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 In addition to the soil resistivity and size of the grounding system, grounding 

system configuration can influence the steady-state resistance (RDC) of a 

grounding system. The RDC of four to six configurations in three distinct 

soil conditions (sites 1 to 3) is measured using the fall-of-potential method 

and computed using the current distribution, electromagnetic fields, 

grounding, and soil structure analysis (CDEGS) simulation. The RDC value 

generally decreases as size increases, i.e., when more rods or tapes are 

added, except for a little variation subject to the electrode arrangement and 

soil resistivity. The 3 and 4-parallel configurations perform better on low 

resistivity soil (site 1), while the grid configurations (2×2- and 3-rod grids) 

are better on high resistivity soil (site 2). The difference between the 

measured and computed values at high soil resistivity sites (sites 2 and 3) is 

large, ranging from 18% to 66% for site 2 and from 35% to 53% for site 3. 

The difference is lower and more consistent at site 1, where five out of six 

configurations achieve less than 10%. At all sites, the difference between 

computed and measured RDCs generally decreases as the area of the 

electrode increases, except for some cases at site 2. 
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1. INTRODUCTION 

A grounding system is an essential aspect of electrical installations that involves connecting the 

electrical system to the earth's conductive surface. A proper grounding system is designed to provide a low-

impedance path for the fault current to flow and protect the system from electrical faults and hazards. 

Grounding systems help to prevent damage to electrical equipment [1]–[5], reduce the risk of electric shock 

and electrocution [6], [7], and ensure the safe and reliable operation of electrical systems [8], [9]. Many 

electrical standards [10]–[14] emphasise low ground resistance values in order to provide an effective path 

for currents to the ground. To attain low ground resistance values at steady-state conditions (RDC), many 

studies [15]–[17] found that there are two primary factors that have to be considered; the size of the 

grounding system and soil resistivity. Generally, the RDC is proportional to soil resistivity and inversely 

proportional to the size of the grounding system. 

There are various approaches used in obtaining RDC values. Harid [18] used field measurement and 

analytical methods. For the four tower footings considered, the calculated RDC using a mathematical 

expression is 60 Ω, but through field measurement they obtained 55.3 Ω to 108.2 Ω. Meanwhile, Nor et al. 

[19] compared field measurement with the computational finite element method (FEM) for 2-, 3-, and 4- rod 

https://creativecommons.org/licenses/by-sa/4.0/
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configurations. They obtained RDCs of 130.53 Ω, 105.57 Ω, and 80.33 Ω, respectively, from the 

measurement, and RDCs of 126.2 Ω, 94.6 Ω, and 76.2 Ω, respectively, from the FEM simulation. The study 

performed by Abdullah et al. [20] on a 4-mesh grid with rods grounding system also obtained a slightly 

higher RDC of 6.41 Ω through measurement in comparison to 6.3 Ω through FEM. Comparisons between 

measured and FEM were also done by Cvetković et al. [21]. They found measured RDCs of 38.5 Ω and 50 Ω 

for a single vertical and a single horizontal rod, respectively. The corresponding computed RDCs (using 

FEM) were found to be 43.98 Ω and 47.52 Ω, respectively. Jovanović et al. [22] expanded the research 

carried out by [21], in which a grid electrode was included. They obtained a measured RDC of 0.65 Ω, and a 

computed RDC of 1.02 Ω for the grid electrode [22]. In a recent study by Hizamul-Din et al. [23], the RDC 

of two new types of electrodes (spiked strip and linear array) was compared to that of the conventional strip 

electrode through field experiments and FEM simulations. The results showed that both spiked strip and 

linear array electrodes outperformed the conventional strip electrode. The linear array electrode obtained the 

lowest RDCs of 72.7 Ω and 65.8 Ω from measurement and simulation, respectively. 

From all the observations, also portrayed in Figure 1, it can be seen that some studies found a 

relatively large and inconsistent difference between the measured and computed RDCs. The difference can 

be high, although the RDC is low. Similarly, those with a higher RDC may result in only a small difference 

between the measured and computed RDC values. According to [10] this is due to factors such as stray 

alternating currents, coupling between test leads, and buried metallic objects, but these factors have not been 

thoroughly investigated. Therefore, this paper aims to investigate the effects of surface area, soil resistivity, 

and grounding system configurations on the percentage error between the measured and computed RDC 

values by evaluating the performance of four to six grounding systems at three different sites using both field 

measurement and computational methods. The obtained RDC values will be analysed in relation to soil 

resistivity, total surface area, and grounding system configuration, including parallel and grid configurations. 
 

 

 
 

Figure 1. Plot of the percentage difference against RDC in various studies 

 

 

2. METHOD 

2.1.  Soil resistivity 

The wenner 4-point method [10], [14] was used to measure soil resistivity at three different sites. 

Multiple traverses were made at each site to collect sufficient data on the soil. For each site, all the traverses 

were averaged and then input into computer software for profiling. The RESAP module of a commercial 

software package called current distribution, electromagnetic fields, grounding, and soil structure analysis 

(CDEGS) [24] was used to interpret the measured soil resistivity data into a two-layer. According to [11], a 

two-layer structure is adequate since it is a good approximation of many soil structures. 

 

2.2.  Grounding system configurations 

Figure 2 presents the six configurations of ground electrodes used in the study. Specifically, 

configuration in Figure 2(a) is a conventional 16 mm-diameter copper rod electrode of 1.8 m in length. The 

other five configurations consist of conventional rod electrodes connected by a 25 mm-wide, 3 mm-thick 

copper tape electrodes. All ground electrodes were installed to a depth of 0.3 m below the earth's surface. As 

it was highlighted in IEEE Std. 142 [12] that using multiple electrodes with a spacing of less than 3 m may 

not be the most cost-effective use of materials, the spacing between the rod and another rod was then 

maintained at 2 times the rod electrode’s length, i.e., 3.6 m. 
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The installation and test begin with configuration in Figure 2(a). Then, one more rod was added at a 

distance of 3.6 m and connected with copper tape to form configuration in Figure 2(b). The connection with 

one more rod is repeated to form configuration in Figure 2(c). Next, configuration in Figure 2(d) was formed 

by connecting the third rod at 3.6 m away from both the first and second rods to form an equilateral triangle. 

Subsequently, this third rod, together with the tapes used in connecting it to the first and second rods, were all 

removed. The removed rod was reinstalled with another rod, but in a straight line with the previous two rods 

in configuration showed in Figure 2(b). In the same manner, configuration in Figure 2(e) was then formed by 

installing the fourth rod aligned with the first three. To construct configuration in Figure 2(f), the third and 

fourth rods in configuration E were taken out of the ground together with the tape that connected them. They 

were then, one after another, installed 3.6 m away and opposite to the first and second rods, before finally 

being connected using the copper tape. 
 

 

   
(a) (b) (c) 

   

 
 

 
(d) (e) (f) 

 

Figure 2. Grounding system configurations; (a) single road, (b) 2-parallel rods, (c) 3-parallel rods, (d) 3-rod 

grid, (e) 4-parallel rods, and (f) 2×2 rod grid 

 

 

2.3.  Grounding system size 

For each configuration, the surface area of the copper rod electrode and copper tape electrode was 

calculated using (1) and (2), respectively. Table 1 presents the six configurations of the grounding system 

used in the study, with their calculated surface area due to the copper rod electrode and copper tape electrode, 

respectively. 
 

𝐴𝑟𝑒𝑎𝑅𝑜𝑑 = 2𝜋𝑟2 + 2𝜋𝑟𝑙 (1) 
 

𝐴𝑟𝑒𝑎𝑇𝑎𝑝𝑒 = 2(𝑤ℎ + 𝑤𝐿 + ℎ𝐿) (2) 
 

In (1), r is the radius, and l is the length of the rod. In (2), w, h, and L are the width, height, and 

length of the copper tape electrode, respectively. Generally, the total area of the grounding system increases 

from configurations A to F. It is noted that configurations C and D have equal rod surface areas due to the 

same number of rods used, as do configurations E and F. Meanwhile, the tape areas are equal for 

configurations D and E. 
 
 

Table 1. Grounding system size, i.e., calculated surface area 
Conf. Surface area of rod (m2) Surface area of tape (m2) Total surface area (m2) 

A 0.0909 0.0000 0.0909 

B 0.1818 0.2018 0.3835 
C 0.2726 0.4034 0.6760 

D 0.2726 0.6050 0.8776 

E 0.3635 0.6050 0.9685 
F 0.3635 0.8066 1.1701 

 

 

2.4.  Grounding resistance: field measurement 

The RDC measurements for each of the grounding system configurations shown in Figure 2 at all 

sites were conducted with a Fluke 1623-2 instrument using the fall of potential method (FOP) [10], [13], [14]. 
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All six grounding system configurations considered in this study underwent the FOP tests on the same day, 

thereby minimising any potential variations in soil resistivity. 

 

2.5.  Computational method 

The RDC values were computed for each configuration at each site by using the MALZ-CDEGS 

module [24]. During the RDC simulations, the soil resistivity profile of the site, electrode dimensions, and 

material characteristics were all keyed in to model the grounding system under test. The flow is illustrated in 

Figure 3. 

 

 

 
 

Figure 3. Flowchart of RDC simulation using the MALZ-CDEGS module 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Soil resistivity 

The obtained soil profiles for the three sites are shown in Table 2. It can be seen that the resistivity 

value for site 2 is higher than site 1 for both layers, with a difference of 50% for the top layer (ρ1) and 40% 

for the bottom layer (ρ2). Similarly, the resistivity of site 3 is higher than that of site 1, by 55% and 71% for 

the top and bottom layers, respectively. 

 

 

Table 2. Two-layer soil resistivity profile by CDEGS 

Site 
Soil resistivity profile 

ρ1 (Ωm) ρ2 (Ωm) h1(m) h2(m) 

1 45.48 231.19 1.88 Infinite 
2 91.45 383.13 0.64 Infinite 

3 100.93 788.77 7.21 Infinite 

 

 

In terms of the height of the soil layer, it is worth noting that the depth of the top layer, h1, at site 2 

was only 0.64 m. As shown in Figure 2, all ground electrodes used in this study were installed 0.3 m below 

the earth's surface; thus, the contact between the ground electrodes and soil is up to 2.1 m below the earth’s 

surface. As seen in Table 3, the bottom layer for site 2 has a greater impact on determining the RDC values 

of the grounding systems as compared to the top layer, and for configurations B to F, the top layer may still 

have an effect on the RDC values, particularly for configurations D, E, and F. Meanwhile, the influence of 

the top layer is definitely more significant than the bottom layer at sites 1 and 3 due to the depth (h) of 1.88 m 

and 7.21 m, respectively, as also observed in another study by Muhammad et al. [2]. At these sites, almost all 

electrode parts (for site 1) and all electrodes (for site 3) are fully in contact with the top layer’s soil. 

 

3.2.  Grounding resistance, RDC 

The measured and computed RDC values for all six configurations (note: only four configurations at 

site 3), at all three sites are tabulated in Table 4, together with the percentage difference of the computed 

from the measured RDC. 
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Table 3. Calculated surface area for soil layers at the three sites 

Conf. 

Site 1 Site 2 Site 3 
Surface area in 

top layer 

(ρ1=45.48 
Ωm) 

Surface area in 

bottom layer 

(ρ2=231.13 
Ωm) 

Surface area in 

top layer 

(ρ1=91.45 
Ωm) 

Surface area in 

bottom layer 

(ρ2=383.13 
Ωm) 

Surface area in 

top layer 

(ρ1=100.93 
Ωm) 

Surface area in 

bottom layer 

(ρ2=788.77 
Ωm) 

(m2) (%) (m2) (%) (m2) (%) (m2) (%) (m2) (%) (m2) (%) 

A 0.0798 87.8 0.0111 12.2 0.0173 19 0.0736 81 0.0909 100 0 0.0 

B 0.3601 93.9 0.0234 6.1 0.2363 62 0.1472 38 0.3835 100 0 0.0 
C 0.6406 94.8 0.0354 5.2 0.4552 67 0.2208 33 0.6760 100 0 0.0 

D 0.8418 95.9 0.0358 4.1 0.6568 75 0.2208 25 0.8776 100 0 0.0 

E 0.9212 95.1 0.0473 4.9 0.6741 70 0.2944 30 0.9685 100 0 0.0 
F 1.1224 95.9 0.0477 4.1 0.8757 75 0.2944 25 1.1701 100 0 0.0 

 

 

Table 4. Measured and computed (CDEGS) RDC values, and the percentage difference between them for all 

configurations at the three sites 

Conf. 
Site 1 Site 2 Site 3 

Measured 

(Ω) 

CDEGS 

(Ω) 

Difference 

(%) 

Measured 

(Ω) 

CDEGS 

(Ω) 

Difference 

(%) 

Measured 

(Ω) 

CDEGS 

(Ω) 

Difference 

(%) 

A 24.3 30.5 -25.51 253.8 122.2 51.85 114.2 54.5 52.28 
B 12.12 13.3 -9.74 116.1 39.5 65.98 46.8 22 52.99 

C 9.3 9.85 -5.91 78.3 28 64.24 28.4 15.7 44.72 

D 9.2 9.81 -6.63 53.7 28 47.86 --- --- --- 
E 7.74 8.11 -4.78 51.1 22.4 56.16 19.44 12.7 34.67 

F 7.92 8.36 -5.56 28.1 23 18.15 --- --- --- 

 

 

3.2.1. Effect of grounding system configurations at low soil resistivity site 

Figure 4 shows the measured and computed RDCs for the six grounding system configurations at 

the low soil resistivity site (site 1). Generally, it can be seen that the RDC decreases with increasing size, i.e., 

the surface area of the grounding electrodes. However, from the tabulation shown in Table 4, it is noticed that 

for configuration F, despite having a larger area than E as shown in Table 3, the measured and computed 

values are 0.18 Ω and 0.25 Ω, respectively, higher than those of E. Configuration D, which has a larger area 

than C, obtained a relatively equal RDC that is only lower by 0.1 Ω and 0.04 Ω, respectively, for measured 

and computed values when compared to those of C. Additionally, Table 3 reveals that configurations D and F 

not only surpass C and E in the total surface area but also exhibit larger surface areas in the top layer (lower 

resistivity). This could be due to the soil in which the grounding system is installed has non-uniform 

resistivity; thus, a larger area may not necessarily result in lower resistance. The current tends to concentrate 

in areas of lower resistivity, causing an uneven distribution that contributes to higher overall resistance. 
 
 

 
 

Figure 4. The plot of measured and computed RDC values, together with their percentage difference for the 

six configurations installed at site 1. Note: %D-X1 refers to the percentage difference between measured and 

computed RDC for configuration X installed at site 1 
 

 

Comparing the measured and computed values, the differences between them are all below 10%, 

except for configuration A (a single rod), which is about 25%. Generally, the plots in Figure 4 show reducing 

RDC values, both measured and computed, and also reducing percentage differences as the surface area of 

the grounding electrodes increases. Further, the computed RDC values are noticed to be higher than the 

measured values for all the configurations installed at site 1. 
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3.2.2. Effect of grounding system configurations at high soil resistivity site 

The RDC values obtained at site 2 (high soil resistivity) are plotted in Figure 5 and tabulated in 

Table 4. All RDC values, regardless of whether measured or computed, were found to be much higher, at 

least three times, than those found at site 1. This is expected, which was due to the higher resistivity of soil at 

site 2, also observed in many studies [2], [25], [26]. The RDC value significantly decreases with the 

increasing total surface area, i.e., as more rods or tapes are added, except for the computed RDC of 

configuration D. This exception can be related to the greater impact of the bottom layer at site 2 in 

determining the RDC values of the grounding system. It can be seen from Table 3 that the surface area of the 

ground electrodes for configuration D is the same as that of configuration C. 
 

 

 
 

Figure 5. The plot of measured and computed RDC values, together with their percentage difference for six 

configurations installed at site 2. Note: %D-X2 refers to the percentage difference between measured and 

computed RDC for configuration X installed at site 2 
 
 

In terms of differences between the measured and computed values, the differences are much larger 

than those at site 1. It ranges from 18% to 66%. A similar observation on the large difference of 56% was 

seen in Jovanović et al. [22], in which they used FEM to compute the RDC value of the grid system.  

Aman et al. [27] also obtained an approximately 65% difference in their work. They used two-parallel rod 

configurations in a soil with a resistivity of about 100 Ωm, which were tested three times within the period of 

10 months. In Figure 5, it can be observed that the RDC percentage difference shows an increasing trend as 

the grounding surface area increases, but only from configurations A to B and configurations D to E. For 

configurations B to D and E to F, the difference reduces as the grounding surface area increases. 

At site 3, only four configurations (A, B, C, and E) are installed, and the RDC performance is shown 

in Figure 6, with the values also tabulated in Table 4. The RDC values are lower than the corresponding 

configurations installed at site 2, although the bottom layer of site 3, as shown in Table 2, has the highest 

resistivity value. This can be attributed to the depth of the top layer (lower resistivity), which entirely (100%) 

encloses the ground electrodes, as presented in Table 3. The observed pattern of percentage variation across 

configurations A, B, C, and E shown in Figure 6 aligns closely with that of site 2. The disparity between the 

calculated and measured RDC values, as outlined in Table 4, falls within the range of 35% to 53%. 
 

 

 
 

Figure 6. The plot of measured and computed RDC values, together with their percentage difference for four 

configurations installed at site 3. Note: %D-X3 refers to the percentage difference between measured and 

computed RDC for configuration X installed at site 3 
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3.2.3. Effect of soil layer’s height 

In this section, the effect of the thickness of the soil layers on the percentage difference between 

measured and computed values will be evaluated by considering the following three cases in the simulation: 

a. Case 1: two-layer soil profile as shown in Table 2 is considered. 

b. Case 2: uniform soil, with priority given to the soil layer that largely contains the grounding systems. In 

this case, the following assumptions are made: i) site 1: the effect of the top layer outperforms that of the 

bottom, thus 45.48 Ωm is used; ii) site 2: the effect of the top layer is negligible, thus the resistivity of the 

bottom layer, i.e., 383.13 Ωm is used. However, as can be seen from Table 3, more than 60% of the 

ground electrodes in configurations B to F lie in the top layer. Therefore, a uniform resistivity equal to the 

resistivity of the top layer is also considered for comparison purposes; and iii) site 3: the effect of the 

bottom layer is negligible. The soil resistivity is set to 100.93 Ωm. 

c. Case 3: uniform soil, with the soil resistivity automatically computed by CDEGS. Soil resistivities of 

107.35 Ωm, 227.5 Ωm, and 120.46 Ωm are used for sites 1, 2, and 3, respectively. 

- Comparison between cases 1, 2, and 3  

Figure 7 compares the three cases in terms of the percentage difference between the measured and 

computed RDCs at site 1. It is observed that case 1 yielded the lowest percentage difference for all 

configurations, except configuration A. Case 3 shows a similar trend to that of case 1, but with a two-fold 

higher percentage difference, and the difference reduces as the area increases. In contrast, case 2 shows a 

completely opposite trend to that found in cases 1 and 3. The highest RDC difference amongst the three cases 

also came from case 2 for all configurations, except configuration A. 

The lowest percentage difference observed for site 1 can be due to having the lowest soil resistivity 

as compared to sites 2 and 3. This is similar to the observation by Salam et al. [28] on the soil resistivity and 

ground resistance near an electrical substation. They obtained only a little difference of 2.25% between 

measured and simulated (using Cymgrd software) RDC values for the grid with rods installed in the wet soil 

(low resistivity) site. In contrast, a significant difference (19.42%) was observed for the grid without rods at 

the dry site (high resistivity). 

 

 

 
 

Figure 7. Percentage difference between measured and computed RDC for cases 1, 2, and 3 at site 1 

 

 

Similar to Figure 7, Figure 8 shows the comparison between measured and computed RDC values, 

but performed for site 2. The percentage difference for cases 1 and 3 is close for all the configurations 

considered. Meanwhile, the percentage difference for case 2 (bottom layer) is lower than in the other cases. 

Note that an additional plot considering the top layer soil resistivity (i.e., based on the larger surface area of 

the grounding system location) has been included. The added plot shows a much higher percentage difference 

than when the soil is assumed to have the bottom layer’s resistivity (i.e., based on the soil layers’ depth). This 

suggests that the assumption on soil resistivity should follow the resistivity of the soil layer based on depth. 

The percentage difference between measured and computed RDCs performed for site 3 is shown in Figure 9. 

The trend for all cases is similar for all configurations due to the large height of the top layer, indicating that 

a uniform soil layer is more suitable when the soil layer’s height is large, i.e., substantially higher than the 

vertical length of the ground electrode after installation. 
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Figure 8. Percentage difference between measured 

and computed RDC for cases 1, 2, and 3 at site 2 

Figure 9. Percentage difference between measured 

and computed RDC for cases 1, 2, and 3 at site 3 

 

 

Table 5 presents a summary of the percentage differences between the measured and computed 

RDC values for all three sites, considering the three scenarios defined in subsubsection 3.2.3. It can be seen 

that case 1 gives the lowest difference between the measured and computed RDC for 2 sites, i.e., sites 1 and 

3, while cases 2 and 3 each give the lowest difference just for one site. This is consistent with the findings of 

Nassereddine et al. [29], who compared the two-layer soil profile computed using CDEGS, with a single 

uniform layer that was calculated by taking the average of apparent soil resistivities. Their findings indicated 

that the use of a single-layer apparent soil structure can result in a more expensive and non-compliant system. 

Similarly, in the study conducted by Dawalibi and Barbeito [30], it was observed that a relatively high level 

of accuracy is achieved when utilising multi-layer soil structure models, in contrast to the results obtained 

when uniform soil models are employed. 
  
 

Table 5. Summary of the percentage difference between measured and computed RDC for cases 1, 2, and 3 at 

all sites 

Case 
% difference 

Site 1 Site 2 Site 3 

1 6 to 26 

Lowest 

18 to 66 

Highest 

35 to 52 

Lowest 
2 4 to 43 

Highest 

11 to 37 

Lowest 

49 to 55 

Highest 

3 11 to 55 20 to 63 
Highest 

39 to 46 
Lowest 

   

 

4. CONCLUSION 

The RDC performance of four to six grounding system configurations at three sites with different 

soil resistivity profiles was evaluated through both field measurement and computational methods. As 

expected, higher soil resistivity resulted in a higher RDC. This is also true when the number of rods, which 

indicate the grounding system size, i.e., surface area, is increased. Further analysis of the results of sites 1 and 

2 shows that grounding system configuration, i.e., the arrangement of the electrodes, also affects the RDC of 

grounding systems. Specifically, grid grounding systems (2×2 rod grid and 3-rod grid) can be recommended 

to be installed at sites with high soil resistivity, while parallel rod grounding systems (3- and 4-parallel rods) 

can be employed in areas with low soil resistivity. In terms of the difference between measured and 

computed RDCs, the values are lower and more consistent for the low resistivity site 1. Further, the 

computed RDC values are higher than the measured values at the low resistivity site, and vice versa for the 

ground electrodes installed at the high resistivity sites. From the three soil resistivity scenarios considered, it 

is also recommended that the assumption on soil resistivity follow the resistivity of the soil layer based on 

depth. For a more conclusive result, further study may consider a larger number of grounding system 

configurations and sites with diverse soil characteristics. 
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