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 An accurate prediction of ionospheric total electron content (TEC) at the 

primary stage is essential for applications related to global navigation 

satellite systems (GNSS) under varying weather conditions. The previous 

TEC prediction schemes contribute for each time step that increases the 

prediction time. The eye contact phenomenon establishes a metaphorical 

connection which intends to capture and emphasize the attention worthy 

elements in a sequence. This research introduces a deep learning approach 

which is a combination of attention-based bidirectional long short-term 

memory and gated recurrent unit (Bi-LSTM GRU) to predict TEC in the 

ionosphere. Bidirectional LSTM is the better option for achieving durability 

when combined with a gated recurrent unit (GRU) to predict TEC in the 

ionosphere. The proposed approach is evaluated with the existing LSTM 

approach for root mean square error (RMSE) during training and validation. 

The RMSE while predicting the global ionospheric delay using the existing 

LSTM for 20 epochs is seen to be 0.004, whereas the existing approach 

achieves a training error of 0.003. 
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1. INTRODUCTION 

The atmosphere of earth is comprised of various layers based on altitude, chemical and thermal 

characteristics. Among these, the ionosphere is a kind of atmospheric layer that is positioned about 60-1000 km 

from the surface of the earth [1]. The ionosphere is a significant component that is present in the upper 

atmosphere of the earth. So, the existence of a large quantity of charged particles considerably affects the 

propagation of radio waves [2], [3]. The spatiotemporal variations that occur in the ionospheric layer of the 

atmosphere directly impact on the accuracy of global navigation satellite system (GNSS) for positioning, 

navigation and other applications. Total electron content (TEC) is one of the significant parameters that is 

used to describe the ionospheric state [4], [5]. The GNSS broadcast ionospheric delay correction model is 

designed to offer a global-level description of TEC.  

Moreover, the ionospheric delay has complex variations in spatial and temporal dimensionalities 

which range from several meters to several hundred meters. When the ranges of dimensionalities get 

increased, the error probability also gets increased and affects the models based on GNSS applications  

[6]-[9]. The largest naturally occurring error probability of GNSS is rectifiable with the help of broadcasting 

or empirical models of ionosphere which are generally utilized to diminish the ionospheric delay. The models 

have the efficiency to achieve better accuracy and meet the needs of the user based on a single frequency and 

high positioning [8], [9]. The ionospheric time delay is proportional to the ionosphere's TEC. TEC fluctuates 

https://creativecommons.org/licenses/by-sa/4.0/
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depending on the time of the day, season and year [10]-[12]. GNSS signals enable the monitoring of 

ionospheric behavior using either ground or space based GNSS receivers [13], [14]. Deep learning techniques 

characterize ionospheric states using prior ionospheric data under varied space weather situations [15]-[17]. 

To forecast ionospheric delays, solar and geomagnetic activities are used to classify the ionospheric activity. 

Ionospheric comportment at low latitudes is highly unpredictable and dynamic. The previous TEC prediction 

schemes contribute for each time step, increasing the prediction time [18]. The existing approaches are noted 

as multiple graph cooperative learning neural networks (MGLNN) [19], DenseNet, and swin-transformer 

prediction head-enabled YOLOv5 with attention mechanism [20], vision transformer (ViT) [21]. 

Additionally, an effective prediction is not provided by the existing approaches due to maximum error 

values. As a result, building ionospheric forecasting algorithms requires a great deal of attention [22], [23]. 

So, this research introduces an effective approach using bidirectional long short-term memory and gated 

recurrent unit (Bi-LSTM GRU) with an attention mechanism to predict the ionospheric TEC forecasting. 

Tang et al. [24] introduced a machine learning model referred to as the prophet model which predicted TEC 

in the ionosphere with the help of a short-term ionospheric prediction model. The training data was obtained 

from the 15th-order spherical harmonic coefficients, while the predicted coefficients were created using 

ionospheric TEC forecast map on the basis of solar activity. The proposed approach was applicable based on 

error correction and offered a stable positioning service for single frequency GNSS. However, the suggested 

approach was incapable of performing precise predictions with a relatively slight correlation.  

Mallika et al. [25] introduced a machine learning algorithm known as Gaussian process regression 

(GPR) to forecast low-latitude ionospheric conditions. The GPR model was known for its potentiality which 

was based on kernel based technique with Bayesian rules utilized in forecasting TEC variations in the 

ionosphere. The suggested approach offered better TEC forecasting performance with small training data, 

and captured the spatial and temporal patterns with negligible residues. Li et al. [26] introduced an advanced 

machine-learning approach optimized by genetic algorithm. The suggested approach was a combination of 

three-dimensional electron density model integrated with meteorology, ionosphere and climate data. The 

proposed method minimized discrepancies with the capability to enhance its accuracy. However, the error 

rate was maximal when the simulation took place in a randomized environment. Lin et al. [27] introduced a 

framework based on spatiotemporal network model to forecast global ionospheric TEC. The suggested 

spatiotemporal network was comprised of two modules, global spatiotemporal features extraction and 

regional characteristic correction. In the process of ionospheric prediction, the noise present in the 

ionospheric TEC data were diminished with the help of the Huber loss function. Reddybattula et al. [28] 

introduced LSTM to forecast ionospheric TEC through the exploitation of global positioning system (GPS) at 

low latitudes. The suggested model was trained with the help of the trained data obtained from 2009 to 2017 

based on the observed TEC values. An average set of solar and geomagnetic indices were selected with TEC 

for forecasting the optimistic TEC values. The LSTM architecture was based on the attributes of utilization 

of maximized filters in the low altitude region. However, TEC forecasting at the regional level had to be 

considered to improve the refinement at geomagnetic conditions. Zhao et al. [29] introduced an extreme 

learning machine based spherical harmonic (ELM-SH) model for modeling the ionospheric delay. The SH 

model was utilized in the process of producing the SH model, whereas the ELM was used in the process of 

compensating the errors. The ELM-SH algorithm dealt with real-time data based on the stages of training and 

testing with effective feasibility to model the delay. However, the suggested approach faced problems related 

to slow convergence and fell into the local extremum. 

 Iluor and Lu [30] introduced a prediction framework to predict the ionospheric vertical TEC using 

LSTM and GRU. The performance of LSTM and GRU when predicting GPS-VEC is evaluated, and 

compared with the performance of multi-layer perceptron (MLP). The GRU has the ability to control the 

degree of the state which is exposed. However, the usage of LSTM-GRU did not provide effective accuracy 

due to its poor prediction performance. Chen et al. [31] introduced a multi-step auxiliary prediction model to 

predict the global ionospheric TEC using deep learning approach. The multi-step auxiliary prediction model 

had the tendency to predict ionospheric TEC in quiet solar conditions with better generalization ability. 

However, the prediction error stacking with increased time weakened the multi-step prediction model along 

with auxiliary algorithm.  

Jin and Song [32] developed an hourly updated near real-time Shanghai Astronomical Observatory 

near real-time global ionospheric map (SHUG). SHUG is based on the hourly estimation as per GNSS data 

sliding window with spherical harmonic expansion. However, the suggested approach was not able 

implementable with real time data and TEC forecasting casting. Dabbakuti et al. [33] introduced TEC 

prediction framework using singular spectrum analysis and autoregressive moving approach. The suggested 

approach was utilized in signal propagation combined with satellite communication and navigation. SSA had 

the ability to decompose signals into interpretable and physical components. Nevertheless, the suggested 

framework was not appropriate for a reliable prediction of ionospheric TEC. Iban and Şentürk [34] 
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introduced machine learning regression models to predict multiple ionospheric parameters. This research 

utilized three machine learning approaches namely, decision tree, random forest and support vector machine. 

The input of the proposed model was evaluated based on peak electron density, critical frequency and TEC. 

Nonetheless, the forecasting efficiency of the suggested approaches were evaluated only for mid altitude 

regions where the ionospheric variations are minimal. The significant contributions of this research are listed 

in the following manner: 

a. The Bi-LSTM GRU is introduced to predict TEC in the ionosphere. The Bi-LSTM GRU is highly 

capable to predict the time forecasting series which is used to predict the TEC in an effective manner. 

b. Moreover, the attention mechanism is introduced to cluster critical nodes by including the eye contact 

phenomenon and aid in effective classification. 

c. The performance of the suggested method is evaluated on the basis of various cases of ionospheric delay 

as a function of frequency for different TEC values, along with the ionospheric delay for solar activities 

based on intense time and quiet time. Then, the ionospheric delay at different altitude ranges of 300 km 

and 500 km are studied.  

The rest of the research paper is organized in the following way: section 2 describes the proposed method of 

this research and the experimental results achieved from the proposed method is presented in section 3. 

Finally, the conclusion of this study is presented in section 4. 

 

 

2. PROPOSED METHOD 

In this research, the TEC in the ionosphere is extracted from the observations of GPS at low 

latitudes in Bangalore, India. After extracting a decade of data, validation and model development is 

performed with the help of attention based LSTM-GRU. The input data obtained from the observations of 

GPS consist of hourly data points from the year 2009 to 2017. The input parameters are comprised of TEC 

values, and geomagnetic and solar indices. The data which is obtained from GPS is in receiver independent 

exchange (RINEX) format and is analyzed with the help of the GPS-TEC program. Moreover, the Slant TEC 

(STEC) units are determined with the help of vertical equivalents (VTEC) by utilizing a single-layered 

ionospheric model. The input parameters are designed to confirm the 24 ℎ forecast with the signatures of 

variability for predicting the forecasting in ionosphere using TEC values. The parameters are initialized and 

the model is trained with around 52,608 datasets, then the dataset is validated for 8,760 samples. During the 

stage of training, 1000 epochs are utilized with a batch size of 24. The fore mentioned parameters are 

considered while training the model after which the validation error is evaluated. If the validation error is 

minimum, the process is terminated, or else the validation error is minimized for last 50 epochs from minimal 

epoch error. The workflow diagram of the proposed approach is presented in Figure 1. 
 

 

 
 

Figure 1. Workflow diagram of the proposed approach 
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2.1.  Attention based BI-LSTM GRU for ionospheric prediction 

The RNN separates the order of the data in the form of vectors with a static length. Every individual 

component is symbolized with a specified instant. As well as the result is influenced for a specified instant 

over a collection of data from instant 𝑡 − 1 which is represented in (1) and (2): 

 

ℎ(𝑡) = 𝑓(𝑋(𝑡) × 𝑈 + ℎ(𝑡 − 1) ×𝑊 + 𝑏) (1) 

 

𝑜(𝑡) = 𝑔(ℎ(𝑡) × 𝑉 + 𝑐) (2) 

 

Where, the activation functions denoted as 𝑈,𝑊, 𝑉 represent the weight of the network, while 𝑏 and 

𝑐 denote the network’s deviations. The activation function relies on the network which is represented as 𝑓 

and 𝑔. The standard recurrent neural has the ability information related to short-term structure, but not long-

term sequence information. The structure of LSTM is covered with input, output, and forget gates. The 

LSTM feeds the data from input gate and provides it to gate at the output [35]. But, the Bi-LSTM 

architecture experiences computational complexity 𝑂(𝑊) due to the total number of edges present in the 

network. The Table 1 represents the layer architecture of Bi-LSTM. 

  

 

Table 1. Representation of layer architecture of Bi-LSTM 
Number of input gates 4 

Number of output gates 4 
Number of forget gates 4 

Activation function Sigmoid, tanh 

 

 

An optimal dependence is obtained with the help of bidirectional instant in a period of 𝑡. So, 

bidirectional LSTM [36] is the better option to achieve durability when combined with a gated recurrent unit 

(GRU) [37]. The GRU is comprised of two doors which are an updated door and a reset door represented as 

𝑧𝑡 and 𝑟𝑡, respectively. The update gate is utilized in the process of supervising knowledge of the previous 

state, whereas the reset gate is utilized in regulating the degree of transferring knowledge of the previous 

state. The structural diagram of GRU is depicted in Figure 2. 

 

 

 
 

Figure 2. Structural diagram of GRU 

 

 

Nonetheless, the prediction of ionospheric delay using GRU alone cannot provide a worthy 

prediction accuracy. To overcome the issues relying on Bi-LSTM and GRU, this research introduces a 

combination of Bi-LSTM and GRU with an attention mechanism. The mathematical formulations of GRU 

are given in (3)-(7). 

 

𝑟(𝑡) = 𝜎(𝑊(𝑟). [ℎ(𝑡 − 1), 𝑥(𝑡)]) (3) 

 

𝑧(𝑡) = 𝜎(𝑊(𝑧). [ℎ(𝑡 − 1), 𝑥(𝑡)]) (4) 

 

ℎ̅(𝑡) = 𝑡𝑎𝑛ℎ(𝑊ℎ.̅ [𝑟1 × ℎ(𝑡 − 1), 𝑥(𝑡)]) (5) 

 

ℎ(𝑡) = (1 − 𝑧(𝑡) × ℎ(𝑡 − 1) + 𝑧(𝑡) × ℎ̅(𝑡) (6) 
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𝑦(𝑡) = 𝜎(𝑊(𝑜). ℎ(𝑡)) (7) 

 

2.2.  Bi-LSTM GRU with an attention mechanism 

The features from Bi-LSTM GRU are combined with attention mechanism to predict the 

ionospheric delay. The hidden features from the sequential nodes of the Bi-LSTM network are obtained, 

wherein nodes are utilized to elaborate the meaning of the sequence. The structural diagram of Bi-LSTM 

GRU with attention mechanism is represented in Figure 3. The effect of significant nodes is improvised with 

the help of Bi-LSTM layer by embedding the attention layer in it. The attention mechanism is used to cluster 

critical nodes by including the eye contact phenomenon. The eye contact phenomenon establishes a 

metaphorical connection which intends to capture and emphasize the attention worthy elements in a 

sequence. In case of human communication, the eye serves as a non-verbal indication to convey attention. 

Similarly, a sequence vector is created to represent the crucial node that carries important information within 

the input sequence. The combination of Bi-LSTM GRU with attention mechanism is used in the 

representation of sequence. This representation is based on how eye contact enhances the understanding of 

key inspects in human communications. In (8)-(10) mathematically represent the overall process involved in 

attention mechanism. 

 

𝑢𝑖𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑛ℎ𝑖𝑡 + 𝑏𝑛) (8) 

 

𝑎𝑖𝑡 =
𝑒𝑥𝑝(𝑢𝑖𝑡

𝑇𝑢𝑛)

∑ 𝑒𝑥𝑝(𝑢𝑖𝑡
𝑇𝑢𝑛)𝑡

 (9) 

 

𝑠𝑖 = ∑ 𝑎𝑖𝑡ℎ𝑖𝑡𝑡  (10) 

 

Where, the node annotation of MLP and the node level context vector are represented as 𝑢𝑖𝑡 and 𝑢𝑛, 

respectively. While evaluating the node’s significance, the scalar product of 𝑢𝑖𝑡 and 𝑢𝑛 is stabilized, and the 

weight is denoted as 𝑎𝑖𝑡  which is obtained with the help of the softmax function.  

  

 

 
 

Figure 3. Structural diagrams of Bi-LSTM GRU with an attention mechanism 

  

 

During the model’s training period, the node-level input is evaluated with a contextual vector with 

related weights. The node level vector is computed based on dot product similarity and fed into the softmax 

layer. The output from the softmax layer is fed into the sequence of weighted vector. Similarly, the hidden 

vectors from the dot product similarity are fed into the one-layer MLP, while the sequential weight of hidden 

vectors are evaluated. The weighted sum of nodes is evaluated based on the dot product similarity and hidden 

vectors. The significant features are fed into the linear layer which are equal to the number of hidden nodes in 

the Bi-LSTM layer. In order to assess the efficiency of the suggested approach, an instant evaluation and 

plotting are retrieved from the community coordinated modeling center (CCMC). IRI-2016 is comprised of a 
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sub-model system for evaluating the electron density and bottom side thickness. The hourly TEC is evaluated 

using default options such as NE quick and ABT-2009 correspondingly for the top and bottom side, since 

they provide better results for equatorial and low-latitude regions. 

 

 

3. RESULTS AND DISCUSSION 

The performance of the suggested approach is evaluated by equating the predicted value of the 

model with values obtained from GPS-TEC and IRI-2016. IRI is one of the widely recognized models used 

in the process of evaluating the prediction performance. The IRI-2016 offers information related to 

forecasting for a specified time and location. The suggested method is estimated by considering the data 

obtained from 14 incorporated values based on a two-day sequence. The effectiveness of the suggested model 

is estimated in the system specified with an Intel i7 processor, 8 GB of RAM and windows 10 OS. This 

section describes the results obtained, alongside evaluating the proposed approach with the existing LSTM 

model and case studies with various environmental conditions on random days and storm days. 

 

3.1.  Performance analysis 

The performance of the proposed model is analyzed with the performance of the existing LSTM 

model deployed in the process of predicting the ionospheric delay and forecasting. The model is analyzed by 

using the data which is randomly selected from root mean square error (RMSE). The suggested model’s 

performance in prediction of the ionospheric delay is compared with that of the existing LSTM by 

considering the training and validation error for different epochs. Table 2 presents the RMSE that occurs 

while training and validation of the proposed Bi-LSTM GRU with the state-of-the-art techniques namely, 

LSTM, Bi-LSTM, and GRU. 

 

  

Table 2. Evaluation of RMSE between LSTM and Bi-LSTM GRU 

Epochs 

RMSE 

LSTM Bi-LSTM GRU Bi-LSTM GRU  

Training 

error 

Validation 

error 

Training 

error 

Validation 

error 

Training 

error 

Validation 

error 

Training 

error 

Validation 

error 

1 0.05 0.05 0.04 0.04 0.05 0.04 0.03 0.04 
5 0.004 0.004 0.003 0.003 0.04 0.03 0.002 0.012 

10 0.003 0.041 0.002 0.003 0.004 0.005 0.023 0.018 

15 0.003 0.004 0.005 0.003 0.004 0.004 0.028 0.020 
20 0.004 0.004 0.004 0.005 0.004 0.006 0.003 0.001 

 

 

The results from Table 2 show that the proposed approach achieves a minimal error rate when 

compared with the existing LSTM, Bi-LSTM, and GRU architectures for ionospheric prediction. For 

example, the validation error of the proposed approach for 20 epochs is 0.001, whereas the validation error of 

LSTM, Bi-LSTM and GRU is 0.004, 0.005 and 0.006, respectively. The superior result of the proposed 

approach is due to the combination of Bi LSTM and GRU with an attention mechanism, thereby improving 

the clustering ability and providing a better prediction performance. The graphical representation for the 

evaluation of RMSE based on the training error and validation error is represented in Figure 4. 

 

 

 
 

Figure 4. Graphical representation for evaluation of RMSE  
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Figure 5 presents TEC (TECU) forecasting of the GPS, IRI, LSTM, and the proposed approach that 

are evaluated for random days in the year 2018. It is observed that the Bi-LSTM GRU predicts the hourly 

values based on GPS observations, whereas the IRI TEC estimates for the days considered in a randomized 

manner. Figure 5 exhibits that the suggested Bi-LSTM GRU with attention mechanism accomplishes better 

results for predicting TEC in the ionosphere for random days. Here, 1TECU = 1 × 1016
electrons

m2 . Figure 6 

evidences that the suggested Bi-LSTM GRU with attention mechanism accomplishes better results for 

predicting the TEC in the ionosphere on storm days in the year 2018. 

 

 

 
 

Figure 5. Graphical representations for TEC prediction using different approaches on a random day of the 

year  

 

 

 
 

Figure 6. Graphical representations for TEC prediction using different approaches on a storm day of the year 

 

 

3.2.  Case studies for the proposed method 

Since this is the first research where the proposed approach is evaluated with real time dataset for 

the prediction of ionospheric delay, the papers with similar datasets are not available. So, case studies are 

performed based on ionospheric delay as a function of frequency for different TEC values, for intense and 

quiet solar activities, and as a function of frequency for different altitude ranges, with 300 km as the lowest 

range and 500 km as the highest range.  

 

3.2.1. Case 1: ionospheric delay as a function of frequency for different TEC values 

In case 1, the proposed Bi-LSTM GRU model is evaluated for different TEC values of 1e15  

(0.1 TECU), 5e15 (0.5 TECU), and 1e16 (1 TECU). The result is taken as frequency (GHz) with ionosphere 

delay (ms) to evaluate the performance of the proposed method. Figure 7 presents the graph between 

ionospheric delay and frequency ranges of 1 GHz to 10 GHz. The results from Figure 7 show that the 

ionospheric delay increases when the value of TEC increases, proving to be directly proportional to one 

another. For the frequency of 2 GHz, the proposed approach achieves a delay of 0.25 ms for TEC of 1e15 

(0.1 TECU), and further a delay of 1.1 ms for TEC of 5e15 (0.5 TECU). 
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Figure 7. Evaluation of ionospheric delay for different TEC values 

  

 

3.2.2. Case 2: ionospheric delay for solar activities  

In case 2, the variation of ionospheric TEC is considered based on the effect of solar activity. The 

correlation between the solar sunspot and average solar flux F10.7 is considered for 15 days, before and after 

the extra-large flare is used to make the evaluation. The substantial positive link between the number of solar 

sunspots, the solar F10.7 index, and the temperature before and after this flare burst. The influence of solar 

activity on TEC is around 2 days delayed. The solar activity's influence on global ionospheric TEC is not 

synchronized. There is a one-day delay from high to low latitudes, while the influence on low latitudes is 

significantly stronger than on the middle and high latitudes. In general, solar activity is the primary cause of 

ionospheric TEC variation, but other relevant causes are also possible to exist locally [38]. A violent solar 

storm that swept over earth on February 27th, 2023, forced SpaceX to postpone a Starlink launch from 

Florida, and momentarily hampered operations of numerous Canadian oil rigs due to faulty GPS signals. 

When a massive numbers of charged solar particles reach the earth, their interactions with the upper 

atmosphere cause the atmosphere to inflate. When this occurs, the density of gases at higher altitudes rises, 

causing the spacecraft to encounter a increased drag. Because the SpaceX launches Starlink vessels at very 

low altitudes and then uses the satellite's onboard engine to increase its orbit, the extra drag proves too much 

for the doomed spacecraft. The ionospheric delay for different solar activities of 0.8, 1.2, 1.5, 1.7, and 2 with 

solar intense and solar quiet time are graphically illustrated in Figure 8. 

The outcomes from Figure 8 prove that the proposed method is robust for varying frequency ranges 

from 1 GHz to 10 GHz. For instance, when the frequency is 1 GHz, the ionospheric delay is 3.5 ms for solar 

activity of 0.8. Similarly, for solar activity of 2, the ionospheric delay is 8.9 ms. While evaluating the 

ionospheric delay for quiet time for a frequency of 1 GHz, the ionospheric delay is 0.9 ms for solar activity of 

0.8, whereas for solar activity of 2, the ionospheric delay is 2.1 ms. 

 

 

 
 

Figure 8. Ionospheric delay of solar activities based on intense and quiet time 
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3.2.3. Case 3: ionospheric delay at different frequencies for an altitude of 300 km 

The results from Figure 9 demonstrate the ionospheric delay of the proposed approach for different 

weather conditions such as summer, winter and rainy, at an altitude of 300 km. The outcomes are taken as 

frequency (GHz) with ionosphere delay (ms) to evaluate the performance of the proposed method. For a 

frequency of 2 GHz, the ionospheric delay in winter is 0.6201 ms, the ionospheric delay in rainy season is 

0.6203 ms, and 0.6204 ms in summer season.  

 

 

 
 

Figure 9. Evaluation of ionospheric delay for different frequencies for an altitude of 300 km 

 

 

3.2.4. Case 4: ionospheric delay at different frequencies for an altitude of 500 km  

The outcomes from Figure 10 demonstrate the ionospheric delay of the proposed approach for 

different weather conditions such as summer, winter and rainy, at an altitude of 500 km. The results are taken 

as frequency (GHz) with ionosphere delay (ms) to assess the performance of the proposed method. For a 

frequency of 2 GHz, the ionospheric delay in winter is 0.6207 ms, the ionospheric delay in rainy season is 

0.6209 ms, and 0.6212 ms in the summer season.  

 

 

 
 

Figure 10. Evaluation of ionospheric delay for different frequencies for an altitude of 500 km 

 

  

3.2.5. Case 5: delay comparison between ionosphere and troposphere regions at different time zones 

from different channels 

In case 5, the proposed approach is evaluated with real time data on 8th July, 2023 obtained from the 

IRNSS receiver. The geo location of the data captured are noted as: Latitude:12.380N, Longitude: 77.260E 

(JAIN Global Campus, Bengaluru). The channels considered for comparison are 2, 3, 6, and 9 which are 

based on two time zones from 3 AM–5 AM and 12 PM–15 PM. The outcomes attained while evaluating the 

proposed approach for different time zones from 3 AM–5 AM and 12 PM–15 PM for different channels are 

presented in Table 3. 

The results from Table 3 show the results of the proposed approach for different channels and time 

zones. The results are taken when the solar activity is minimal (i.e., 3 AM–5 AM), as well as when the solar 
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activity is high (i.e., 12 PM–15 PM). For instance, the ionospheric delay is 0.095 ms for channel 9, and the 

tropospheric delay is 0.012 ms for channel 9 in the time zone of 3 AM-5 AM. Similarly, for the time zone 

between 12 PM-15 PM, the ionospheric delay is 0.114 for channel number 9, whereas for the same channel 

number 9, the tropospheric delay is 0.009 ms. As the ionosphere lies in the range of 50-400 km from the 

earth’s surface, it is exposed to a large quantity of solar intenses, while the troposphere is the primary layer 

from the surface of the earth which lies around 0-10 km from the earth’s surface. Figure 11 shows the 

graphical illustration of both ionospheric delay and tropospheric delay for two time ranges from 3 AM-5 AM 

and 12 PM-15 PM. 

 

 

Table 3. Evaluation of ionospheric delay and the tropospheric delay for different channels 

Channels 
3 AM–5 AM 12 PM–15 PM 

Ionospheric delay (ms) Tropospheric delay (ms) Ionospheric delay (ms) Tropospheric delay (ms) 

2 0.084 0.008 0.119 0.013 
3 0.089 0.008 0.109 0.007 

6 0.095 0.013 0.129 0.012 

9 0. 095 0.012 0.114 0.009 

 

 

 

 

Figure 11. Comparison of ionospheric delay and tropospheric delay for different channels at different time 

zones from 3 AM-5 AM and 12 PM-15 PM 

 

  

3.3.  Ablation study  

This section presents the ablation study where the efficiency of the proposed Bi-LSTM GRU is 

assessed based on the presence and absence of attention mechanism. The Table 4 presents the results 

achieved while evaluating the proposed approach based on presence and absence of attention mechanism. 

The results from the Table 4 evidence that the Bi-LSTM achieves better performance by acquiring minimal 

RMSE. The different epochs count are 1, 5, 10, 15, and 20. The RMSE during the training of Bi-LSTM GRU 

without attention mechanism for 20 epochs is 0.004, whereas the Bi-LSTM GRU with attention mechanism 

achieves 0.003. Thus, the inclusion of attention mechanism helps to minimize the error rate while predicting 

TEC in the ionosphere. The attention mechanism has the ability to adapt itself to the varying length of input 

sequence and to the length of input sequence, thereby aiding for preferable prediction results. 
 

 

Table 4. Evaluation of RMSE for Bi-LSTM GRU with and without attention mechanism 

Epochs 

RMSE 

Bi-LSTM GRU without attention mechanism Bi-LSTM GRU with attention mechanism  
Training error Validation error Training error Validation error 

1 0.04 0.05 0.03 0.04 

5 0.05 0.03 0.002 0.012 
10 0.005 0.005 0.023 0.018 

15 0.006 0.005 0.028 0.020 

20 0.004 0.006 0.003 0.001 

 

 

4. CONCLUSION 

Deep learning is useful for solving problems by detecting patterns and relationships in previous 

data. In a mathematical approach, computer systems learn by example and extract relevant information from 
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a vast set of historical data. It often comprises a vast amount of information that spans as many criteria as 

feasible and the attention-based Bi-LSTM GRU is deployed to predict the TEC in the ionosphere. This 

research introduces a deep learning approach which is a combination of attention-Bi-LSTM GRU to predict 

TEC in the ionosphere. Bidirectional LSTM is a robust option to achieve durability when combined with a 

GRU to predict TEC in the ionosphere. Likewise, Bi-LSTM is a sturdy option to achieve durability when 

combined with a GRU for the same. The proposed approach is contrasted against the existing LSTM 

approach for RMSE during training and validation. The efficiency of the proposed approach is analysed with 

the help of case studies of ionospheric delay for different TEC and solar activities based on intense and quiet 

time. Moreover, the ionospheric delay for altitude ranges between the lowest altitude of 300 km and the 

highest altitude of 500 km is evaluated. The training error of Bi-LSTM GRU without attention mechanism 

for 20 epochs is 0.004 whereas the proposed approach achieved a training error of 0.003. The future work of 

this research will be based on predicting the ionospheric delay by changing the values of the activation 

function. Moreover, the model experiences overfitting when the dataset is not large enough, and this can be 

rectified using regularization techniques.  
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