our model in predict data on the test set (unseen data). The
k-fold CV method is a follows the data sample is split into k equal number of folds. Then, the model used k-1
of the folds as training set and the remaining fold as the test set; this process is repeated k times, using each
fold as a test set only once. During each iteration, a performance measure is computed e.g. accuracy.
Therefore, the performance metric obtained using k-fold CV is the mean obtained during all interactions.

2.4.2. Deep neural network configuration

The DNN classifier has five layers which are the input layer, three hidden layers, and the output
layer composed as follows. The input layer was defined according to the features in the dataset therefore 11
inputs were used. In addition, three hidden layers were used with the “rectified linear unit” (relu) funtion with
30 neurons each. Furthermore, this is a multi-class classification problem with six outputs, therefore six
neurons were used in the output layer using the activation function (softmax). In the DNN we used the
dropout technique, which is a powerful method to prevent overfitting and efficiently combine a wide range of
neural networks architectures [38]. Therefore, a dropout rate of 20% was used from the input layer to the first
hidden layer. Subsequently, GridSearchCV (GSCV) technique was applied to the DNN classification model
to find the optimal performance of the model. Hyperparameters are adjustable parameters which values
define the model performance and are set before the model training process. One of the most commonly used
computational methods to find the optimal hyperparameters is the GSCV technique. This method analyzes
every possible combination of parameter values of a given model using k-fold cross validation. Finally, the
following metrics were used for evaluate the multi-class classification model: accuracy, precision, recall and
F1-score. In addition, unlike the accuracy metric, which is calculated in the same way as in a binary
classifier, the other metrics of the multiclass classification are calculated as the arithmetic mean of the
individual class metrics [39]. The formulas of the evaluation metrics are shown in Table 3.

Table 3. Formulas of multi-class evaluation metrics
Metric Formula

Accuracy __ TPHTN
TP+FP+TN+FN

Precision  Xhe, Precisiony
K

Recall K_, Recally,
K

F1-score 2 Macro Averaged PrecisionXxMacro Averaged Recall

Macro Averaged Precision”1xMacro Averaged Recall®

3. RESULTS AND DISCUSSION
3.1. Fingertip forces

In this section, we discussed the results obtained with the FSR glove system. The mean maximum
finger forces obtained from performing the six tests are shown in Table 4. Test 1, which used a large
diameter heavy grasp, showed the highest forces in all five digits (thumb 6.2 N, index 3.32 N, middle 4.4 N,
ring 3.04 N, and little 1.85 N). In contrast, similar forces were used in the tests 2 and 6 in the fingers thumb,
index, middle, and ring, as is shown in Figure 2. On the other hand, test 3 (thumb 2.68 N, index 2.43, and
middle 1.60 N) and test 5 (thumb 1.83 N and index 1.46 N) showed the lower forces. In addition, the results
demonstrated that the maximum total force of 18.81 N was applied during the performance of the large
diameter heavy wrap grasp. In this test a power grasp was executed, this grasp is used when it is necessary to
hold an object with an important force and it is executed between the fingers and the palm of the hand.
Furthermore, the fingers flex more, employing flexion at all finger joints and the thumb acting as a buttress
[40]. In contrast, the results showed that the minimum total finger force was found during the performance of
the thumb+1 finger pinch (4.38 N) and the sphere precision grasp (6.71 N). In these tests, a precision grasp
was executed using the terminal pads of the thumb and one or more of the rest fingers [41]. The precision
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grasp involves the execution of delicate and precise movements, requiring the use of less force [42]. On the
other hand, the finger force distribution during each test using different grasp types is shown in Figure 2. The
finger force distribution allows to know the number of fingers used at the moment of grasping an object and
thus classify the type of grasping performed. In addition, we observed a relationship between the number of
fingers used and the object’s size, similar results were found in other studies [43], [44].

Table 4. Descriptive statistics of fingertip forces during the performance of the six tests

Thumb (N Index (N Middle (N Ring (N Little (N
Test Grasp type Mean ( S)D Mean ( )SD Mean ( S)D Mean o )SD Mean ( )SD
1 GT 1 6.20 2.19 3.32 1.79 4.40 1.92 3.04 1.75 1.85 0.99
2 GT_2 4.38 2.16 1.99 1.89 214 1.12 1.35 1.02 0.03 0.11
3 GT_3 2.68 1.64 243 1.23 1.60 1.20 0.18 0.42 0.01 0.04
4 GT 4 3.80 2.02 1.64 149 211 0.79 1.05 0.77 0.05 0.18
5 GT_5 1.83 1.26 2.45 153 0.01 0.04 0.12 0.25 0.02 0.08
6 GT 6 4.43 2.07 1.46 1.05 2.56 1.07 1.09 0.89 0.12 0.26

N=force in newtons; GT_1=large diameter heavy wrap; GT_2=medium wrap; GT_3=thumb+1 finger pinch; GT_4=sphere power
grasp; GT_5=sphere precision grasp; GT_6=tripod grasp; and SD=standard deviation
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Figure 2. Boxplots of the maximum force values of all the fingers during each test

3.2. Deep neural network model

This section presents the results obtained from a DNN model used to classify a set of six different
grasp types commonly used in ADLs. The model utilizes force data collected with the FSR glove system as
features. The classifier was implemented in the following environment, operating system: macOS Sonoma
14, central processing units (CPU): Intel Core i7 (2.6 GHz), and memory: 16 GB RAM.

3.2.1. Hyperparameters selection

In order to obtain the best classifier performance, GSCV technique was applied to the DNN model
using a five k-fold CV. GSCV has proven to be efficient in numerous clinical investigations where machine
learning classification models were implemented [45], [46]. The hyperparameter values obtained were as:
DNN [‘batch_size’: 32, ‘epochs’: 150, and ‘optimizer’: ‘RMSprop’].
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3.2.2. Deep neural network performance in the test set

The best performing hyperparameters obtained were employed to evaluate the DNN classifier
performance in predicting results on the testing set. Table 5 presents the classification report with several
evaluation metrics for the DNN model. The results of the DNN classifier showed a 100% of precision, recall,
and F1-score in the classes GT_1, GT_2, GT_4, and GT_6. In contrast, the classes GT_3 and GT_5 showed a
lower precision (92% and 83%), recall (80% and 94%), and F1-score (86% and 88%), respectively. On the
other hand, the overall performance of the DNN classifier in the test set was similar in precision weighted,
recall weighted, F1-score weighted and accuracy achieving a 96%. On the other hand, the confusion matrix
in Figure 3 shows excellent performance in classifying the GT_1, GT_2, GT_4, and GT_6 classes. On the
other hand, the classification of class GT_3 showed a good performance because 10 % of the samples were
categorized as GT_5 class. In contrast, the classification of class GT_5 showed a regular performance
because 20% of the samples were categorized as GT_3 class.

Table 5. DNN classification report
Evaluation metrics  Class  Precision  Recall Fl1-score
GT 1 1.00 1.00 1.00
GT_2 1.00 1.00 1.00
GT 3 0.92 0.80 0.86
GT 4 1.00 1.00 1.00
GT 5 0.83 0.94 0.88
GT_6 1.00 1.00 1.00

Accuracy 0.96
Macro avg 0.96 0.96 0.96
Weighted avg 0.96 0.96 0.96

1.0

GT.1
0.8
GT 2
T GT_3 0.6
©
E
Z GT 4 0.4
GT5
0.2
GT.6
0.0

GT1 GT2 GT3 GT4 GT5 GT6
Predicted label

Figure 3. DNN model confusion matrix

3.2.3. Cross validation

Finally, five k-fold CV was implemented for evaluate and validate the overall performance of the
DNN model. The average values and standard deviation obtained in several multi-class evaluation metrics
are shown in Table 6. The DNN model showed an excellent performance in several metrics, achieving an
accuracy of 93.19%, precision of 93.33% and a F1-score weighted of 91.23%. Coskun et al. [21] presented
similar results using DL methods obtaining an accuracy of 94.94% in the classification of six hand
movements. In contrast, Jiang et al. [22] used a LDA to classify 16 different grasps achieving an average
accuracy of 82%. However, each of the studies used different types of sensors and information for the
development of the classification models. In our study we used FSRs data. In contrast, Coskun et al. [21]
used as features SEMG signals obtained of two forearm electrodes, while Jiang et al. [22] used FMG data.
Therefore, each of the sensors used in these studies measured different types of force. In our study, we used
FSR sensors to measure the pressure or normal force applied to the sensing element. In contrast, SEMG
sensors records electrical activity during muscle contractions using surface electrodes, while FMG relies on
FSR sensors placed on the skin or integrated into wearable devices to detect volumetric changes in the
underlying muscles during contractions and movements [47]. However, the DNN model demonstrated a
lower precision in the classification of the thumb+1 finger pinch and sphere precision grasp as is shown in
the classification report in Table 5. We consider that the accuracy is lower during the performance of these
tasks due to the maximum forces in the thumb and index fingertips were similar in the two tests as is shown
in Table 4 and Figure 2. Therefore, the results obtained demonstrate that utilizing DNNs for human grasp
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classification based on finger forces may offer significant advantages for future work in prosthetic hand
design and the implementation of personalized rehabilitation procedures. Prosthetic devices can be improved
to replicate accurately natural grasp patterns, which will improve the user experience by providing users with
greater comfort, functionality, and confidence in performing ADLs. In addition, identify and classified finger
force patterns during the performance of several types of grasping, rehabilitation programs can be tailored to
individual needs. Physiotherapy can use this information to develop interventions aimed at improving
specific grasping functions based on each person’s abilities and difficulties.

Table 6. Results of the evaluation metrics using a five-fold cross validation

Metric Mean (%) SD (%)
Accuracy 93.19 1.9
Precision weighted 93.33 1.7
Recall weighted 92.31 3.2
F1-score weighted 91.23 24

3.3. Limitations

Nevertheless, the present work had some limitations. We were restricted to using five FSR sensors
due to the analog inputs of the Arduino board utilized. Therefore, we believe that for future research, it would
be imperative to incorporate a data acquisition board to expand the number of available analog inputs, thus
enabling a more complete analysis of the hand. On the other hand, only FSRs sensors were used in this study,
however FMG or sEMG sensors could be included in future research. Using SEMG sensors to capture the
electrical signals from the muscles, along with FMG sensors to detect the actual muscle contractions, can
enhance the feature representation of DL models. Therefore, combining these signals with data on finger
forces obtained with FSRs could improve the classification accuracy and robustness of the models. Finally,
future research would benefit from the incorporation of a motion capture system using data gloves or inertial
measurement units (IMUs), as proven in other studies [32], [48], [49].

4. CONCLUSION

The DNN demonstrates high performance in classifying and evaluating finger force patterns during
the execution of various grasping tasks commonly used in ADLs, achieving an accuracy of 93.19%. In
addition, the model can provide real-time feedback to patients, helping them to achieve correct grasping
patterns and improve their motor skills through specific rehabilitation programs. Therefore, the combination
of the DNN classifier and the FSR glove system is an important tool for health professionals. On the other
hand, the DNN model proposed is useful in other areas as robotics and prosthetics. Using the DNN model in
robotics to determine the appropriate grasp type based on the object characteristics as well as to determine
the distribution and magnitude of finger forces necessary during object manipulation. In contrast, prosthetic
hands technology will enable more precise emulation of natural hand movements, thereby further enhancing
the quality of life for individuals using prosthetic devices.
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