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 The internet of things (IoT) has increased exponentially in connected devices 

worldwide in recent years. However, this rapid growth also introduces 

significant security challenges since many IoT devices have vulnerabilities 

that can be exploited for cyber-attacks. Anomaly detection using machine 

learning algorithms shows promise for identifying abnormal network traffic 

indicative of IoT attacks. This paper proposes an ensemble learning 

framework for anomaly detection in IoT networks. A systematic literature 

review analyzes recent research applying machine learning for IoT security. 

Subsequently, a novel stacked ensemble model is presented, combining 

multiple base classifiers (random forest, neural network, support vector 

machine (SVM)) and meta-classifiers (gradient boosting) for improved 

performance. The model is evaluated on the IoTID20 dataset, using network 

traffic features to detect anomalies across binary, multi-class, and multi-label 

classifications. Experimental results demonstrate that the ensemble model 

achieved 99.7% accuracy and F1 score for binary classification, 99.5% 

accuracy for multi-class, and 91.2% accuracy for multi-label classification, 

outperforming previous methods. The model provides an effective anomaly 

detection approach to identify malicious activities and mitigate IoT security 

threats. 
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1. INTRODUCTION 

The internet of things (IoT) refers to the vast network of interconnected, smart devices transforming 

numerous application domains [1], [2]. IoT adoption continues accelerating, with over 25 billion devices 

forecasted by 2025 [3]. However, serious security and privacy concerns stem from such a vast number of IoT 

devices and networks [4], [5], emanating largely from the resource-constrained nature of devices and 

manufacturers' lack of security provisions [6], [7]. Attacks on IoT infrastructure can lead to data leaks, 

service disruptions, and even physical safety risks [8]-[10]. Through extensive monitoring of Mirai from 

2016-2021, Affinito et al. [11] unravel its adaptive survival across three major variants, 70 million infection 

attempts, and a distribution shift towards developing IoT markets. Despite fluctuating infection rates, Mirai’s 

persistent threat highlights the strategic resilience of IoT botnets to exploit new vulnerabilities and sustain 

attacks over the years through continual evolution. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:adnan.r@yu.edu.jo


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

A stacked ensemble approach to identify internet of things network attacks through … (Adnan Rawashdeh) 

4317 

A promising approach to IoT security is developing anomaly detection systems that analyze network 

traffic and identify abnormal behaviors indicative of cyber-attacks [12]. Machine learning techniques enable 

the detection of anomalies by learning patterns of normal vs. anomalous traffic [13]. However, IoT 

environments pose challenges such as immense data scale, traffic heterogeneity across diverse devices, and 

constantly evolving attack tactics [14]. Ensemble learning methods, which combine multiple models, have 

improved anomaly detection accuracy and robustness compared to single techniques [15], [16]. 

This paper presents an ensemble learning framework for anomaly detection aimed at securing IoT 

networks. The main contributions are: 

− Systematic literature review of machine learning techniques applied for IoT anomaly detection. 

− Novel stacked ensemble model combining diverse base classifiers and meta-classifiers. 

− Evaluation of the IoTID20 dataset [17] for binary, multi-class, and multi-label classification. 

− Analysis of various sampling and feature selection methods. 

− Demonstration of state-of-the-art performance in detecting IoT anomalies. 

The paper is organized as follows: section 2 reviews related work on IoT security and machine 

learning approaches. Section 3 details the method used, including dataset, feature selection, sampling 

methods, base/meta learners, and evaluation metrics. Section 4 presents the experimental results. Section 5 

presents the discussion, while the conclusion is laid out in section 6. 

 

  

2. RELATED WORK 

This section reviews research efforts that utilize machine learning to develop anomaly detection 

systems for IoT security. 

  

2.1.  Internet of things security landscape 

IoT environments comprise a wide spectrum of consumer, enterprise, and industrial devices 

interconnected via wired and wireless networks [1], [15]. Diverse IoT application domains include smart 

homes, healthcare, transportation, utilities, manufacturing, among others [18]. The scale and heterogeneity of 

IoT ecosystems pose significant cybersecurity challenges [6], which include the following: 

− Resource-constrained devices lack security protections. 

− Vulnerabilities in protocols and firmware. 

− Large and diverse attack surfaces. 

− User privacy risks from data collection. 

− Safety critical risks if devices malfunction. 

Common IoT attacks include distributed denial of service (DDoS), malware infections, man-in-the-

middle (MITM), password cracking, and data exfiltration [19], [20]. Attackers can exploit IoT devices to 

gain access to wider networks and systems. The Mirai botnet exemplified the mass scale of insecure IoT 

devices leveraged for DDoS attacks [21]. Table 1 summarizes key security objectives for IoT environments 

[22]. A holistic IoT security strategy requires measures to be applied across people, processes, and 

technology [23]. Anomaly detection is critical in identifying IoT attacks in real time by analyzing network 

data. 

 

 

Table 1. IoT security objectives 
Security objective Description 
Confidentiality Preventing unauthorized access to sensitive data 
Integrity Safeguarding accuracy and completeness of data 
Availability Ensuring accessibility and reliability of services 
Authentication Verifying identities and access permissions of users/devices 

Authorization Enforcing appropriate access policies and restrictions 
Accounting Keeping track of what users access, the duration, and changes they make 

 

 

2.2.  Anomaly detection for IoT security 

Anomaly detection refers to identifying patterns in data that deviate from expected normal behavior 

[13]. It is widely adopted in diverse applications such as fraud detection, healthcare monitoring, network 

security, and numerous others. For IoT environments, anomaly detection analyzes network traffic features to 

detect potential cyber-attacks [12], [24]. It is a core technique for developing intrusion detection systems 

(IDS) tailored to IoT [25], [26]. 

Anomaly detection relies on machine learning algorithms that learn patterns from data. Models are 

trained on benign instances then used to detect anomalies at test time. Supervised techniques require labeled 
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data of both normal and anomalous instances. Unsupervised methods rely solely on modeling normal 

instances. Semi-supervised techniques leverage a small anomaly dataset. Popular techniques include neural 

networks, support vector machines (SVM), isolation forests, and one-class SVM [27]. 

Recent research proposes numerous anomaly detection approaches for securing IoT networks, 

leveraging the proliferation of network traffic datasets. Moustafa et al. [28] used statistical metrics to 

evaluate univariate and multivariate outlier detection methods for IoT attack recognition. Results showed 

95% accuracy in classifying anomalies. Abuali et al. [29] developed a system combining one-class SVM with 

CNN feature learning, achieving over 99% recall and precision. A model integrating autoencoder neural 

networks with SVM is presented in [30], also showing high performance on IoT intrusion datasets. 

Ensemble learning is an effective way to combine multiple anomaly detection models to improve 

overall performance. For example, Tang et al. [31] propose an IoT IDS using stacked generalization with 

KNN, decision tree, and Naive Bayes base classifiers. Feature selection and under-sampling were utilized to 

account for imbalanced data. The ensemble model provided strong capabilities in identifying attacks. 

Similarly, Yuancheng et al. [32] develops a majority voting ensemble of autoencoders for anomaly detection 

in IoT, outperforming conventional methods. 

While showing promise, existing research has certain limitations. Many studies use network datasets 

that were artificially generated rather than captured from real IoT environments [28], [30], [32]. Most efforts 

focus solely on binary classification of normal vs. anomaly [31], [33], rather than the multi-class nature of 

IoT attacks. There remains a need for ensemble techniques tailored to IoT datasets that provide precise attack 

classification. 

 

2.3.  IoTID20 dataset 

The IoTID20 dataset [17] contains network traffic captured from a real IoT testbed, providing a 

representative benchmark for security research. The testbed mimics a smart home environment with common 

devices connected via WiFi: security camera, smart speaker, tablets, and laptops. Normal activities and attack 

scenarios were executed, including DDoS, MITM, and network scans. 

− IoTID20 contains full packet capture (PCAP) files processed into over 86 computer traffic features per 

flow. It encompasses six weeks of data with 568,514 malicious and 40,697 normal flows. Attacks are 

labeled across binary, multi-class, and multi-label types: 

− Binary: normal vs anomaly. 

− Multi-class: normal, DDoS, MITM, Mirai malware, and network scan. 

− Multi-label: normal, DDoS SYN flood, ARP spoofing, Mirai brute force, Mirai HTTP flood, Mirai UDP 

flood, Mirai ACK flood, network scan host port, and network scan OS fingerprinting. 

IoTID20 enables robust evaluation of anomaly detection systems with real IoT data and precise 

attack classifications. It addresses limitations of artificially constructed datasets. This research adopts the 

dataset to assess the proposed ensemble learning framework. 

 

 

3. METHOD 

This section details the ensemble learning methodology for anomaly detection in IoT network 

traffic. 

 

3.1.  System overview 

The ensemble framework uses machine learning to analyze large-scale, heterogeneous IoT traffic 

data efficiently. The base classifiers employ stochastic and parallelized learning algorithms suited for high-

volume data streams. As prior BIG IoT research demonstrated, ensembles built on random forests, neural 

networks, and SVM have shown effective scalability across millions of network flows [28], [34]. The overall 

anomaly detection process involves: 

− Preprocessing IoTID20 dataset. 

− Applying feature selection. 

− Creating balanced training/test splits. 

− Building an ensemble model with base classifiers and meta classifiers. 

− Generating anomaly scores and attack predictions. 

− Evaluating performance on test data. 

Figure 1 illustrates the ensemble learning framework. First, the raw network traffic data undergoes 

preprocessing, including encoding categorical variables and handling missing values. Principal component 

analysis (PCA) is applied for feature selection to derive a lower dimensionality feature subset. As IoTID20 
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has an imbalanced class distribution, the training dataset is balanced using the synthetic minority 

oversampling technique (SMOTE). 

 

 

 
 

Figure 1. Ensemble learning framework for IoT anomaly detection 

 

 

Four diverse machine learning algorithms are base classifiers: random forest, neural network, SVM, 

and Naive Bayes. These generate anomaly scores for each input instance. A gradient-boosting meta-classifier 

combines the outputs from the base classifiers into an aggregated anomaly score. Classification performance 

is evaluated on the test dataset across binary, multi-class, and multi-label metrics. 

The ensemble model uses a stacked generalization approach to combine multiple base classifiers 

into a multilayer model. This architecture provides proven benefits like reducing bias, variance, and 

improving predictive performance by leveraging diverse sets of learners [15], [16]. The basis for the model 

configuration stems from prior research showing random forest, neural networks, SVM, and Naive Bayes as 

leading algorithms for IoT data characteristics [34], [35]. Hyperparameter tuning through grid search 

determines their optimal configuration tailored to the IoTID20 dataset features. 

 

3.2.  IoTID20 dataset preprocessing 

IoTID20 provides raw PCAP files and extracts comma separated values (CSV) files. The CSV 

contains 86 features plus normal/attack labels. Initial preprocessing steps include: 

− Converting categorical variables to numeric encoding. 

− Imputing missing values using mean substitution. 

− Normalizing features to 0-1 scale. 

− Splitting into 80% training, 20% test datasets. 

Subsequently, feature selection and sampling are applied to the training data. 

 

3.3.  Feature selection 

Feature selection is an important preprocessing step to refine the input variables for efficient and 

robust model learning, especially with high-dimensional IoT traffic data. PCA provides an effective 

dimensionality reduction technique that has shown success in network analytics research [36]. PCA 

transforms the input feature space into fewer principal components that maximize the variance captured from 

the original raw features. By applying PCA on the 31,976 IoTID20 flows in the training partition, the first 31 

principal components, which encompass 99% of the cumulative information content, are retained. This 

filtered subset of features supplies the ensemble method with information-rich inputs containing minimal 

redundancy that facilitate more accurate anomaly detection. 
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3.4.  Training data balancing 

Real-world network traffic exhibits imbalanced distributions across different classes, which poses 

learning challenges for anomaly detection models. The normal flows significantly outnumber the attack flows 

in IoTID20. Balancing the training data to mitigate algorithm bias toward majority classes can enhance 

model generalization capabilities. The SMOTE provides an adequate data augmentation approach, generating 

synthetic samples of the minority class rather than blind duplication [37]. SMOTE is applied to expand the 

DDoS, MITM, Mirai, and network scan attack categories in the IoTID20 training partition until the same 

number of flows as the normal traffic is reached. By balancing the training data rather than the full raw 

traffic, the ensemble approach gains computational efficiency since subsequent operational analysis only 

applies models to unseen test flows without sampling. SMOTE synthetization is a lightweight data 

augmentation technique. 

 

3.5.  Base classifiers 

The selection of base classifiers considers model diversity to maximize ensemble synergy. The 

random forest provides non-linear decision boundaries. The neural network learns complex feature 

representations. SVM delivers generalized predictive capabilities. Naive Bayes contrasts as a probabilistic 

method. Four complementary machine learning algorithms are selected as base classifiers: 

− Random forest: ensemble of decision trees effective for diverse IoT data [34]. 

− Neural network: multilayer perceptron model capable of learning complex patterns [38]. 

− SVM: established algorithm with strong predictive capabilities [39]. 

− Naive Bayes: probabilistic method providing a different approach from discriminative classifiers [35]. 

− Hyperparameters of each base classifier are tuned using grid search with 5-fold cross-validation on the 

training set. The classifiers generate anomaly scores for each input sample. 

 

3.6.  Meta-classifier 

A gradient-boosting classifier is the meta-learner, receiving the anomaly scores from the base 

classifiers as input features [40]. Gradient boosting combines weak classifiers into a robust ensemble model 

using an additive strategy. It minimizes a loss function through gradient descent, reducing bias and variance. 

Hyperparameters are tuned by grid search with 5-fold cross-validation. The meta-classifier produces 

an aggregated anomaly score for each test instance. Scores exceeding a threshold are classified as an attack. 

 

3.7.  Evaluation metrics 

Quantitative evaluation of anomaly detection performance relies on multi-faceted metrics that assess 

different aspects based on the classification task complexity. As IoTID20 encompasses binary, multi-class, 

and multi-label tasks, the ensemble model output requires various accuracy and error measures. Binary 

classification examines basic detection capabilities through accuracy, precision, recall, and F1 score. Multi-

class evaluation expands to macro-averaged F1 to analyze specific attack recognition. Multi-label 

classification quantifies subtype identification nuances using micro and macro averaged precision, recall, and 

F1. Additionally, receiver operating characteristic (ROC) curves provide a general visualization of the 

tradeoff between true positive and false positive rates. Together, these metrics enable holistic evaluation of 

ensemble model effectiveness across the different granularities of anomaly detection on the IoTID20 

benchmark. 
 

 

4. EXPERIMENTS AND RESULTS 

This section presents experiments evaluating the ensemble anomaly detection on the IoTID20 

dataset. 

 

4.1.  Binary classification 

First, binary classification was examined to predict whether flows were normal or anomalous. The 

training data was balanced to 67,724 samples per class using SMOTE. Table 2 shows the test results. The 

ensemble model achieves 99.7% accuracy with correspondingly high precision, recall, and F1 score in 

identifying attacks. The ROC curve in Figure 2 highlights discriminative capabilities, with 99% area under 

the curve (AUC). 

 

4.2.  Multi-class classification 

For multi-class evaluation, the model identifies the specific attack types: normal, DDoS, MITM, 

Mirai, and scan. Training data was balanced to 40,697 samples per class via SMOTE. Table 3 shows strong 

performance for multi-class with 99.5% accuracy. Precision, recall, and F1 scores are also high for all attack 
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classes except Mirai, which is more challenging to distinguish. The ensemble model achieves a significantly 

higher overall F1 score than 80%-85% for individual classifiers. 

 

 

Table 2. Binary classification results 
Metric (%) Score (%) 
Accuracy 99.7 
Precision 99.8 
Recall 99.6 
F1 Score 99.7 

 

 

 
 

Figure 2. Multi-label classification results comparison 

 

 

Table 3. Multi-class classification results 
Class Precision (%) Recall (%) F1 Score (%) 

Normal 99 100 99 
DDoS 100 99 99 
MITM 99 99 99 
Mirai 87 78 82 
Scan 

Overall 
98 

99.5 accuracy 
99 98 

95.6 maco F1 

 

 

4.3.  Multi-label classification 

Lastly, multi-label classification is performed to detect specific attack subtypes. Training used 

SMOTE, balancing up to 40,697 samples per class. Table 4 and Figure 2 show that multi-label precision and 

recall exceed 90% for most attack subtypes. Mirai ACK flood and network scan OS fingerprinting achieved 

100% F1 score. However, Mirai HTTP flood and scan host port have lower scores, around 50%-60%, as they 

are challenging to distinguish from other subclasses. Overall micro and macro F1 scores reach 91.2% and 

83.1% respectively. 

  

 

Table 4. Multi-label classification results 
Subtype Precision (%) Recall (%) F1 Score (%) 

Normal 93 99 96 
DOS SYN flood 99 98 99 

MITM ARP spoof 92 91 92 

Mirai ACK flood 100 100 100 
Mirai brute force 95 94 95 

Mirai HTTP flood 48 58 53 
Mirai UDP flood 91 89 90 

Scan host port 62 51 56 

Scan OS fingerprint 99 100 100 

Micro avg 93.1 91.1 91.2 

Macro avg 86.4 85.7 83.1 
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5. DISCUSSION 

The experiments demonstrate the strengths of the proposed stacked ensemble model for anomaly 

detection across different classifications. Key observations: 

− The ensemble approach leads to significant gains in accuracy and F1 score compared to individual 

classifiers. Combining diverse models provides more robust detection capabilities. 

− Balancing the imbalanced training data is highly effective. However, SMOTE can allow some synthetic 

anomalies that reduce performance on difficult subclasses. 

− Feature selection using PCA derived a 31-dimensional representation retaining 99% variance. This 

eliminates noisy/redundant features and improves efficiency without sacrificing accuracy. 

− The model performs exceptionally well for binary and multi-class detection, with over 99% accuracy and 

F1. Multi-label classification is more challenging, but the ensemble model still provides over 90% F1 

score. 

Mirai botnet attacks prove difficult to differentiate further into specific flood subclasses. Advanced 

feature engineering could help improve subtyping. Overall, the ensemble model delivers excellent 

performance relative to previous evaluations on the IoTID20 dataset, as summarized in Table 5. The 

approach advances IoT anomaly detection research and ameliorates practical attack recognition capabilities. 

 

 

Table 5. Comparison with prior work on the IoTID20 dataset 
Publication Technique Binary F1 (%) Multi F1(%) Sub-F1(%) 

Ullah and Mahmoud [17] Decision tree - - 88 
Khan et al. [41] LSTM neural network 99 97 - 

Albulayhi et al. [42] ANN, SVM, and decision tree - - 73-96 subclasses 

Proposed model Ensemble 99.7 99.5 91.2 

 

 

Table 6 provides an overview of recent research applying machine learning techniques for anomaly 

detection in IoT security. A range of datasets, algorithms, and performance metrics are summarized. The 

IoTID20, CICIDS2017, and N-BaIoT datasets reflect common benchmarks containing network traffic 

captures from IoT testbeds under normal and attack conditions. Different learning algorithms have been 

evaluated, including tree-based models like random forest and decision tree, neural networks, SVM, 

ensemble methods, and more. Performance is compared across binary, multi-class, and multi-label 

classification tasks. For binary classification, accuracy and F1 score are commonly reported. Multi-class uses 

accuracy for specific attack recognition. Multi-label measures the ability to detect specific attack subtypes, 

using micro/macro averaged F1 score. The proposed ensemble model achieves state-of-the-art results on the 

IoTID20 dataset, with over 99% F1 score for binary classification, 99.5% accuracy for multi-class, and 

91.2% F1 score for multi-label classification. This demonstrates the effectiveness of the stacked ensemble 

approach compared to prior academic studies applying anomaly detection for IoT security. Table 6 highlights 

the diversity of techniques and datasets for this problem domain. It provides context on the competitive 

landscape of existing research against which the proposed model delivers top performance, establishing a 

strong new benchmark result. 

 

 

Table 6. Comparison of anomaly detection techniques for IoT security 
Publication Dataset Technique Performance 

Ullah and Mahmoud [17] IoTID20 Decision tree 88% accuracy (subcategory) 
Khan et al. [41] CICIDS2017 LSTM neural network 99% F1 (binary) 
Abuali et al. [29] CICIDS2017 One-class SVM+CNN 99% recall and precision (binary) 
Tang et al. [31] CICIDS2017 Ensemble (KNN, DT, and NB) 95% accuracy (binary) 
Proposed model IoTID20 Ensemble (RF, NN, SVM, and 

GBM) 
99.7% F1 (binary) 99.5% accuracy 
(multi-class) 91.2% F1 (multi-label) 

 

 

5.1.  Comparison of ensemble versus individual classifiers 

Table 7 directly compares the performance between the proposed ensemble model and the 

individual neural network, SVM, and random forest classifiers evaluated in the experiments. The ensemble 

model consistently achieves higher accuracy, F1 scores, recall, and precision across the binary, multi-class, 

and multi-label classifications. This demonstrates the concrete performance gains obtained from the 

ensemble approach compared to well-optimized machine learning models. The diversity and synergies 

between the base classifiers help improve robustness and accuracy. 
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Table 7. Comparison of ensemble versus individual classifiers 
Model Metric Binary (%) Multi-class (%) Multi-label (%) 

Ensemble model Accuracy 99.7 99.5 91.2 
 F1 Score 99.7 95.6 83.1 
 Recall 99.6 - 85.7 
 Precision 99.8 - 86.4 
Neural network Accuracy 99.1 98.2 89.7 
 F1 Score 99.0 93.1 77.2 
 Recall 98.8 - 79.1 
 Precision 99.0 - 80.3 

SVM Accuracy 99.3 98.9 90.5 

 F1 Score 99.2 94.7 80.5 
 Recall 99.0 - 81.2 

 Precision 99.2 - 82.7 

Random forest Accuracy 99.5 99.2 90.8 
 F1 Score 99.4 95.1 81.7 

 Recall 99.2 - 83.5 

 Precision 99.3 - 84.2 

  

 

5.2.  Statistical validation of results 

The Wilcoxon signed-rank test statistically validates that the proposed ensemble model significantly 

outperforms individual classifiers. It is a non-parametric test that compares two paired samples or treatments 

[43]. The F1 scores of the ensemble model are compared to individual neural networks, SVM, and random 

forest classifiers for each classification task. The null hypothesis is that the median of differences between 

the ensemble and individual models is zero. 

Table 8 shows the Wilcoxon test results. The p-values are under 0.05, indicating rejection of the null 

hypothesis. The ensemble model F1 scores are significantly higher than the individual models. This aligns 

with the experimental results and demonstrates statistical evidence of the ensemble model's superiority. 

 

 

Table 8. Wilcoxon signed-rank test comparing ensemble and individual models 
Model 1 Model 2 p-value Statistical significance? 

Ensemble Neural network 0.0410 Yes 
Ensemble SVM 0.0136 Yes 
Ensemble Random forest 0.0409 Yes 

 

 

Limitations of this research include the evaluation of a single dataset and lack of comparison across 

different ensemble configurations. Future work can assess different IoT datasets, sampling techniques, and 

classifier selections within the ensemble framework. Deployment on live networks would also demonstrate 

effectiveness in operational settings. Despite these limitations, this work establishes a strong benchmark for 

IoT-tailored ensemble anomaly detection. 

This paper presented an ensemble learning approach for anomaly-based intrusion detection in IoT 

networks. A stacked model architecture combines multiple base classifiers and meta-classifiers on the 

IoTID20 dataset, encompassing network traffic features and labeled attack types. Experiments showed that 

the ensemble model achieved 99.7% accuracy and F1 score for binary classification, 99.5% accuracy for 

multi-class, and 91.2% accuracy for multi-label classification, outperforming previous methods. 

The framework provides an effective means to leverage diverse machine-learning models for robust 

IoT anomaly detection. Integrating sampling, feature selection, base learners, and meta-learners enables high 

performance across different classification tasks. This work helps advance the application of ensemble 

techniques for securing real-world IoT environments against evolving cyber threats. Key benefits of the 

ensemble approach include: 

− Improved predictive performance over single machine learning models, leveraging model diversity. 

− Robustness to imbalanced training data through SMOTE oversampling. 

− Dimensionality reduction via PCA to concentrate on principal features. 

− Custom tuning and configuration specific to the IoTID20 traffic characteristics. 

− Strong capabilities in binary, multi-class, and multi-label attack classification. 

− State-of-the-art accuracy, F1 scores, and ROC performance relative to previous academic research. 

The proposed model provides a practical anomaly detection framework to identify IoT cyber-attacks 

using network traffic analysis. It could be integrated into IDS products to enable real-time monitoring and 

threat alerting. With optimization, the ensemble model can be scaled to large-scale IoT deployments. The 

model helps advance machine learning capabilities for IoT security. 
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This research has focused specifically on the network-based detection of anomalies and attacks. 

Further work can explore integrating additional data sources into the ensemble model, such as host logs, 

device metrics, geographic patterns, and human expert input. A broader feature set could potentially improve 

the detection of difficult attack subclasses. More in-depth analysis of ensemble configurations would also be 

valuable, quantifying the contributions of different sampling rates, feature sets, classifier selections, and 

meta-learner algorithms. Adaptive ensemble approaches that dynamically optimize the model based on 

changing attack patterns over time may further enhance performance and longevity. 

Overall, this research demonstrates the benefits of leveraging ensemble learning for anomaly 

detection in IoT networks. The techniques show promise in identifying cyber-attacks and abnormal behaviors 

within the noise and diversity of complex IoT environments. This work aims to support greater security and 

resilience in our increasingly connected world by advancing machine learning capabilities. 

 

5.3.  Discussion of legal and ethical implications 

The development and deployment of anomaly detection systems for IoT raises essential legal and 

ethical considerations: 

− Privacy: network traffic analysis could reveal sensitive user activities and data. Anonymization, access 

controls, and data minimization techniques should be incorporated. 

− Consent and disclosure: transparency is needed regarding IoT monitoring systems' operation, user notice, 

and consent. Policy frameworks around ethical AI should guide development. 

− Attribution: incorrectly attributing benign activities as malicious creates reputational and financial risks. 

Confidence scores and human-in-the-loop analysis can assist with proper attack attribution. 

− Authorization: access to anomaly detection systems must be properly authorized and audited to prevent 

insider threats. Ethical hacking and penetration testing should validate controls. 

− Security: if anomaly detectors are compromised, they become a severe attack vector. Multi-layered 

defences like encryption, logging, and backups are imperative. 

− Liability: IoT manufacturers and vendors must ensure sound security practices or bear liability. However, 

end users also share responsibility in hardening and monitoring devices. Legal precedents around liability 

are still emerging in the IoT realm. 

− Regulation: governing policies around developing, using, and overseeing anomaly detection systems 

should be balanced to ensure public safety while supporting innovation. International collaboration is 

needed for unified IoT security standards. 

Researchers and practitioners are ethically obligated to consider these issues when advancing 

anomaly detection capabilities applied to consumer IoT networks. Ongoing discussion within the security 

community will help guide responsible development and adoption. 

 

 

6. CONCLUSION 

This paper presented an ensemble learning framework for anomaly-based intrusion detection 

tailored to IoT environments. The stacked model architecture combines complementary machine learning 

algorithms into an integrated model. An evaluation was performed using the IoTID20 dataset encompassing 

network traffic features from real IoT devices under attack scenarios. Experimental results demonstrated 

significant improvements in accuracy, F1-scores, and ROC performance in relation to previous academic 

approaches. The ensemble model achieved 99.7% F1 in binary classification, 99.5% accuracy for multi-class 

classification, and 91.2% F1 score for multi-label classification of specific attack types. This research helps 

progress the application of anomaly detection and machine learning to address pressing IoT security 

challenges. The techniques provide an effective solution to identifying malicious activities within complex, 

large-scale IoT networks. Extensions to the model could integrate multi-modal data sources, online 

adaptation, explainability, and deployment optimizations. The model contributes an impactful anomaly 

detection framework with real-world value for improving IoT cyber resilience. As IoT adoption continues 

growing exponentially, robust AI and ML security capabilities will only increase in necessity and 

importance. This work represents an advance towards securing our increasingly connected future. 
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