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 Humanoid robots are designed to mimic human structures and utilize 

cameras to process visual input to identify surrounding objects. However, 

previous studies have focused solely on object detection, overlooking both 

the complexities of real-world implementation and the significance of 

calculating the distance between objects and the robot. This study proposes a 

system that employs the you only look once (YOLO) algorithm to detect 

various objects in the proximity of a robot. Using a dataset of primary data 

collected in a laboratory, the detected objects are from 12 classes, including 

humans, chairs, tables, cabinets, computers, books, doors, bottles, eggs, 

learning modules, cups, and hands, with each class comprising 1500 data 

points. Two YOLO architectures, namely tiny YOLOv3 and tiny YOLOv4, 

are assessed for their performance in object detection, with the tiny YOLOv4 

demonstrating a superior accuracy of 82.99% compared to tiny YOLOv3. 

Evaluation under simulated conditions yields an accuracy of 74.16%, while 

in real-time scenarios, accuracies are 61.66% under bright conditions and 

38.33% under dim conditions, affirming tiny YOLOv4’s efficacy. Moreover, 

this study reveals an average error distance of 31% between an object and 

the robot in real-time conditions. The developed system enhances human–

robot interaction capabilities via data transmission.  
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1. INTRODUCTION  

Humanoid robots, defined as robots whose form mirrors the human body, can interact with 

equipment and environments designed for human use. These mechanical or virtual intelligent devices possess 

human-like structure, movement, and functionality, enabling them to execute tasks automatically or under 

guidance. Integrated with a variety of sensors such as radar, lidar, sonar, GPS, odometry, and object 

detection, these robots can interpret their surrounding environment. In Indonesia, the utilization of humanoid 

robots is relatively new, and their usage is sparse. Challenges arise in applying humanoid robots as they must 

perform tasks according to programmed functions. To prevent accidents, humanoid robots require a 

navigation system that mimics human vision to recognize surrounding conditions and detect surrounding 

objects, discerning whether they are moving or stationary. Object detection involves creating computational 

models and methods that furnish a fundamental piece of information crucial for computer vision applications: 

identifying the presence and location of objects. The two primary benchmarks for evaluating object detection 

include precision (comprising classification precision and localization precision) and processing speed [1].  

Object detection plays a crucial role in enabling humanoid robots to interact effectively with their 

environment. Previous studies have explored various methods for detecting objects around humanoid robots, 

https://creativecommons.org/licenses/by-sa/4.0/
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primarily via digital image processing. For instance, Cofield et al. [2] utilized a red, green, blue, and depth 

(RGB-D) camera to estimate the position of an object relative to the robot. The camera captured point cloud 

data, which were then cropped to focus on the region of interest (ROI). Additionally, a random sample 

consensus (RANSAC) algorithm was employed to estimate the inlier plane, and the RGB-D sensor was used 

for object recognition. While the facile approach facilitates the recognition of unknown objects, it struggles to 

accurately identify small objects, posing challenges in determining the precise boundaies of specified objects. 

Another method involves leveraging the hue saturation value (HSV) color space, as demonstrated in [3]. The 

study showed that the HSV color space provides more distinguishable data for isolating the ROI compared to 

the RGB-derived opponencies color model. Studies [4]-[6] further explored object recognition using the HSV 

model to differentiate objects based on color disparities. However, focusing solely on color differences can 

reduce the accuracy when the color of an object closely matches its background or surrounding colors. To 

address this limitation, scholars enhanced the algorithm by automatically deriving the HSV color of the 

reference ROI from the vision of the robot, linked to an internet-of-things (IoT) device. Moreover, the 

algorithm selectively combines ROIs with significant HSV resemblance to the reference ROI via random 

sampling. The approach ensures the automatic identification of the spatial placement of a product within the 

3D printer, focusing exclusively on ROIs that closely match the reference HSV [7].  

Another method for object detection utilizes the histogram of oriented gradient (HOG). Sultana et al. [8], 

the HOG technique was employed to locate the target object within a test cluster image, using a template 

image patch. Additionally, An et al. [9] introduced a processor for object detection that synchronizes the 

image sensor within a field programmable gate array (FPGA). The processor integrates a cell-based HOG 

feature descriptor and a support vector machine (SVM) classifier. Ahmed et al. [10] proposed a method that 

combines the K-means clustering method with a generalized hough transform and genetic algorithm. 

However, the HOG algorithm relies on local gradient information, which may reduce the accuracy when 

dealing with small or partially distorted objects.  

Another commonly used feature for object detection is the scale invariant feature transform (SIFT). 

Gupta et al. [11] SIFT was combined with the fast-rotated and BRIEF (ORB) features for object detection. 

Meanwhile, Jiang et al. [12] employed SIFT in conjunction with principal component analysis (PCA) to track 

moving objects. Moreover, SIFT has been implemented in real-time on a graphics processing unit (GPU) 

[13]. Putri et al. [14] used SIFT for feature extraction and K-nearest neighbor (KNN) as the classifier to 

detect an object. However, the SIFT algorithm has high computational complexity. In contrast, Kaymak and 

Ucar [15] combined various feature descriptors, such as SIFT, speeded up robust features (SURF), oriented 

features from accelerated segment test (FAST), and rotated BRIEF (ORB), and FAST. Bansal employed the 

blob detection method, which recognizes objects based on the clumps of segments they generate, unaffected 

by the object size [16]. If different objects generate segment blobs with identical values, the system will 

recognize the objects based on previously stored data. However, tracking can be problematic. 

The aforementioned methods highlight the importance of features; however, feature extraction 

requires complex computation. Previous studies have demonstrated that object detection methods for 

humanoid robots are limited in terms of suboptimal accuracy and have slow processing speed, primarily 

owing to the use of distinct feature extractions for each object. Thus, deep learning has been implemented to 

overcome this challenge. Chatterjee et al. [17] conducted research on humanoid robots using a deep-learning 

method by applying the region-based fully convolutional network (R-FCN), a variant of the convolutional 

neural network (CNN) algorithm. The method detects objects using an object position score map and 

removes fully connected layers after incorporating an ROI that is sensitive to the position of the region 

proposal network (RPN), subsequently performing class delimiter box regression on the recognized object. 

The detection results can be visualized from the perspective of the robot based on the preprogrammed class 

label. The R-FCN model yielded comparable accuracy scores owing to the lower test image resolution of the 

detection results, indicating that deep learning can effectively detect objects with low computational power, 

making the approach more power-efficient. However, the detection process was slow with sluggish responses 

and decreased humanoid robot response accuracy owing to variations in feature extraction and classifiers. 

In another study [18], two types of CNN architectures, single shot multi-box detector (SSD) with 

MobileNetV1 and faster region-based CNN (Faster-RCNN), were utilized. CNNs have also been employed 

in detecting hand gestures for human–robot interaction [19], [20]. Meanwhile, [21] utilized deep neural 

networks to detect hands. Faster-RCNN was employed for detecting marine objects in an underwater robot 

[22]. Additionally, Dairi et al. [23] utilized deep boltzmann machines and autoencoders to detect obstacles in 

driving environments. 

This study aims to address the computational limitations of previous research by proposing a method 

for detecting objects around humanoid robots using an intelligent algorithm, you only look once (YOLO) 

[24]. YOLO, a CNN algorithm used in image processing tasks such as image classification, is one among 

several developed CNN algorithms, including R-CNN, Fast R-CNN, and Faster R-CNN. Previous research 

utilizing YOLO includes a study by Melek et al. [25], which employed YOLO to detect objects on a shelf 
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using a grocery dataset containing 354 images of ten different cigarette brands and a simulated database of 

200 Coca-Cola samples obtained in various environments. The results demonstrated that the YOLO 

algorithm could detect objects with a loss rate of 8.22%. Corovic et al. [26] used YOLO to detect road 

objects such as cars, trucks, pedestrians, traffic lights, and traffic signs in real time. Despite a low accuracy 

rate (<50%) owing to the presence of numerous small, closed objects, all objects closest to the camera 

position were successfully detected and classified, indicating that YOLO can be effectively used for object 

detection around humanoid robots. Adarsh et al. [27] YOLOv3 tiny is proposed for object detection and 

recognition, while [28] utilized deep learning to detect a ball and a goal. 

The aforementioned studies were not conducted in the context of humanoid robots capable of 

interacting with humans. Therefore, this study presents a comparative analysis of using YOLOv3 [29] and 

YOLOv4 [30] for detecting various objects commonly found in laboratories. These two architectures were 

chosen because YOLOv3 has a higher mean average precision (mAP) compared to Faster R-CNN [31]–[33] 

and YOLOv4 exhibits higher accuracy [30], [34], [35]. YOLOv5 is not considered in this study because 

YOLOv4 has a higher mAP than YOLOv5 [34]. Additionally, this study proposes a method for measuring 

the distance between objects and robots to facilitate human–robot interactions. Furthermore, a new dataset 

containing 12 classes is proposed. The contributions of this study are as follows: 

− Real-time object detection is implemented for humanoid robots.  

− The distance from the object to the robot is measured.  

− A comprehensive comparison is presented between YOLOv3 and YOLOv4 is presented in object 

detection for the humanoid robot.  
− Provides a new dataset for the objects commonly found in the laboratory. 

The remainder of this paper is organized as follows. Section 2 describes the YOLO method.  

Section 3 presents the results and discussions. Finally, section 4 presents the conclusion and future work. 

 

 

2. METHOD 

2.1.  You only look once 

The YOLO algorithm utilizes neural networks for real-time object detection, featuring a relatively 

straightforward architecture. It employs a single CNN applied to the entire image during both training and 

testing phases, providing information on object appearance and class probability. The YOLO detection 

system processes input images into a 448×448-pixel size, followed by a sequence of operations involving a 

single neural network. Detection results are then constrained based on a confidence model. The system trains 

a single neural network to detect objects while simultaneously generating all bounding boxes and class 

probabilities, embodying the concept of “YOLO.” 

This study employs two YOLO architectures: tiny YOLOv3 and YOLOv4. Both models are smaller 

owing to the simplified architecture of tiny YOLO compared to other YOLO variants, resulting in lower 

GPU memory usage and higher frames per second (FPS). Tiny YOLOv4, an enhancement of YOLOv3, 

incorporates modifications to the original YOLO network structure, as outlined in Table 1 (in Appendix). 

The training process involves tiny YOLOv3, a streamlined version of YOLOv3 with adjustments to the tiny 

network structure, as detailed in Table 2. Notably, tiny YOLOv3 has fewer layers compared to tiny YOLOv4. 

 

 

Table 2. Tiny YOLOv3 architecture 
Layer Type Size/stride Input Output 

0 Convolutional+bnorm leaky 3×3/1 416×416×3 416×416×16 

1 Maxpool 2×2/2 416×416×16 208×208×16 

2 Convolutional+bnorm leaky 3×3/1 208×208×16 208×208×32 

3 Maxpool 2×2/2 208×208×32 104×104×64 

4 Convolutional+bnorm leaky 3×3/1 104×104×32 104×104×32 

5 Maxpool 2×2/2 104×104×64 52×52×64 

6 Convolutional+bnorm leaky 3×3/1 52×52×64 52×52×128 

7 Maxpool 2×2/2 52×52×128 26×26×128 

8 Convolutional+bnorm leaky 3×3/1 26×26×128 26×26×256 

9 Maxpool 2×2/2 26×26×256 13×13×256 

10 Convolutional+bnorm leaky 3×3/1 13×13×256 13×13×512 

11 Maxpool 2×2/2 13×13×512 13×13×512 

12 Convolutional+bnorm leaky 3×3/1 13×13×512 13×13×1024 

13 Convolutional+bnorm leaky 1×1/1 13×13×1024 13×13×256 

14 Convolutional+bnorm leaky 3×3/1 13×13×256 13×13×512 

15 Convolutional+linear 1×1/1 13×13×512 13×13×255 

16 YOLO    
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2.2.  Hardware design 

In this study, specific hardware components were utilized to support the operation of humanoid 

robots, including a 3 MP Webcam Camera module OV3660 with a wide-angle 110° field of view, dot matrix, 

JX servo, and an Arduino Mega 2560 microcontroller. A schematic depicting the configuration of the 

humanoid robot is presented in Figure 1, highlighting the positions of the components used in this 

investigation. Meanwhile, the design of the object detection system integrated into the humanoid robot for 

object recognition is depicted in Figure 2. Initially, the data acquired from the webcam are divided into 

training and testing datasets. Subsequently, a model is developed through training. The model was then 

incorporated into the humanoid robot for real-time testing, which includes measuring the distance between 

the object and the robot. 
 

 

 
 

Figure 1. Schematic of components in a humanoid robot 
 

 

 
 

Figure 2. System design flow diagram 
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2.3.  System testing 

System tests were conducted utilizing variables within an evaluation method known as the 

confusion matrix model, which is detailed in Table 3. Additionally, this section provides the equations used 

to determine their values and accuracies. 

 

 

Table 3. Confusion metric 
 True value 

Predicted value 
True positive (TP) False positive (FP) 
False negative (FN) True negative (TN) 

 

 

Table 3 indicates that the predicted value corresponds to the confidence value produced by the 

YOLO model, while the actual value is derived from the target objective. The accuracy is defined as (1): 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁 

 𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  (1) 

 

Here, TP represents the count of positive data correctly classified by the system, FP signifies the quantity of 

positive data incorrectly classified by the system, TN denotes the total of negative data accurately classified 

by the system, and FN refers to the quantity of negative data misclassified by the system. 

 

 

3. RESULTS AND DISCUSSION 

This section discusses the results obtained from implementing real-time object detection using 

humanoid robots. Specifically, the analysis compares the two models of tiny YOLO: tiny YOLOv3 and tiny 

YOLOv4. 

 

3.1.  Robot humanoid design 

The design of the humanoid robot encompasses both the mechanical structure and overall wiring of 

the components. These components include a dot matrix for displaying the visual appearance of the robot’s 

eyes, JX servo for maneuvering the robot’s head, and camera modules linked to laptops used for object 

detection. The camera was positioned on the head of the humanoid robot at a height of 1.5 m from the 

ground. The outcomes of the humanoid robot design are illustrated in Figure 3(a) for the front view and 

Figure 3(b) for the side view. 
 

3.2.  Training and test data collection 

In this study, the object dataset was derived from a video recorded in the Control and Robotics 

Laboratory and the Robotics Secretariat at the Universitas Sriwijaya. An example of the object data is 

displayed in Figure 4. The data were captured using a webcam with a resolution of 640×480 pixels. The 

collected data underwent processing and annotation for object class recognition in the images. The dataset 

comprises 12 classes: humans, chairs, tables, cupboards, computers, books, doors, bottles, eggs, modules, 

cups, and hands. This dataset is relatively different from common datasets like the COCO dataset because it 

contains objects that are commonly found in the laboratory. Additionally, we included eggs and hands as 

objects for evaluating the capability of the robot arm. 
 
 

  
(a) (b) 

  

Figure 3. Humanoid robot with components;  

(a) front view and (b) side view 
 

 
 

Figure 4. Samples of classes of objects containing a 

cupboard, module, and computer 
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The total dataset contains 5447 entries, with 4072 primary and 1375 secondary data points. 

Secondary data were incorporated to introduce variation into the object dataset. Each object was annotated 

with the class, x-center position, y-center position, width, and height. Following processing and annotation, 

the dataset expanded to 18000 entries, with each class contributing 1500 entries. Of these, 70% (or 12600 

entries) were allocated for training data, while the remaining 30% (or 5400 entries) served as test data. 

 

3.3.  Training and test data processing 

The collected training and test data, obtained from real-world sources, underwent a preprocessing 

stage. This critical step involved annotating and labeling each object class within every image. In addition to 

enhancing the clarity of the dataset, the annotation also serves as the initial step for the class initialization of 

every object contained within an image. 

 

3.4.  Object detection results 

Two types of YOLO architectures, namely tiny YOLOv3 and tiny YOLOv4, were employed to 

evaluate the robustness of each model in detecting objects. These architectures were selected owing to their 

simpler architectures and lower GPU memory consumption compared to other architectures. Each YOLO 

model was assessed over 50, 100, 200, 500, and 1000 epochs. The training losses for each class are depicted 

in Figure 5. As illustrated, the tiny YOLOv4 model architecture exhibits lower training loss than the tiny 

YOLOv3 model. The best model performance is achieved when trained over 1000 epochs, resulting in the 

smallest loss value compared to other training sessions. The average loss for tiny YOLOv4 is smaller than 

that for tiny YOLOv3, with values of 0.3215 and 0.5133, respectively. 
 

 

 
 

Figure 5. Average loss of the YOLO model for object detection 
 

 

Two models of tiny YOLO are compared: tiny YOLOv3 and tiny YOLOv4. Both models were 

trained using a batch size of 64 over 50, 100, 200, 500, and 1000 epochs. Table 4 lists the smallest average 

loss ratios for each epoch. As indicated in Table 4, Tiny YOLOv3 exhibits a high computation time, 

requiring 70 h to complete training for 1000 epochs. In contrast, tiny YOLOv4 requires less computation 

time and demonstrates a lower average loss compared to Tiny YOLOv3. The results depicted in Figure 5 and 

Table 4 illustrate that with a larger number of epochs, the loss value decreases. However, this entails a longer 

training duration. Additionally, the training time is influenced by the batch size. The training outcomes 

indicate that the average loss of tiny YOLOv4 in 1000 epochs is lower compared to Tiny YOLOv3. 
 

 

Table 4. Comparison of each epoch 

Epoch 
Smallest average loss Training time (hours) 

Tiny YOLOv3 Tiny YOLOv4 Tiny YOLOv3 Tiny YOLOv4 

50 1.6012 0.5297 10 6 

100 0.9272 0.4378 17 9 

200 0.8034 0.4095 20 13 

500 0.7764 0.4057 23 17 

1000 0.5133 0.3215 70 54 

 
 

Table 5 presents the test results of the tiny YOLOv3 and tiny YOLOv4 models trained over 50, 100, 

200, 500, and 1000 epochs for object class detection. As observed in the table, the tiny YOLOv4 model 

significantly outperforms the tiny YOLOv3 model. Specifically, the tiny YOLOv4 model achieves the highest 

accuracy of 82.99% when trained over 1000 epochs. Conversely, the tiny YOLOv3 model, when trained over 
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Tiny-YOLOv3 50 Epoch

Tiny-YOLOv4 50 Epoch

Tiny-YOLOv3 100 Epoch

Tiny-YOLOv4 100 Epoch

Tiny-YOLOv4 200 Epoch

Tiny-YOLOv3 200 Epoch

Tiny-YOLOv4 500 Epoch

Tiny-YOLOv3 500 Epoch

Tiny-YOLOv4 1000 Epoch

Tiny-YOLOv3 1000 Epoch
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50 epochs, yields the lowest accuracy of 8.33% for ten attempts across 40 objects. Among all the detected 

object categories, some are relatively easy to identify for both tiny YOLO models, including chairs, humans, 

hands, and eggs. This ease of detection is attributed to the distinctive characteristics and sizes of these objects 

compared to others. Moreover, the results indicate that tiny YOLOv4 is better suited for implementation in 

object detection for real-time environments owing to its better computation time and accuracy. 
 

 

Table 5. Tiny YOLOv3 and tiny YOLOv4 model comparison results 

Test 
# 

Epoch 

50 

model 
tiny 

YOLOv

3 

Epoch 

100 

model 
tiny 

YOLO

v3 

Epoch 

200 

model 
tiny 

YOLO

v3 

Epoch 

500 

model 
tiny 

YOLO

v3 

Epoch 

1000 

model 
tiny 

YOLO

v3 

Test 
# 

Epoch 

50 

model 
tiny 

YOLOv

4 

Epoch 

100 

model 
tiny 

YOLO

v4 

Epoch 

200 

model 
tiny 

YOLO

v4 

Epoch 

500 

model 
tiny 

YOLO

v4 

Epoch 

1000 

model 
tiny 

YOLO

v4 

1 (0/5)×1
00%= 

0% 

(0/5)×1
00%= 

0% 

(0/5)×1
00%= 

0% 

(0/5)×1
00%= 

0% 

(0/5)×1
00%= 

0% 

1 (0/5)×10
0%=0% 

(0/5)×1
00%= 

0% 

(0/5)×1
00%= 

0% 

(4/5)×1
00%= 

80% 

(4/5)×1
00%= 

80% 

2 (0/2)×1
00%= 

0% 

(0/2)×1
00%= 

0% 

(0/2)×1
00%= 

0% 

(0/2)×1
00%= 

0% 

(0/2)×1
00%= 

0% 

2 (1/2)×10
0%=50% 

(2/2)×1
00%= 

100% 

(2/2)×1
00%= 

100% 

(2/2)×1
00%= 

100% 

(2/2)×1
00%= 

100% 

3 (0/6)×1
00%= 

0% 

(2/6)×1
00%= 

33.33% 

(2/6)×1
00%= 

33.33% 

(2/6)×1
00%= 

33.33% 

(2/6)×1
00%= 

33.33% 

3 (1/6)×10
0%= 

16.66% 

(2/6)×1
00%= 

33.33% 

(4/6)×1
00%= 

66.66% 

(5/6)×1
00%= 

83.33% 

(5/6)×1
00%= 

83.33% 
4 (0/4)×1

00%= 

0% 

(1/4)×1

00%= 

25% 

(2/4)×1

00%= 

50% 

(3/4)×1

00%= 

75% 

(3/4)×1

00%= 

75% 

4 (1/4)×10

0%=25% 

(3/4)×1

00%= 

75% 

(3/4)×1

00%= 

75% 

(3/4)×1

00%= 

75% 

(4/4)×1

00%= 

100% 
5 (0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(1/3)×1

00%= 

33.33% 

(1/3)×1

00%= 

33.33% 

5 (0/3)×10

0%=0% 

(0/3)×1

00%= 

0% 

(2/3)×1

00%= 

66.66% 

(2/3)×1

00%= 

66.66% 

(2/3)×1

00%= 

66.66% 
6 (0/4)×1

00%= 

0% 

(2/4)×1

00%= 

50% 

(2/4)×1

00%= 

50% 

(2/4)×1

00%= 

50% 

(2/4)×1

00%= 

50% 

6 (0/4)×10

0%=0% 

(0/4)×1

00%= 

0% 

(1/4)×1

00%= 

25% 

(2/4)×1

00%= 

50% 

(3/4)×1

00%= 

75% 
7 (0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(1/3)×1

00%= 

33.33% 

7 (0/3)×10

0%=0% 

(0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(2/3)×1

00%= 

66.66% 

8 (0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

(0/3)×1

00%= 

0% 

8 (0/3)×10

0%=0% 

(2/3)×1

00%= 

66.66% 

(2/3)×1

00%= 

66.66% 

(2/3)×1

00%= 

66.66% 

(3/3)×1

00%= 

100% 
9 (0/4)×1

00%= 

0% 

(0/4)×1

00%= 

0% 

(0/4)×1

00%= 

0% 

(0/4)×1

00%= 

0% 

(2/4)×1

00%= 

50% 

9 (0/4)×10

0%=0% 

(3/4)×1

00%= 

75% 

(3/4)×1

00%=7

5% 

(3/4)×1

00%= 

75% 

(3/4)×1

00%= 

75% 
10 (5/6)×1

00%= 

83.33% 

(5/6)×1

00%= 

83.33% 

(5/6)×1

00%= 

83.33% 

(5/6)×1

00%= 

83.33% 

(5/6)×1

00%= 

83.33% 

10 (5/6)×10

0%= 

83.33% 

(5/6)×1

00%= 

83.33% 

(5/6)×1

00%=8

3.33% 

(5/6)×1

00%= 

83.33% 

(5/6)×1

00%= 

83.33% 
Ave. 

acc 

8.33% 19.17% 21.67% 27.49% 35.83% Ave.

acc 

17.49% 43.33% 55.83% 67.99% 82.99% 

 

 

3.5.  Object distance estimation using depth information 

In addition to object detection, this research also involves measuring the distance to objects detected 

by the humanoid robot. This distance measurement is crucial for the humanoid robot to determine the 

positions of objects around it, enabling the robot to approach or avoid the objects. 

In object detection, for each frame, there exists four variables used in the distance measurement: (x, y, 

w, h), where x and y represent adjustments of the bounding box on the top-left corner for x and the bottom-right 

corner for y, respectively. Moreover, w and h represent the width and height of the bounding box. When the 

bounding box is formed, these four variables can be used in the distance formula as they are known. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
2 × 3.14 × 180

(𝑤 + ℎ × 360) × 1000
+ 3 (2) 

 

The equation combines the formula for the length of an arc with the values of w and h from each 

bounding box created. The value 1000 is used to convert the final unit to inches, and three is a constant 

threshold added to obtain a measured distance that approximates the actual distance. 

 

3.6.  Simulation testing on humanoid robot 

Simulations were performed to assess the performance of the YOLO algorithm in identifying objects 

using video inputs within the Control and Robotics Laboratory at Sriwijaya University’s Indralaya Campus. 
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The test, which utilized pre-recorded videos instead of real-time footage, was necessary before introducing 

the humanoid robot into the laboratory. The simulation test was carried out using the Tiny YOLOv4 network 

model, with 1000 training epochs and a threshold of 0.5. The resulting detections were utilized for distance 

measurements, leveraging depth information. The data for class, distance, and location were then serially 

transmitted to the microcontroller for further processing, enabling the humanoid robot to move toward or 

away from the object. The classes of objects sent to the microcontroller include eggs, humans, bottles, and 

cups, should the YOLO detect such objects. The results of five trials are presented in Table 6. 
 
 

Table 6. Five samples of object detection by simulation in humanoid robots using tiny YOLOv4 1000 epoch 
Test 

# 
Display Accuracy Actual distance 

Object detection, location, 

and measured distance 
LED display 

1 

 

4/6×100% 

=66.66% 

Hand: 0.45 m 

Module1: 1 m 

Module 2: 1.2 m 
Module 3: 2.2 m 

Hand: 

object found in the left 

0.3120404520962019 m 
Module1: 

object found in the left 

1.1940895122942006 m 
Module2: 

object found in the right 

1.0187875709924166 m 
Module3: 

object found in the right 

1.570924347961893 m 

Unsent

 

2 

 

2/3×100% 

=66.66% 

Door: 7 m 

Chair: 3 m 

Door: 

object found in the left 

0.3950822745446469 m 
Chair: 

object found in the right 

0.4239943189388893 m 
 

Unsent

 

3 

 

4/4×100% 

=100% 

Table: 3.1 m 

Chair: 3.24 m 
Door: 3 m 

Module: 0.3 m 

Table: 

object found in the left 
0.3120404520962019 m 

Chair: 

object found in the right 
0.5390007736963907 m 

Door: 

object found in the right 
0.5390007736963907 m 

Module: 

object found in the right 
0.3883803137877421 m 

Unsent

 

4 

 

3/4×100% 

=75% 

Module 1: 0.44 m 

Module 2: 0.47 m 
Cupboard: 4.3 m 

Module1: 

object found in the left 
0.4740682186655581 m 

Module2: 
object found in the left 

0.4951110008754013 m 

Cupboard: 
object found in the left 

0.5532491966703773 m 

Unsent

 

5 

 

4/4×100% 
=100% 

Door: 6.2 m 
Table: 3.76 m 

Chair: 3. 74 m 

Human: 3.74 m 

Door: 
object found in the left 

0.4740682186655581 m 

Table: 
object found in the right 

0.380038811403416 m 

Chair: 
object found in the right 

0.380038811403416 m 

Human: 
object found in the right 

0.3986310211232019 m 

 

 

  

As depicted in Table 6, the architecture of the tiny YOLOv4 model exhibits high accuracy in detecting 

nearby objects. Overall, the model achieves an accuracy of 74.16% and is capable of transmitting the class, 

position, and distance data to the microcontroller. The key advantage of the detection system lies in its ability to 

identify objects that surrounnd the humanoid robot. Additionally, the proposed object detection system can 

determine distances and positions, offering valuable information regarding the location of detected objects. 
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3.7.  Real-time testing on humanoid robots 

Real-time testing involves direct assessment by humanoid robots equipped with a tiny YOLOv4-

based object detection system. The tests were conducted in the classroom of the Department of Electrical 

Engineering, Unsri Palembang. The tests were performed under two conditions: bright and dim room 

conditions. A bright room condition entails open windows that provide natural light, supplemented by the 

internal lighting of the room. Conversely, the dim room condition simulates a closed window environment 

without additional lighting from a lamp in the room. The objective of this test is to evaluate the humanoid 

robots’ capability to detect objects in their surroundings under both well-lit and dark conditions, utilizing the 

tiny YOLOv4 model trained for 1000 epochs with a threshold set at 0.5. The results of object detection for 

the bright and dim room conditions are presented in Tables 7 and 8, respectively. Based on the real-time 

testing conducted ten times in each room condition, the tiny YOLOv4 model demonstrates the ability to 

detect objects around the humanoid robot at a speed of 30 fps. The model showcases proficient object 

detection capabilities. Furthermore, in distance testing using real-time depth information, it can be observed 

that the system effectively measures the distance of detected objects. Subsequently, the detected data can be 

transmitted to the microcontroller for further processing by the humanoid robot. 
 

 

Table 7. Five sample results of real-time testing for tiny YOLOv4 training 1000 epochs when the room has 

open windows and the ‘lamp in the room is turned on 

Test# Display Accuracy 
Actual 

distance 

Object detection, location, 
and measured distance 

LED display 

1 

 

1/2×100%=50% Human:  

0.75 m 

Human: 

object found in the left 
0.7991550547652021 

 

 

2 

 

1/1×100%=100% Door: 3.02 Door: 

object found in the left 

0.7696131910 

 

Unsent

 

3 

 

1/3×100%=33.33% Hand: 2 Hand: 

object found in the right 

2.2780527607361910 
 

 

Unsent

 

4 

 

2/3×100%=66.66% Human: 1.45 
Computer: 1.4 

Human: 
object found in the left 

1.33318975571316 

Computer: 

object found in the right 

1.2953482314976013 

  

5 

 

1/2×100%=50% Table: 1.25 Table: 

object found in the right 

1.190197051292 
 

 

Unsent

 

 

 

Tables 7 and 8 demonstrate the object detection capabilities of tiny YOLOv4 under different 

lighting conditions, including both bright and dim settings. However, the results reveal that object detection 

performs more effectively in well-lit conditions, achieving an average accuracy of 61.66% out of 25 objects 

across 12 classes. This discrepancy is attributed to certain objects being closely clustered and positioned, 
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posing challenges for accurate detection by the tiny YOLOv4 model. Conversely, in experiments conducted 

in dimly lit environments, the accuracy of object detection decreases to 38.33% out of 17 objects. Notably, 

the tiny YOLOv4 model frequently generates false detections, observed in tests 1 and 3, where it either 

misidentifies objects or fails to recognize them. Moreover, it impacts the distance calculation accuracy of the 

system. The influence of room lighting intensity on the outcomes of the tiny YOLOv4 detection system is 

evident. The lighting level directly affects the accuracy of object detection; dim lighting obscures object 

features, making detection more challenging. Across all experiments conducted under both lighting 

conditions, hands and humans exhibit the highest accuracy in detection. 

 

 

Table 8. Five sample results of real-time testing for Tiny YOLOv4 training 1000 epochs when the room has 

closed windows and the lamp is off 

 

 

Furthermore, the testing conducted under bright and dim lighting conditions compares the measured 

distance by the detection system using depth information to the actual distance. Readings obtained from 

depth information indicate that the distance calculation of the system remains reasonably accurate for both 

lighting conditions, with an average error of 0.31 or 31%. The accuracy is attributed to the objects being 

positioned at distances greater than two meters. However, it is noteworthy that distance reading errors are 

more pronounced in dimly lit rooms, suggesting that light intensity also influences distance readings. 

  

Test # Display Accuracy 
Distance 

measured 

Object detection 

and location 
LED display 

1 

 

0/2×100%=0% Egg: 0.32  

human: 
0.51 

None 

 

2 

 

½×100%=50% Bottle: 0.58 

Human: 

0.72 

Bottle 

object found in 

the right 
0.6967455380913

878 

None 

 

3 

 

0/2×100%=0% Cup: 0.62 

Hand: 0.62 

Cup 

object found in 
the left 

0.6875272991021

184 
None 

 

Unsent

 

4 

 

1/2×100%=50% Hand: 0.70 

Human: 

0.71 

Hand  

object found in 

the right 
0.7056686356313

768 

None 

Unsent

 

5 

 

1/1×100%=100% Book: 0.74 

 

Book 

object found in 
the left 

0.7423084707034

439 
 

Unsent
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4. CONCLUSION 

This study showed that YOLO can be implemented to detect objects in humanoid robots, particularly 

for the objects commonly found in the laboratory. The tiny YOLOv4 model, trained over 1000 epochs, 

surpasses the tiny YOLOv3 model in object detection, achieving an impressive detection accuracy of 

82.99%. This study implemented both tiny YOLO models for a humanoid robot to detect objects, including 

the distance and location. Real-time testing utilizing the tiny YOLOv4 model demonstrated the effectiveness 

in using the YOLO algorithm to detect objects on humanoid robots in real time. Results from the tests 

indicate that the YOLO algorithm performs admirably in detecting objects on humanoid robots, achieving an 

accuracy of 74.16% in simulated scenarios and 61.66% accuracy in real-time scenarios under bright 

conditions, and 38.33% accuracy under dim conditions. Additionally, the study indicated that the 

performance of object detection is influenced by the lighting intensity within a room, with objects in dimly lit 

environments presenting challenges for recognition compared to those in adequately lit environments. 

Furthermore, the YOLO algorithm is capable of estimating the distance between objects and humanoid 

robots using depth information. In comparing the observed distance reading errors against the actual distance 

in real-time tests across both lighting conditions, an error rate of 31% was found. Object distances can be 

accurately measured and communicated to the microcontroller, providing input for the humanoid robot to either 

approach or maintain a distance from detected objects. However, this study did not consider YOLOv8. 

Therefore, in future work, real-time object detection will be implemented in humanoid robots using YOLOv8. 
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APPENDIX 
 

Table 1. Tiny YOLOv4 architecture 
Layer Type Size/stride Input Output 

0 Convolutional+bnorm leaky 3×3/2 416×416×3 208×208×32 

1 Convolutional+bnorm leaky 3×3/2 208×208×32 104×104×64 

2 Convolutional+bnorm leaky 3×3/1 04×104×64 104×104×64 

3 Route 2  1/2 104×104×32 

4 Convolutional+bnorm leaky 3×3/1 104×104×32 104×104×32 

5 Convolutional+bnorm leaky 3×3/1 104×104×32 104×104×32 

6 Router 5 4   104×104×64 

7 Convolutional+bnorm leaky 1×1/1 104×104×64 104×104×64 

8 Route 2 7   104×104×128 

9 Maxpool  104×104×128 52×52×128 

10 Convolutional+bnorm leaky 3×3/1 52×52×128 52×52×128 

11 Route 10  1/2 52×52×64 

12 Convolutional+bnorm leaky 3×3/1 52×52×64 52×52×64 

13 Convolutional+bnorm leaky 3×3/1 52×52×64 52×52×64 

14 Route 13 12   52×52×128 

15 Convolutional+bnorm leaky 1×1/1 52×52×128 52×52×128 

16 Router 10 15   52×52×256 

17 Maxpool  52×52×256 26×26×256 

18 Convolutional+bnorm leaky 3×3/1 26×26×256 26×26×256 

19 Router 18  1/2 26×26×128 

20 Convolutional+bnorm leaky 3×3/1 26×26×128 26×26×128 

21 Convolutional+bnorm leaky 3×3/1 26×26×128 26×26×128 

22 Route 21 20  26×26×256 26×26×256 

23 Convolutional+bnorm leaky 1×1/1 26×26×256 26×26×256 

24 Router 18 23   26×26×512 

25 Maxpool  26×26×512 13×13×512 

26 Convolutional+bnorm leaky 3×3/1 13×13×512 13×13×512 

27 Convolutional+bnorm leaky 1×1/1 13×13×512 13×13×256 

28 Convolutional+bnorm leaky 3×3/1 13×13×256 13×13×512 

29 Convolutional+linear 1×1/1 13×13×512 13×13×24 

30 YOLO    
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