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The objective of this research project is to assess the effectiveness of various
machine learning algorithms, including deep learning and combination
approaches, in performing tasks such as categorizing products into specific
categories using data from an e-commerce platform named "OTHOBA." In
this study, a dataset consisting of 19,087 data samples is used to evaluate the
effectiveness of seven supervised machine learning models. Among these
models are three based on deep learning: long short-term memory (LSTM),
bidirectional long short-term memory (Bi-LSTM), and 1D convolutional
(ConvlD), as well as a multi-layer model that combines Conv1D and LSTM
approaches. The task at hand is the classification of product categories. The
LSTM-based model demonstrates the highest accuracy rate of 96.23%
among the deep learning models, while the logistic regression (LR) models
achieve the highest accuracy scores of 97.00% for product category
classification. Overall, the proposed models and techniques show significant

progress in natural language processing (NLP) research for text
classification, specifically in English, and have practical applications for e-
commerce sites.
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1. INTRODUCTION

The remarkable progress in natural language processing (NLP) and the ability of machines to
effectively analyze and categorize large volumes of textual data demonstrate their capabilities in
classification tasks. NLP is concerned with comprehending and interpreting human language. As big data and
machine learning continue to grow, these fields have become increasingly vital. English is the most common
language for scientific publications, making it a focal point for NLP applications in scientific research and
knowledge extraction [1]-[3]. The focus on English in NLP is driven by its wide usage and accessibility of
resources, which makes it an ideal language for NLP research and development [4], [5]. Text classification is
a common task in the field of NLP that involves assigning labels or categories to various types of textual
data, such as documents, paragraphs, sentences, or queries. This task is discussed in multiple sources [6]-[8].
Since digital documents were first introduced, automatic text classification has been a significant area of both
research and practical application [9], [10]. Text classification has become increasingly significant due to its
numerous applications in different fields, including but not limited to sentiment analysis, spam detection,
message classification, user intent classification, and topic modeling [11], [12]. It helps to automatically
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organize and categorize large amounts of text data, making it more manageable and understandable. NLP is
utilized in text classification as it empowers computers to comprehend a handle human language. It improves
the precision of text classification, and handles the complexity of natural language, sparsity, and high-
dimensionality of text data [13]. In NLP, several methods are used to perform sentiment analysis or text
classification tasks, including rule-based systems, probabilistic classifiers, supervised learning models, non-
parametric methods, tree-based models, deep learning models, and ensemble methods. Rule-based systems
use a set of predefined rules to classify text, such as keywords or regular expressions [14], [15]. The Naive
Bayes classifier that employs Bayes theorem in a probabilistic manner that is known for being simple,
efficient, and straightforward to implement, as referenced in source [16]. Conversely, support vector
machines (SVM) can adeptly categorize data in spaces with numerous dimensions and are also beneficial for
classification tasks that are non-linear [17]. The k-nearest neighbors (KNN) technique is a type of non-
parametric approach that utilizes the proximity of documents in the training set to classify text [18]. Decision
trees (DT), random forests (RF) are tree-based models that create a DT and RF to classify text [19], [20].
Neural networks are deep learning models that can use various architectures such as long short-term memory
(LSTM), recurrent neural network (RNN), convolutional neural network (CNN), and bidirectional long short-
term memory (Bi-LSTM) to classify text. Ensemble techniques are employed to enhance the classifier's
performance by combining the predictions of several models. The amalgamation of predictions from multiple
models helps improve the overall accuracy and robustness of the classifier. An extensively used type of RNN
for processing sequential data in NLP applications is LSTM [21]. One of the advantages of using LSTM in
text classification is its ability to capture long-term dependencies and retain information for a significant
period. LSTMs are versatile and can be utilized for various text classification tasks, including sentiment
analysis to identify the polarity of a text as positive, negative, or neutral, detecting spam messages,
generating text similar to a given input, recognizing named entities such as people and businesses mentioned
in a text, and creating a summary of a longer text by extracting the most important information. As opposed
to, CNNs have gained popularity not only for image and video processing tasks but also for their potential
use in classifying text data [22]. The application of machine learning models has become increasingly
popular in various fields in recent years, including sentiment analysis, price prediction, and time series
analysis. This literature review examines several recent research articles that propose various approaches to
these areas. In one study, in reference to source [23], the researchers suggested utilizing a CNN along with an
embedding layer and LSTM to classify emotions and sentiment in YouTube comments.

In this study, we employed seven supervised classification models: multinomial Naive Bayes
(MNB), SVM, KNN, DT, RF, logistic regression (LR), and stochastic gradient descent (SGD). Furthermore,
we utilized three distinct deep learning models-LSTM, Bi-LSTM, and 1D-convolutional (Conv1D) neural
network in addition to a hybrid multi-layer model combining ConvlD and LSTM for the classification of
product categories. The key contributions of this paper can be summarized as follows: i) the dataset
constructed in this study, consisting of 19087 data samples, can serve as a valuable resource for future
research in product category classification and ii) a diverse set of supervised classification models and deep
learning models were employed in this study, including MNB, SVM, KNN, DT, RF, LR, SGD, LSTM,
Bi-LSTM, Conv1D, and a hybrid Conv1D and LSTM model, to accurately classify product categories.

The paper follows the following structure: the paper is structured into three major sections.
Section 2 details the research method and materials used in the study. Section 3 includes the experimental
analysis, encompassing the performance and outcomes of the various machine learning models applied in the
study. Lastly, section 4, which addresses conclusion and scope for future research.

2. METHOD

In this section, we will explain the techniques and methodologies that we employed in our work of
text classification. The working flow in Figure 1 depicts the overall process of the study, providing a visual
representation of the various stages involved in the process.
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Figure 1. Working flow of the entire process
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2.1. Dataset properties

The study utilized data from Othoba.com, a Bengali e-commerce platform, collected with Python
Scrappy. The dataset included date, category, product name, brand, seller, price, shipping price, city, ratings,
outlet size, and total. This research formed the basis for a text classification task, where "product name" was
used as the feature column, and "category" as the target column. The study employed a dataset consisting of
19,087 samples, classified into nine categories, and applied various classification methods as shown in Figure 2.
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Figure 2. Dataset overview for text classification

2.2. Dataset preprocessing

The preprocessing steps taken to prepare the dataset for classification involved several techniques to
transform and normalize the text data. The following is a brief description of the preprocessing methods used
in this study:

— Data cleaning: we enhanced data quality for classification by removing stop words, punctuation, and null
values. This streamlined the dataset, reducing noise and boosting classification precision. Stop word
removal minimized irrelevant content, eliminating punctuation, special characters, remove emoji, remove
small, and large text. Organizing data into categories further improved dataset integrity.

— Tokenization: tokenization, a critical step in text classification, involves converting text into tokens
(words or phrases). Our study employed techniques such as stemming to simplify and enhance accuracy.
Lowercasing standardized text but requires caution regarding potential loss of information like proper
nouns and acronyms. Task-specific decisions govern lowercasing usage.

— Normalization: text normalization standardizes text and enhances ML performance in classification by
reducing features while preserving vital information. Techniques like lemmatization and stemming ensure
text consistency, aiding effective dimensionality reduction.

— Vectorization: for effective text processing by machine learning, conversion to numerical form is
essential. Vectorization achieves this, a key step in text classification. We utilized bag-of-words: text
represented as word counts. Example: "The quick brown fox..." becomes [1, 1, 1, 1, 1, 1, 1, 1], each
integer showing word frequency.

— Splitting into training and testing sets: splitting text data into training and testing sets is crucial for model
evaluation. non-overlapping samples ensure unbiased assessments. Standard metrics like accuracy,
precision, recall, and F1 score are employed for evaluation.

— Balancing the data: balancing data in text classification ensures equal samples per class, crucial due to
common imbalances. For instance, sentiment analysis datasets might have more positives than negatives.
Imbalance can lead to biased learning, favoring majority class and undermining minority class predictions.

2.3. Supervised machine learning models

After data preparation, machine learning models employ processed info for training and prediction.
Data splits into 80:20 for training and testing, 15,269 and 3,818 samples respectively. Model learns on
training data, minimizing error via parameter adjustments. Trained model predicts unseen data, assessed
using metrics like accuracy, precision, recall, and F1 score, indicating predictive prowess.

2.4. Deep learning based models

This study develops and deploys four neural network models: LSTM, Bi-LSTM, Conv1D, and
Conv1D-LSTM hybrid. Dataset split into training, testing, and validation sets (Figure 3). Model performance
assessed using standard metrics: accuracy, precision, recall, and F1 score, widely used in machine learning
literature for evaluation.
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— LSTM: deep neural network architecture, excels in processing sequential data like text, speech, and time
series. Comprising LSTM cells with memory capabilities, it can capture long-term dependencies, making
it ideal for tasks such as speech recognition and language modeling, as shown in Figure 4(a) of our
specialized LSTM model.

— BILSTM: is a RNN that employs two LSTM models. Unlike standard LSTMs, it processes sequences
both forward and backward, considering past and future context. This makes it ideal for tasks like NLP,
speech recognition, and image captioning. Bi-LSTM maodels excel in sequence modeling, and Figure 4(b)
showcases their architecture.

— CNN: notably used in computer vision, process data through interconnected layers, applying convolution
operations. These layers capture intricate input features by sliding filters across data. Non-linear
activation functions, like ReLU, introduce non-linearity. Figure 4(c) illustrates our proposed CNN model.

— Hybrid ConvlD-LSTM: combining CNNs and LSTMs enhances performance in tasks like speech
recognition and NLP. ConvlD layers find local patterns, while LSTM layers capture long-term
dependencies. The Hybrid Conv1D-LSTM model excels in analyzing sequential data with both local and
global features. Figure 4(d) depicts our proposed Hybrid ConviD-LSTM model.
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Figure 4. Architectures of proposed models; (a) LSTM, (b), Bi-LSTM (c), CNN, and (d) hybrid
ConvlD-LSTM

2.5. Experimental setup

The study involved testing diverse deep learning algorithms through four classifiers. Python 3.8,
Keras, TensorFlow 2.4.1, and Pandas facilitated experimentation, preprocessing, and visualization. Scikit-
learn computed performance metrics. Models were compiled with Adam optimizer and
'sparse_categorical_crossentropy' loss. Each model underwent 50 epochs with consistent batch size 64.
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3. RESULTS AND DISCUSSION

The evaluation of seven classification models in Table 1, including MNB, SVM, KNN, DT, RF, LR,
and SGD, showcased varying performance metrics. LR led with a 97.00% accuracy, while MNB scored the
lowest at 92.69%. Notably, DT, RF, and SGD achieved perfect precision scores, contrasting with MNB
lowest recall score. In contrast, for text data classification, a study in Table 2 explored four models: LSTM-
based, Bi-LSTM-based, ConvlD-based, and ConvlD-LSTM-based. The LSTM-based model demonstrated
superior accuracy at 96.23%, surpassing conventional LR. LSTM's capability to capture intricate temporal
relationships within text data distinguishes it from LR, showcasing the power of deep learning for complex
data. Model choice should align with data characteristics and analysis objectives.

Table 1. Performance of the ML algorithms for product category classification
Model name  Accuracy (%)  Precision (%) Recall (%) F1 score (%)

MNB 92.69 93.47 92.69 92.60
SVM 96.00 98.00 96.00 96.00
KNN 93.00 99.00 93.00 94.00
DT 93.00 100 93.00 94.00
RF 96.00 100 96.00 96.00
LR 97.00 98.00 97.00 97.00
SGD 96.00 100 96.00 96.00

Table 2. Performance of the deep learning algorithms for product category classification

Model Category Precision (%) Recall (%) F1-score (%) Accuracy (%)
LSTM Men 90.77 92.19 91.47 96.23
Cloth 15.38 40.00 22.22
Women 95.82 98.66 97.22
Miscellaneous 94.99 94.99 94.99
Electronics 94.54 9251 93.51
Food grocery 97.72 94.84 96.26
Kids 97.32 97.10 97.21
Home living 96.79 98.22 97.50
Book 96.67 95.31 95.98
Bi-LSTM Men 95.92 73.44 83.19 95.76
Cloth 66.67 80.00 72.73
Women 98.31 94.09 96.15
Miscellaneous 94.75 95.54 95.15
Electronics 80.37 94.12 86.70
Food grocery 94.29 97.30 95.77
Kids 97.01 97.77 97.39
Home living 99.39 96.74 98.05
Book 95.86 95.07 95.46
ConvlD Men 82.43 95.31 88.41 95.13
Cloth 50.00 60.00 54.55
Women 97.30 97.04 97.17
Miscellaneous 94.32 97.21 95.75
Electronics 92.63 94.12 93.37
Food grocery 97.29 97.05 97.17
Kids 97.32 97.10 97.21
Home living 98.22 98.22 98.22
Book 97.35 94.95 96.14
Combine Men 81.94 92.19 86.76 96.20
ConvliD-LSTM  Cloth 25.00 20.00 22.22
Women 96.32 98.39 97.34
Miscellaneous 92.23 95.82 93.99
Electronics 89.05 95.72 92.27
Food grocery 96.52 95.33 95.92
Kids 97.64 96.77 97.20
Home living 98.52 98.52 98.52
Book 97.69 94.25 95.94

In Figures 5(a) to (d), the accuracy trends of various neural network models across training and
validation datasets are illustrated with respect to the number of training epochs. The results indicate that
accuracy generally improves until a saturation point is reached, beyond which further epochs yield marginal
gains. This improvement rate varies across models and languages, highlighting model-specific nuances.
Figures 6(a) to (d) portrays the loss dynamics of four neural network models across training and validation
datasets concerning epoch count. Loss typically diminishes with increasing epochs until a plateau, signifying
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diminishing returns. Additionally, the elevated validation dataset loss compared to the training dataset hints
at potential overfitting. These findings underscore the importance of judiciously selecting the number of
epochs and vigilantly monitoring loss across both datasets to prevent overfitting and optimize model
performance. The presented Table 3 highlights a comprehensive comparison of sentiment analysis studies,
each employing distinct datasets and methodologies. In comparison, our study stands out with an impressive
97.00% accuracy using LR on a dataset of 19,087 raw entries, showcasing its superior performance in
sentiment classification.
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Figure 5. Relationship between each deep learning models training and validation accuracy; (a) effectiveness
of LSTM, (b) effectiveness of Bi- LSTM, (c) effectiveness of ConvlD, and (d) effectiveness of
ConvlD-LSTM
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Figure 6. Plot showing the relationship between each deep learning models training and validation loss;
(a) effectiveness of LSTM, (b) effectiveness of Bi- LSTM, (c) effectiveness of Conv1D, and (d) effectiveness
of ConvlD-LSTM
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Table 3. Comparison with others state of art studies

Paper Dataset Method and techniques Results (%)

Das et al. [24] 2,577 reviews both Stemming algorithm: porter  English Acc 82.56
Bangla and English SVM Bangla Acc 86.43

Islam et al. [25] 4545 blogs Unigram TF-IDF SVM Acc 87.4

Hamid et al. [26] 8,110 slang words LR Acc 70

Daud et al. [27] 40,063 English news articles  Optimized SVM Acc 85

Alsaidi et al. [28] 568 English poems Roughest theory algorithm ~ Acc 85

This study 19,087 raw data LR Acc 97.00

4. CONCLUSION

This research advances the field of NLP for text classification, specifically focusing on product
categorization within the e-commerce domain. The diverse set of supervised classification models and deep
learning approaches examined, such as LSTM, Bi-LSTM, and hybrid ConvlD-LSTM, underscores the
breadth of methodologies available for tackling this complex task. The achieved 96.23% accuracy by the
LSTM-based model and 97.00% by LR demonstrate the effectiveness of these models in product category
classification. The construction of a substantial dataset comprising 19,087 samples stands as a valuable
contribution, offering a resource for future research in this domain. The practical implications are profound,
with implications for enhancing e-commerce platforms like "OTHOBA" through improved product
categorization, leading to a more efficient and user-friendly shopping experience. These findings bridge the
theoretical and practical realms, providing insights and tools that can be harnessed for advancements in NLP
applications, particularly within the realm of e-commerce. Future research should extend to multilingual
contexts, explore adaptability to diverse e-commerce domains, fine-tune hyperparameters for efficiency,
transition models to real-time scenarios, and integrate user feedback. Embracing linguistic diversity,
addressing platform-specific constraints, and refining model dynamics offer promising directions for
advancing the broader field of text classification in e-commerce.
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