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The internet of things (10T) has increased exponentially in connected devices
worldwide in recent years. However, this rapid growth also introduces
significant security challenges since many loT devices have vulnerabilities
that can be exploited for cyber-attacks. Anomaly detection using machine
learning algorithms shows promise for identifying abnormal network traffic
indicative of loT attacks. This paper proposes an ensemble learning
framework for anomaly detection in loT networks. A systematic literature
review analyzes recent research applying machine learning for 10T security.
Subsequently, a novel stacked ensemble model is presented, combining
multiple base classifiers (random forest, neural network, support vector
machine (SVM)) and meta-classifiers (gradient boosting) for improved
performance. The model is evaluated on the 10TID20 dataset, using network
traffic features to detect anomalies across binary, multi-class, and multi-label
classifications. Experimental results demonstrate that the ensemble model
achieved 99.7% accuracy and F1 score for binary classification, 99.5%
accuracy for multi-class, and 91.2% accuracy for multi-label classification,
outperforming previous methods. The model provides an effective anomaly
detection approach to identify malicious activities and mitigate 10T security
threats.
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1. INTRODUCTION

The internet of things (10T) refers to the vast network of interconnected, smart devices transforming
numerous application domains [1], [2]. 10T adoption continues accelerating, with over 25 billion devices
forecasted by 2025 [3]. However, serious security and privacy concerns stem from such a vast number of loT
devices and networks [4], [5], emanating largely from the resource-constrained nature of devices and
manufacturers' lack of security provisions [6], [7]. Attacks on loT infrastructure can lead to data leaks,
service disruptions, and even physical safety risks [8]-[10]. Through extensive monitoring of Mirai from
2016-2021, Affinito et al. [11] unravel its adaptive survival across three major variants, 70 million infection
attempts, and a distribution shift towards developing loT markets. Despite fluctuating infection rates, Mirai’s
persistent threat highlights the strategic resilience of 10T botnets to exploit new vulnerabilities and sustain
attacks over the years through continual evolution.
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A promising approach to 10T security is developing anomaly detection systems that analyze network
traffic and identify abnormal behaviors indicative of cyber-attacks [12]. Machine learning techniques enable
the detection of anomalies by learning patterns of normal vs. anomalous traffic [13]. However, loT
environments pose challenges such as immense data scale, traffic heterogeneity across diverse devices, and
constantly evolving attack tactics [14]. Ensemble learning methods, which combine multiple models, have
improved anomaly detection accuracy and robustness compared to single techniques [15], [16].

This paper presents an ensemble learning framework for anomaly detection aimed at securing loT
networks. The main contributions are:

— Systematic literature review of machine learning techniques applied for 10T anomaly detection.
— Novel stacked ensemble model combining diverse base classifiers and meta-classifiers.

— Evaluation of the 10TID20 dataset [17] for binary, multi-class, and multi-label classification.

— Analysis of various sampling and feature selection methods.

— Demonstration of state-of-the-art performance in detecting lIoT anomalies.

The paper is organized as follows: section 2 reviews related work on loT security and machine
learning approaches. Section 3 details the method used, including dataset, feature selection, sampling
methods, base/meta learners, and evaluation metrics. Section 4 presents the experimental results. Section 5
presents the discussion, while the conclusion is laid out in section 6.

2. RELATED WORK
This section reviews research efforts that utilize machine learning to develop anomaly detection
systems for 10T security.

2.1. Internet of things security landscape

IoT environments comprise a wide spectrum of consumer, enterprise, and industrial devices
interconnected via wired and wireless networks [1], [15]. Diverse 10T application domains include smart
homes, healthcare, transportation, utilities, manufacturing, among others [18]. The scale and heterogeneity of
10T ecosystems pose significant cybersecurity challenges [6], which include the following:

— Resource-constrained devices lack security protections.
— Vulnerabilities in protocols and firmware.

— Large and diverse attack surfaces.

— User privacy risks from data collection.

— Safety critical risks if devices malfunction.

Common loT attacks include distributed denial of service (DDoS), malware infections, man-in-the-
middle (MITM), password cracking, and data exfiltration [19], [20]. Attackers can exploit 10T devices to
gain access to wider networks and systems. The Mirai botnet exemplified the mass scale of insecure loT
devices leveraged for DDoS attacks [21]. Table 1 summarizes key security objectives for 10T environments
[22]. A holistic 10T security strategy requires measures to be applied across people, processes, and
technology [23]. Anomaly detection is critical in identifying 10T attacks in real time by analyzing network
data.

Table 1. 10T security objectives

Security objective Description

Confidentiality Preventing unauthorized access to sensitive data

Integrity Safeguarding accuracy and completeness of data

Availability Ensuring accessibility and reliability of services

Authentication Verifying identities and access permissions of users/devices
Authorization Enforcing appropriate access policies and restrictions

Accounting Keeping track of what users access, the duration, and changes they make

2.2. Anomaly detection for 10T security

Anomaly detection refers to identifying patterns in data that deviate from expected normal behavior
[13]. It is widely adopted in diverse applications such as fraud detection, healthcare monitoring, network
security, and numerous others. For 10T environments, anomaly detection analyzes network traffic features to
detect potential cyber-attacks [12], [24]. It is a core technique for developing intrusion detection systems
(IDS) tailored to 10T [25], [26].

Anomaly detection relies on machine learning algorithms that learn patterns from data. Models are
trained on benign instances then used to detect anomalies at test time. Supervised techniques require labeled
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data of both normal and anomalous instances. Unsupervised methods rely solely on modeling normal
instances. Semi-supervised techniques leverage a small anomaly dataset. Popular techniques include neural
networks, support vector machines (SVM), isolation forests, and one-class SVM [27].

Recent research proposes numerous anomaly detection approaches for securing loT networks,
leveraging the proliferation of network traffic datasets. Moustafa et al. [28] used statistical metrics to
evaluate univariate and multivariate outlier detection methods for 10T attack recognition. Results showed
95% accuracy in classifying anomalies. Abuali et al. [29] developed a system combining one-class SVM with
CNN feature learning, achieving over 99% recall and precision. A model integrating autoencoder neural
networks with SVM is presented in [30], also showing high performance on 10T intrusion datasets.

Ensemble learning is an effective way to combine multiple anomaly detection models to improve
overall performance. For example, Tang et al. [31] propose an IoT IDS using stacked generalization with
KNN, decision tree, and Naive Bayes base classifiers. Feature selection and under-sampling were utilized to
account for imbalanced data. The ensemble model provided strong capabilities in identifying attacks.
Similarly, Yuancheng et al. [32] develops a majority voting ensemble of autoencoders for anomaly detection
in 10T, outperforming conventional methods.

While showing promise, existing research has certain limitations. Many studies use network datasets
that were artificially generated rather than captured from real 10T environments [28], [30], [32]. Most efforts
focus solely on binary classification of normal vs. anomaly [31], [33], rather than the multi-class nature of
10T attacks. There remains a need for ensemble techniques tailored to 10T datasets that provide precise attack
classification.

2.3. 10TID20 dataset

The 10TID20 dataset [17] contains network traffic captured from a real 10T testbed, providing a
representative benchmark for security research. The testbed mimics a smart home environment with common
devices connected via WiFi: security camera, smart speaker, tablets, and laptops. Normal activities and attack
scenarios were executed, including DDoS, MITM, and network scans.

— 10TID20 contains full packet capture (PCAP) files processed into over 86 computer traffic features per
flow. It encompasses six weeks of data with 568,514 malicious and 40,697 normal flows. Attacks are
labeled across binary, multi-class, and multi-label types:

— Binary: normal vs anomaly.

— Multi-class: normal, DDoS, MITM, Mirai malware, and network scan.

— Multi-label: normal, DDoS SYN flood, ARP spoofing, Mirai brute force, Mirai HTTP flood, Mirai UDP
flood, Mirai ACK flood, network scan host port, and network scan OS fingerprinting.

10TID20 enables robust evaluation of anomaly detection systems with real 10T data and precise
attack classifications. It addresses limitations of artificially constructed datasets. This research adopts the
dataset to assess the proposed ensemble learning framework.

3. METHOD
This section details the ensemble learning methodology for anomaly detection in loT network
traffic.

3.1. System overview

The ensemble framework uses machine learning to analyze large-scale, heterogeneous loT traffic
data efficiently. The base classifiers employ stochastic and parallelized learning algorithms suited for high-
volume data streams. As prior BIG 10T research demonstrated, ensembles built on random forests, neural
networks, and SVM have shown effective scalability across millions of network flows [28], [34]. The overall
anomaly detection process involves:
— Preprocessing 10TID20 dataset.
— Applying feature selection.
— Creating balanced training/test splits.
— Building an ensemble model with base classifiers and meta classifiers.
— Generating anomaly scores and attack predictions.
— Evaluating performance on test data.

Figure 1 illustrates the ensemble learning framework. First, the raw network traffic data undergoes
preprocessing, including encoding categorical variables and handling missing values. Principal component
analysis (PCA) is applied for feature selection to derive a lower dimensionality feature subset. As 10TI1D20
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has an imbalanced class distribution, the training dataset is balanced using the synthetic minority
oversampling technique (SMOTE).

Anomaly Detection Process

Preprocessing I0TID20 dataset

A

Applying feature selection (PCA)

Y

Creating balanced training/test splits (SMOTE)

Y

Building ensemble model

Y

Generating anomaly scores and attack predictions

Y

Evaluvating performance on test data

Figure 1. Ensemble learning framework for loT anomaly detection

Four diverse machine learning algorithms are base classifiers: random forest, neural network, SVM,
and Naive Bayes. These generate anomaly scores for each input instance. A gradient-boosting meta-classifier
combines the outputs from the base classifiers into an aggregated anomaly score. Classification performance
is evaluated on the test dataset across binary, multi-class, and multi-label metrics.

The ensemble model uses a stacked generalization approach to combine multiple base classifiers
into a multilayer model. This architecture provides proven benefits like reducing bias, variance, and
improving predictive performance by leveraging diverse sets of learners [15], [16]. The basis for the model
configuration stems from prior research showing random forest, neural networks, SVM, and Naive Bayes as
leading algorithms for loT data characteristics [34], [35]. Hyperparameter tuning through grid search
determines their optimal configuration tailored to the 10TID20 dataset features.

3.2. 10TID20 dataset preprocessing
10TID20 provides raw PCAP files and extracts comma separated values (CSV) files. The CSV
contains 86 features plus normal/attack labels. Initial preprocessing steps include:
Converting categorical variables to numeric encoding.
Imputing missing values using mean substitution.
Normalizing features to 0-1 scale.
Splitting into 80% training, 20% test datasets.
Subsequently, feature selection and sampling are applied to the training data.

3.3. Feature selection

Feature selection is an important preprocessing step to refine the input variables for efficient and
robust model learning, especially with high-dimensional loT traffic data. PCA provides an effective
dimensionality reduction technique that has shown success in network analytics research [36]. PCA
transforms the input feature space into fewer principal components that maximize the variance captured from
the original raw features. By applying PCA on the 31,976 10TID20 flows in the training partition, the first 31
principal components, which encompass 99% of the cumulative information content, are retained. This
filtered subset of features supplies the ensemble method with information-rich inputs containing minimal
redundancy that facilitate more accurate anomaly detection.
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3.4. Training data balancing

Real-world network traffic exhibits imbalanced distributions across different classes, which poses
learning challenges for anomaly detection models. The normal flows significantly outnumber the attack flows
in 10TID20. Balancing the training data to mitigate algorithm bias toward majority classes can enhance
model generalization capabilities. The SMOTE provides an adequate data augmentation approach, generating
synthetic samples of the minority class rather than blind duplication [37]. SMOTE is applied to expand the
DDoS, MITM, Mirai, and network scan attack categories in the 10TID20 training partition until the same
number of flows as the normal traffic is reached. By balancing the training data rather than the full raw
traffic, the ensemble approach gains computational efficiency since subsequent operational analysis only
applies models to unseen test flows without sampling. SMOTE synthetization is a lightweight data
augmentation technique.

3.5. Base classifiers

The selection of base classifiers considers model diversity to maximize ensemble synergy. The
random forest provides non-linear decision boundaries. The neural network learns complex feature
representations. SVM delivers generalized predictive capabilities. Naive Bayes contrasts as a probabilistic
method. Four complementary machine learning algorithms are selected as base classifiers:
— Random forest: ensemble of decision trees effective for diverse 10T data [34].
— Neural network: multilayer perceptron model capable of learning complex patterns [38].
— SVM: established algorithm with strong predictive capabilities [39].
— Naive Bayes: probabilistic method providing a different approach from discriminative classifiers [35].
— Hyperparameters of each base classifier are tuned using grid search with 5-fold cross-validation on the

training set. The classifiers generate anomaly scores for each input sample.

3.6. Meta-classifier
A gradient-boosting classifier is the meta-learner, receiving the anomaly scores from the base
classifiers as input features [40]. Gradient boosting combines weak classifiers into a robust ensemble model
using an additive strategy. It minimizes a loss function through gradient descent, reducing bias and variance.
Hyperparameters are tuned by grid search with 5-fold cross-validation. The meta-classifier produces
an aggregated anomaly score for each test instance. Scores exceeding a threshold are classified as an attack.

3.7. Evaluation metrics

Quantitative evaluation of anomaly detection performance relies on multi-faceted metrics that assess
different aspects based on the classification task complexity. As 10TID20 encompasses binary, multi-class,
and multi-label tasks, the ensemble model output requires various accuracy and error measures. Binary
classification examines basic detection capabilities through accuracy, precision, recall, and F1 score. Multi-
class evaluation expands to macro-averaged F1 to analyze specific attack recognition. Multi-label
classification quantifies subtype identification nuances using micro and macro averaged precision, recall, and
F1. Additionally, receiver operating characteristic (ROC) curves provide a general visualization of the
tradeoff between true positive and false positive rates. Together, these metrics enable holistic evaluation of
ensemble model effectiveness across the different granularities of anomaly detection on the 10TID20
benchmark.

4. EXPERIMENTS AND RESULTS
This section presents experiments evaluating the ensemble anomaly detection on the l1oTID20
dataset.

4.1. Binary classification

First, binary classification was examined to predict whether flows were normal or anomalous. The
training data was balanced to 67,724 samples per class using SMOTE. Table 2 shows the test results. The
ensemble model achieves 99.7% accuracy with correspondingly high precision, recall, and F1 score in
identifying attacks. The ROC curve in Figure 2 highlights discriminative capabilities, with 99% area under
the curve (AUC).

4.2. Multi-class classification

For multi-class evaluation, the model identifies the specific attack types: normal, DDoS, MITM,
Mirai, and scan. Training data was balanced to 40,697 samples per class via SMOTE. Table 3 shows strong
performance for multi-class with 99.5% accuracy. Precision, recall, and F1 scores are also high for all attack
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classes except

Mirai, which is more challenging to distinguish. The ensemble model achieves a significantly

higher overall F1 score than 80%-85% for individual classifiers.

Percentage

Table 2. Binary classification results
Metric (%)  Score (%)

Accuracy 99.7
Precision 99.8
Recall 99.6
F1 Score 99.7

Performance Metrics by Subtype
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Figure 2. Multi-label classification results comparison

Table 3. Multi-class classification results
Class Precision (%) Recall (%) F1 Score (%)

Normal 99 100 99
DDoS 100 99 99
MITM 99 99 99
Mirai 87 78 82
Scan 98 99 98
Overall ~ 99.5 accuracy 95.6 maco F1

4.3. Multi-label classification

Lastly, multi-label classification is performed to detect specific attack subtypes. Training used
SMOTE, balancing up to 40,697 samples per class. Table 4 and Figure 2 show that multi-label precision and
recall exceed 90% for most attack subtypes. Mirai ACK flood and network scan OS fingerprinting achieved

100% F1 score.
are challenging

However, Mirai HTTP flood and scan host port have lower scores, around 50%-60%, as they
to distinguish from other subclasses. Overall micro and macro F1 scores reach 91.2% and

83.1% respectively.

Table 4. Multi-label classification results

Subtype Precision (%)  Recall (%) F1 Score (%)
Normal 93 99 96
DOS SYN flood 99 98 99
MITM ARP spoof 92 91 92
Mirai ACK flood 100 100 100
Mirai brute force 95 94 95
Mirai HTTP flood 48 58 53
Mirai UDP flood 91 89 90
Scan host port 62 51 56
Scan OS fingerprint 99 100 100
Micro avg 93.1 91.1 91.2
Macro avg 86.4 85.7 83.1
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5. DISCUSSION

The experiments demonstrate the strengths of the proposed stacked ensemble model for anomaly
detection across different classifications. Key observations:

— The ensemble approach leads to significant gains in accuracy and F1 score compared to individual
classifiers. Combining diverse models provides more robust detection capabilities.

— Balancing the imbalanced training data is highly effective. However, SMOTE can allow some synthetic
anomalies that reduce performance on difficult subclasses.

— Feature selection using PCA derived a 31-dimensional representation retaining 99% variance. This
eliminates noisy/redundant features and improves efficiency without sacrificing accuracy.

— The model performs exceptionally well for binary and multi-class detection, with over 99% accuracy and
F1. Multi-label classification is more challenging, but the ensemble model still provides over 90% F1
score.

Mirai botnet attacks prove difficult to differentiate further into specific flood subclasses. Advanced
feature engineering could help improve subtyping. Overall, the ensemble model delivers excellent
performance relative to previous evaluations on the 10TID20 dataset, as summarized in Table 5. The
approach advances 10T anomaly detection research and ameliorates practical attack recognition capabilities.

Table 5. Comparison with prior work on the 10TID20 dataset

Publication Technique Binary F1 (%)  Multi F1(%) Sub-F1(%)
Ullah and Mahmoud [17]  Decision tree - - 88
Khan et al. [41] LSTM neural network 99 97 -
Albulayhi et al. [42] ANN, SVM, and decision tree - - 73-96 subclasses
Proposed model Ensemble 99.7 99.5 91.2

Table 6 provides an overview of recent research applying machine learning techniques for anomaly
detection in 10T security. A range of datasets, algorithms, and performance metrics are summarized. The
10TID20, CICIDS2017, and N-BaloT datasets reflect common benchmarks containing network traffic
captures from loT testbeds under normal and attack conditions. Different learning algorithms have been
evaluated, including tree-based models like random forest and decision tree, neural networks, SVM,
ensemble methods, and more. Performance is compared across binary, multi-class, and multi-label
classification tasks. For binary classification, accuracy and F1 score are commonly reported. Multi-class uses
accuracy for specific attack recognition. Multi-label measures the ability to detect specific attack subtypes,
using micro/macro averaged F1 score. The proposed ensemble model achieves state-of-the-art results on the
10TID20 dataset, with over 99% F1 score for binary classification, 99.5% accuracy for multi-class, and
91.2% F1 score for multi-label classification. This demonstrates the effectiveness of the stacked ensemble
approach compared to prior academic studies applying anomaly detection for 10T security. Table 6 highlights
the diversity of techniques and datasets for this problem domain. It provides context on the competitive
landscape of existing research against which the proposed model delivers top performance, establishing a
strong new benchmark result.

Table 6. Comparison of anomaly detection techniques for loT security

Publication Dataset Technique Performance
Ullah and Mahmoud [17] 10TID20 Decision tree 88% accuracy (subcategory)
Khan et al. [41] CICIDS2017  LSTM neural network 99% F1 (binary)
Abuali et al. [29] CICIDS2017  One-class SVM+CNN 99% recall and precision (binary)
Tang et al. [31] CICIDS2017 Ensemble (KNN, DT, and NB) 95% accuracy (binary)
Proposed model 10TID20 Ensemble (RF, NN, SVM, and 99.7% F1 (binary) 99.5% accuracy
GBM) (multi-class) 91.2% F1 (multi-label)

5.1. Comparison of ensemble versus individual classifiers

Table 7 directly compares the performance between the proposed ensemble model and the
individual neural network, SVM, and random forest classifiers evaluated in the experiments. The ensemble
model consistently achieves higher accuracy, F1 scores, recall, and precision across the binary, multi-class,
and multi-label classifications. This demonstrates the concrete performance gains obtained from the
ensemble approach compared to well-optimized machine learning models. The diversity and synergies
between the base classifiers help improve robustness and accuracy.
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Table 7. Comparison of ensemble versus individual classifiers

Model Metric Binary (%) Multi-class (%)  Multi-label (%)
Ensemble model  Accuracy 99.7 99.5 91.2
F1 Score 99.7 95.6 83.1
Recall 99.6 - 85.7
Precision 99.8 - 86.4
Neural network  Accuracy 99.1 98.2 89.7
F1 Score 99.0 93.1 77.2
Recall 98.8 - 79.1
Precision 99.0 - 80.3
SVM Accuracy 99.3 98.9 90.5
F1 Score 99.2 94.7 80.5
Recall 99.0 - 81.2
Precision 99.2 - 82.7
Random forest Accuracy 99.5 99.2 90.8
F1 Score 99.4 95.1 81.7
Recall 99.2 - 83.5
Precision 99.3 - 84.2

5.2. Statistical validation of results

The Wilcoxon signed-rank test statistically validates that the proposed ensemble model significantly
outperforms individual classifiers. It is a non-parametric test that compares two paired samples or treatments
[43]. The F1 scores of the ensemble model are compared to individual neural networks, SVM, and random
forest classifiers for each classification task. The null hypothesis is that the median of differences between
the ensemble and individual models is zero.

Table 8 shows the Wilcoxon test results. The p-values are under 0.05, indicating rejection of the null
hypothesis. The ensemble model F1 scores are significantly higher than the individual models. This aligns
with the experimental results and demonstrates statistical evidence of the ensemble model's superiority.

Table 8. Wilcoxon signed-rank test comparing ensemble and individual models

Model 1 Model 2 p-value  Statistical significance?
Ensemble  Neural network  0.0410 Yes
Ensemble SVM 0.0136 Yes
Ensemble  Random forest 0.0409 Yes

Limitations of this research include the evaluation of a single dataset and lack of comparison across
different ensemble configurations. Future work can assess different 10T datasets, sampling techniques, and
classifier selections within the ensemble framework. Deployment on live networks would also demonstrate
effectiveness in operational settings. Despite these limitations, this work establishes a strong benchmark for
loT-tailored ensemble anomaly detection.

This paper presented an ensemble learning approach for anomaly-based intrusion detection in 10T
networks. A stacked model architecture combines multiple base classifiers and meta-classifiers on the
10TID20 dataset, encompassing network traffic features and labeled attack types. Experiments showed that
the ensemble model achieved 99.7% accuracy and F1 score for binary classification, 99.5% accuracy for
multi-class, and 91.2% accuracy for multi-label classification, outperforming previous methods.

The framework provides an effective means to leverage diverse machine-learning models for robust
IoT anomaly detection. Integrating sampling, feature selection, base learners, and meta-learners enables high
performance across different classification tasks. This work helps advance the application of ensemble
techniques for securing real-world loT environments against evolving cyber threats. Key benefits of the
ensemble approach include:

— Improved predictive performance over single machine learning models, leveraging model diversity.
— Robustness to imbalanced training data through SMOTE oversampling.

— Dimensionality reduction via PCA to concentrate on principal features.

— Custom tuning and configuration specific to the 10TID20 traffic characteristics.

— Strong capabilities in binary, multi-class, and multi-label attack classification.

— State-of-the-art accuracy, F1 scores, and ROC performance relative to previous academic research.

The proposed model provides a practical anomaly detection framework to identify 10T cyber-attacks
using network traffic analysis. It could be integrated into IDS products to enable real-time monitoring and
threat alerting. With optimization, the ensemble model can be scaled to large-scale 10T deployments. The
model helps advance machine learning capabilities for 10T security.
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This research has focused specifically on the network-based detection of anomalies and attacks.
Further work can explore integrating additional data sources into the ensemble model, such as host logs,
device metrics, geographic patterns, and human expert input. A broader feature set could potentially improve
the detection of difficult attack subclasses. More in-depth analysis of ensemble configurations would also be
valuable, quantifying the contributions of different sampling rates, feature sets, classifier selections, and
meta-learner algorithms. Adaptive ensemble approaches that dynamically optimize the model based on
changing attack patterns over time may further enhance performance and longevity.

Overall, this research demonstrates the benefits of leveraging ensemble learning for anomaly
detection in 10T networks. The techniques show promise in identifying cyber-attacks and abnormal behaviors
within the noise and diversity of complex 10T environments. This work aims to support greater security and
resilience in our increasingly connected world by advancing machine learning capabilities.

5.3. Discussion of legal and ethical implications
The development and deployment of anomaly detection systems for 10T raises essential legal and
ethical considerations:

— Privacy: network traffic analysis could reveal sensitive user activities and data. Anonymization, access
controls, and data minimization techniques should be incorporated.

— Consent and disclosure: transparency is needed regarding 10T monitoring systems' operation, user notice,
and consent. Policy frameworks around ethical Al should guide development.

— Attribution: incorrectly attributing benign activities as malicious creates reputational and financial risks.
Confidence scores and human-in-the-loop analysis can assist with proper attack attribution.

— Authorization: access to anomaly detection systems must be properly authorized and audited to prevent
insider threats. Ethical hacking and penetration testing should validate controls.

— Security: if anomaly detectors are compromised, they become a severe attack vector. Multi-layered
defences like encryption, logging, and backups are imperative.

— Liability: 1oT manufacturers and vendors must ensure sound security practices or bear liability. However,
end users also share responsibility in hardening and monitoring devices. Legal precedents around liability
are still emerging in the 10T realm.

— Regulation: governing policies around developing, using, and overseeing anomaly detection systems
should be balanced to ensure public safety while supporting innovation. International collaboration is
needed for unified 10T security standards.

Researchers and practitioners are ethically obligated to consider these issues when advancing
anomaly detection capabilities applied to consumer IoT networks. Ongoing discussion within the security
community will help guide responsible development and adoption.

6. CONCLUSION

This paper presented an ensemble learning framework for anomaly-based intrusion detection
tailored to 10T environments. The stacked model architecture combines complementary machine learning
algorithms into an integrated model. An evaluation was performed using the 10TID20 dataset encompassing
network traffic features from real 10T devices under attack scenarios. Experimental results demonstrated
significant improvements in accuracy, F1-scores, and ROC performance in relation to previous academic
approaches. The ensemble model achieved 99.7% F1 in binary classification, 99.5% accuracy for multi-class
classification, and 91.2% F1 score for multi-label classification of specific attack types. This research helps
progress the application of anomaly detection and machine learning to address pressing loT security
challenges. The techniques provide an effective solution to identifying malicious activities within complex,
large-scale 10T networks. Extensions to the model could integrate multi-modal data sources, online
adaptation, explainability, and deployment optimizations. The model contributes an impactful anomaly
detection framework with real-world value for improving 10T cyber resilience. As 10T adoption continues
growing exponentially, robust Al and ML security capabilities will only increase in necessity and
importance. This work represents an advance towards securing our increasingly connected future.
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