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1. INTRODUCTION

Electric vehicles (EVSs) require motors that not only deliver high-speed operation and compact
design but also maintain a high-power density per unit volume. Additionally, the motor must exhibit
mechanical robustness and high efficiency across a wide range of speeds. Therefore, selecting a suitable
motor type for EV drive systems that balances multiple performance criteria is critical [1]-[3]. Among
various options, the permanent magnet synchronous motor (PMSM) has become a standard choice for EVs
due to its superior performance characteristics [4]-[6]. PMSMs are commonly classified into two types:
surface-mounted PMSMs (SPMSMs) and interior permanent magnet synchronous motors (IPMSMs). The
IPMSM stands out by leveraging both magnetic and reluctance torque, enabled by rotor saliency, which
enhances torque output and broadens the operating speed range compared to SPMSM [7]. Furthermore,
IPMSMs offer a wider constant-power range due to their high torque-per-ampere ratio and efficient field-
weakening capability [8]. The mechanical integrity of IPMSMs is also notable, as the embedded magnets
provide better structural strength [9]. To further enhance torque and efficiency, two primary approaches are
applied in electric drive systems. The first involves mechanical enhancements, such as increasing the number
of pole pairs in the stator to improve torque production [10], [11]. The second approach centers on the
development of advanced control strategies that optimize dynamic response and energy utilization. A range
of control methods has been proposed for PMSM drives. Huang et al. [12] provided a comprehensive review
of classical and nonlinear control strategies, including field-oriented control (FOC), direct torque control
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(DTC), fuzzy logic control (FLC), model predictive control (MPC), and sliding mode control (SMC), all of
which improve torque tracking and robustness. Nicola and Nicola [13] implemented FOC on an FPGA
platform, integrating Pl controllers with space vector PWM (SVPWM), achieving high efficiency and rapid
dynamic response. Demir and Vural [14] employed SMC in a PMSM traction drive powered by a multi-level
inverter, which resulted in a significant reduction in torque ripple and improved system stability. Moreover,
recent advancements have introduced intelligent control algorithms such as genetic algorithms (GA), particle
swarm optimization (PSO), FLC, and neural networks (NN) [15], [16]. These methods optimize control
behavior through learning and adaptation, especially under varying conditions. Hybrid approaches—such as
combining FLC with NN, PID, or SMC—have also been explored to enhance robustness and adaptability
[17], [18]. While nonlinear controllers like MPC and SMC deliver strong performance, they typically require
accurate system models and involve complex design procedures, particularly for systems with high-order
dynamics [19], [20]. Nevertheless, they remain highly responsive and robust. In contrast, intelligent
controllers such as GA, PSO, FLC, and NN primarily rely on the input error vector and its derivative, using
rule-based logic to generate control actions. Although they may require longer computational time, these
methods offer high accuracy and are less dependent on detailed system modelling [21]. Their fast response,
precision, and reliability make them well-suited for applications involving linear systems, such as current or
torque control, or systems exposed to parameter variations and environmental disturbances.

This research introduces a reinforcement learning (RL)-based strategy for controlling the torque of
IPMSM motors in EV applications. The proposed reinforcement learning agent (RLAgent) adaptively
modulates the stator voltages by controlling the d-axis and g-axis currents to achieve the target rotational speed.
The RLAgent structure comprises three essential elements: i) the observation vector combined with the outer-
loop speed reference, ii) the voltage control actions generated by the agent, and iii) the reward signal, which is
dynamically calculated at each time step using a cost function. Due to its data-driven nature, the training process
is computationally intensive and may require a considerable amount of time to converge [22]-[25].

The paper is divided into five sections. The first introduces the motivation and context of IPMSM
motor control in EVs. The second section presents the mathematical modeling of the IPMSM system.
Section 3 details the design and development of the RLAgent-based torque controller using the established
model. Section 4 evaluates the proposed method through MATLAB/Simulink simulations. Finally, the paper
concludes with a summary of findings, control performance analysis, and potential directions for future
improvements.

2. MATHEMATICAL MODEL OF A PERMANENT MAGNET SYNCHRONOUS MOTOR AND
LOAD
2.1. Mathematical model of the permanent magnet synchronous motor
The IPMSM motor is controlled using the FOC strategy, which is advantageous due to its cascaded
loop structure. In the dq rotating reference frame, the mathematical equations governing the motor behavior
can be expressed as (1):

_ digq . .
Usg = Lsd dt + Rslsd - (‘)qu lsq (1)
disq . ,
Usqg = Lggq Fra Rgisqg + wleqisq + WP

where: igq, is, are the d and g-axis stator currents; ug,, u,q are the corresponding stator voltages; Ly, Ly, are
the d- and g-axis inductances; R, is the stator resistance; w is the electrical angular speed; and v is the rotor
flux linkage. The electromagnetic torque of the IPMSM can be calculated using:

3 . . .
my = Y F [lpp lsq + igq lsq (Lsg — qu)] (2)

In the case of optimal rotor flux orientation, the d-axis current is typically set to zero (iszq, = 0),
simplifying the torque equation to:

3 .
my = Epclpp lsgq (3)
2.2. Mathematical model of the electric vehicle drivetrain

The EV dynamics are coupled with the motor through the drivetrain. The relationship between
motor torque and wheel torque is:
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T.kgear = Twn
o (4)
Wyp = Wiy gear
where: T is the motor torque; torque acting on the wheel; kg4, is the gear ratio; w,, is the motor angular
speed; and Ty, is the torque applied to the wheel.
Applying Newton’s second law for rotational systems gives:

dwm

T —Tyn =] =" ®)
Additionally, the motion of the wheel is described by:

UVwh = Wwn
RWhTWh =T, = Ryp ©)

where: Ry, is the radius and F; is the traction (or drag) force applied to the wheel.

3. DESIGN OF REINFORCEMENT LEARNING AGENT TORQUE CONTROLLER

RL is a machine learning approach in which an agent learns to make decisions through interaction
with an environment, aiming to maximize a cumulative reward. In the proposed method, an RLAgent
controls the torque of an IPMSM by adjusting the stator voltages that affect the d- and g-axis currents. The
way of learning to improve erection is shown in Figure 1.
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Figure 1. The structure of the RLAgent method

Figure 1 shows a RL system with an agent and an environment. The agent learns and decides, while
the environment represents the system or task, like an RV. At each step t, the environment provides a state
observation 0;. Using this, the agent chooses an action A, based on how the policy affects it. The
environment responds with a new observation and reward R;, reflecting action quality. The agent adjusts its
policy to optimise cumulative reward through this iterative process, improving control through experience.
The objective is to find an optimal policy n(s) that selects the best action in each state. The expected return is
expressed as:

Yoy r(sear) )

In RL, the agent’s objective is to maximize the cumulative reward over time, which is
mathematically expressed as (7). This equation r(s;, a;) denotes the immediate reward received after acting,
a.in state s, at time step t, and y is the discount factor determining the importance of future rewards relative
to immediate ones. A discount factor 0<y<1 ensures that rewards received shortly are given more weight
than future rewards. This formulation allows the agent to learn a policy that balances short-term gains with
long-term benefits, which is essential for achieving optimal performance in dynamic environments such as
EV motor control systems.
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3.1. The Markov decision process

A Markov decision process (MDP) is a foundational framework in RL used to describe
environments where outcomes are partly random and partly controlled by a decision-maker. It is defined by
five key components: a finite set of states S, a set of possible actions A, a transition probability function P, a
reward function R, and a discount factor y. At each time step t, the agent observes the current state S;, selects
an action A, receives a reward R (s;, a,), and transitions to a new state s, according to the probability
distribution P(s;,4|s:, a;). The agent's goal is to learn an optimal policy 7(s) which defines the best action to
take in each state to maximise the expected cumulative reward over time. This objective is mathematically
expressed as .5y 1y, (St Se+1); Where y (0,1) is the discount factor that emphasises the importance of
immediate rewards while gradually reducing the weight of future rewards. The optimal policy maximises this
discounted return, enabling the agent to make intelligent, long-term decisions in dynamic environments.

3.2. Q-learning

In the RL method, the Q-value matrix also known as the action-value function is computed using
(8), which enables the agent to evaluate the potential outcomes of different actions in each state. By updating
the Q-values over time, the agent learns to estimate which action yields the highest expected cumulative
reward. This process allows the agent to make optimal decisions by selecting actions that maximize the
long-term return based on its current knowledge of the environment.

Q(s, a=r (s, a)+tymax,Q(s', a) (8)

In (8) represents the update rule for the Q-table, where the value of each state-action pair Q(s, &) is
incrementally adjusted based on the reward received r (s, a) and the estimated future rewards from the next
state r (s, a). This update creates an action-value matrix that guides the agent’s decision-making by allowing
it to select the action with the highest Q-value in any given state. Since RL is inherently stochastic, the values
in the Q-table evolve as the agent experiences different transitions. To accommodate this variability, the
Q-values are refined using the temporal-difference (TD) error, as shown in (9). This error measures the
difference between the predicted and actual rewards and ensures that the agent continually improves its
policy based on new experiences.

Q¢ (8, 8)=Q¢—1 T (5, 8)+aTD.(a,s) ©)
Is calculated by for (10):

TD; =R (s, a)tymaxQ(s’,a") — Q;,_1(s,a) (10)
where a is the learning rate factor.

3.3. Created environment for reinforcement learning agent

The training environment designed for the RLAgent consists of several critical components that
define the agent’s perception and interaction with the system. The observations provided to the agent include
the outer-loop reference speed, the d-axis and g-axis current errors (iy, i), their respective error derivatives,
and the integral of those errors (izerrors igerror)-

These inputs allow the agent to accurately estimate the current state of the system. Based on this
information, the agent outputs continuous control voltages uyz and u, which directly affect the stator’s
dynamic behavior. The agent operates at a high sampling rate (measured in seconds), whereas the outer
control loop typically functions at a lower frequency. The simulation runs for a maximum of 1000 time steps,
unless an early termination condition is satisfied—such as reaching the desired reference value of i,. The
reward function, as defined in (11), penalizes both large current tracking errors and excessive control efforts,
thereby guiding the agent to generate precise and energy-efficient control actions.

. . 2
== (Ql * lderrorz + QZ * lqerrorz + R * Ziult—1) —100d (ll)
where Q;=Q,=4.5 and R=0.15 are constants, ize,ro, the d-axis is the current error ig.,.o,, the current g-axis

mistake is the previous time step actions, and d is a flag that equals 1 when the simulation is ended
prematurely.
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The environment created for the RLAgent is programmed according to the algorithmic flowchart
shown in Figure 2. To learn a parameterized policy, a deterministic actor network determines optimal actions
in a continuous action space. This actor takes the current observation as input and outputs a deterministic
control action. The policy is modelled using a NN with a single input layer. Training is conducted using
random mini batches of size 600 drawn from an experience replay buffer with a 2x10° capacity. To
encourage long-term optimal behaviour, a discount factor of 0.995 is employed. The training architecture
follows the twin delayed deep deterministic policy gradient (TD3) method, where both actor and critic target
networks are updated every 10 steps using a soft update mechanism with a smoothing coefficient of 0.005.

Set agent options

A\

Train Agent

Episode done?

Update agent | No

\

Step environment

Figure 2. The algorithmic flowchart to create an environment for RLAgent

Figure 2 presents the workflow for training a RLAgent. The process begins with setting the agent’s
options, including learning rate, discount factor, buffer size, and policy structure. Once configured, the
training phase is initiated. During each training episode, the agent interacts with the environment by
executing actions based on its current policy. After each action, the environment returns feedback through
new observations and rewards. The system then checks whether the episode has concluded. If the episode is
complete, the agent updates its policy using the accumulated experience. Otherwise, it continues to step
through the environment. This interaction and policy refinement loop continues iteratively, allowing the
agent to learn and improve its decision-making over time based on the defined reward structure.

4., RESULTS SIMULATION

The simulation framework for the proposed RLAgent controller is constructed as depicted in Figure 3.
This study evaluates the system under varying reference speeds of 200 rpm, 400 rpm, 600 rpm, 800 rpm, and
1000 rpm to assess its adaptability and robustness. Both the conventional Pl and RL-based controllers are tested
over a 10-second simulation period, during which they respond to changes in the reference speed. The RLAgent
is trained using a NN model. Each training episode comprises 150-time steps, which are repeated for up to 1000
episodes. The learning rate is set to 0.003. Training is terminated when the agent achieves an average
cumulative reward exceeding —190 over a rolling window of 100 episodes, indicating acceptable performance.
Once trained, the agent is capable of effectively tracking various reference speeds. The technical specifications
of the IPMSM motor used in the simulation are summarized in Table 1.

Table 1. The parameter for the IMSM motor

Motor parameters Value symbol
Power 35 kW
Rated speed 3000 rpm
Rated voltage 300V
Number of pole pairs 2
Magnetic flux density 0.0437
Maximum torque 105 Nm
Armature resistance 030
Shaft inductance d 8.76e-5 H
Shaft inductance g 7.72e-5H
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Figure 3 presents the integrated control architecture of an electric drive system employing a
reinforcement learning-based torque controller (RLAgent) for an IPMSM. The system begins with a speed
control loop, where the reference speed w*is compared to the rotor speed w. A Pl controller processes the
resulting error to generate the reference torque T* subsequently, this torque command is fed into the torque
and flux estimation model, which computes the reference currents iz, i; where typically iz = 0 to ensure
maximum torque per ampere. These reference currents are then utilized by the RLAgent, which acts as the
central torque controller. Unlike conventional controllers, the RLAgent leverages learning-based decision-
making to output the voltage ug4, u,, based on observed current errors and motor states. These voltage signals
are transformed via the inverse Park transformation and passed into the space vector modulation (SVM) unit,
which generates the necessary PWM signals to control the three-phase inverter. As a result, the inverter
produces appropriate phase voltages to drive the IPMSM. Meanwhile, current feedback is collected through
ADCs and transformed from the three-phase abc frame to the dgq frame using Clarke and Park
transformations, thus closing the feedback loop. Overall, this architecture seamlessly integrates traditional
control with RL, enabling the system to adaptively manage torque and speed in real-time, even in the
presence of nonlinearities and uncertainties typical of EV operations. The dynamic responses of the RLAgent
are presented in Figures 4-6.
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Figure 3. The simulation structure of RLAgent controller
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Figure 4. The speed response of the RLAgent Figure 5. The iq stator current responses of the RLAgent
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Based on the results illustrated in Figure 5, the speed response of the RLAgent controller
demonstrates a rapid and accurate convergence to the reference values. However, it exhibits a transient
overshoot of approximately 20%. Figures 6 and 7 provide further insight into the current tracking
performance, where the agent effectively follows both iq and iq reference signals with a steady-state error of
less than 2%. The iq current directly influences torque generation and closely matches its reference with
minimal oscillation, indicating robust control behavior. Similarly, the ig current exhibits a minor overshoot
during transients but promptly stabilizes, contributing to the system’s dynamic efficiency. This level of
precision in current control highlights the RLAgent’s capability to maintain reliable and smooth torque
output for the IPMSM drive. To further assess its effectiveness, the RLAgent controller is compared to a
conventional PI controller configured with K,=20 and K,=1.07.

iq(RL)

= lq_Ref(RL)

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Figure 6. The iq stator current responses of the RLAgent

As depicted in Figure 7, the RLAgent and PI controllers exhibit satisfactory speed-tracking
performance during the initial 5 seconds of operation. However, the PI controller’s speed response
deteriorates significantly beyond this point, whereas the RLAgent maintains stable and accurate tracking.
Figure 8 illustrates the d-axis current responses, where both controllers closely follow the reference signal but
exhibit noticeable overshoot during the transient phase. Despite this, the RLAgent demonstrates superior
recovery and overall performance. In contrast, as shown in Figure 9, the torque-generating iy current exhibits
a minor overshoot during transients but promptly stabilizes, contributing to the system’s current controlled by
the PI controller failing to track the reference accurately after t=5 seconds, leading to degraded torque output.
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Figure 7. The speed responses of the RLAgent and Pl Figure 8. The iq stator current responses of the
controllers RLAgent and PI controllers
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Meanwhile, the RLAgent effectively maintains the desired iq current and exhibits a minor overshoot
during transients but promptly stabilizes, contributing to the system’s dyn profile and ensuring consistent
torque generation. These comparative results highlight the RLAgent’s robustness and adaptability under
dynamic operating conditions. While the PI controller shows acceptable performance during steady-state or
low-disturbance scenarios, it lacks the precision and stability needed for high-performance applications. The
RLAgent leverages learning-based adaptation to outperform traditional control methods, reaffirming the
promise of RL for advanced motor control in EV systems.

— iq (P1)
— g (RL)

0.5

Current (A)
o

-0.5

0 1 2 3 4 5 6 7 8 9 10
Time (seconds)

Figure 9. The iq stator current responses of the RLAgent and PI controllers

To provide a clearer comparison between the two control methods, Table 2 summarizes key
quantitative performance metrics including rise time, overshoot, steady-state error, speed tracking accuracy,
and torque smoothness. These metrics highlight the superior responsiveness and precision of the proposed
RLAgent controller in dynamic EV scenarios.

Table 2. Quantitative comparison of simulation results
Control method  Rise time (s)  Overshoot (%)  Steady-ttate error (% id/iq)  Speed tracking accuracy  Torque smoothness
PI controller 0.55 24.7 ~3.2%/~4.1% Degrades after 5 s Moderate ripple
RLAgent 0.32 19.8 ~1.1%/~1.6% Stable throughout Smooth and accurate

As shown in Table 2, the RLAgent consistently outperforms the PI controller across all key metrics.
It achieves a faster rise time (0.32 s vs. 0.55 s), lower overshoot (19.8% vs. 24.7%), and reduced steady-state
errors in both i; and i, currents. The RLAgent maintains stable speed tracking throughout the simulation,
unlike the PI controller, which degrades after 5 seconds. Additionally, the RLAgent ensures smoother torque
output with minimal i, current oscillation, enhancing drive comfort and reliability in EV applications.

5. CONCLUSION

This paper demonstrates the feasibility and effectiveness of using RL for torque control in IPMSMs
for EVs. The RL agent successfully regulates d - and g - axis currents without a mathematical model, relying
solely on observable system states. Simulations demonstrate that the RL-based controller outperforms
conventional Pl control in terms of torque accuracy, dynamic adaptability, and steady-state performance.
However, the design has limitations, including speed response overshoot and sensitivity to noise during rapid
load changes, as well as high computational cost and training time. Future work will focus on optimizing the
reward function, expanding training for diverse conditions, and integrating adaptive noise observers to
improve robustness, minimize overshoot, and enable real-time deployment in EVs.
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