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 As electric vehicles (EVs) demand higher performance and efficiency, 

precise torque control in interior permanent magnet synchronous motors 

(IPMSMs) becomes increasingly vital. This paper introduces a 

reinforcement learning (RL)-based method to optimize torque control in 

IPMSMs. The RL agent is trained to regulate d-axis and q-axis currents, 

producing stator voltages to follow the desired motor speed. The control 

system includes an observation vector, voltage-based actions, and a specially 

designed reward function. Due to the nonlinear dynamics of the motor, 

training the agent requires significant computational effort. 

MATLAB/Simulink simulations are performed to compare the RL controller 

with a traditional PI controller. Results indicate that the RL controller 

delivers quicker and more accurate performance, although additional 

training is necessary to minimize overshoot. 
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1. INTRODUCTION 

Electric vehicles (EVs) require motors that not only deliver high-speed operation and compact 

design but also maintain a high-power density per unit volume. Additionally, the motor must exhibit 

mechanical robustness and high efficiency across a wide range of speeds. Therefore, selecting a suitable 

motor type for EV drive systems that balances multiple performance criteria is critical [1]–[3]. Among 

various options, the permanent magnet synchronous motor (PMSM) has become a standard choice for EVs 

due to its superior performance characteristics [4]–[6]. PMSMs are commonly classified into two types: 

surface-mounted PMSMs (SPMSMs) and interior permanent magnet synchronous motors (IPMSMs). The 

IPMSM stands out by leveraging both magnetic and reluctance torque, enabled by rotor saliency, which 

enhances torque output and broadens the operating speed range compared to SPMSM [7]. Furthermore, 

IPMSMs offer a wider constant-power range due to their high torque-per-ampere ratio and efficient field-

weakening capability [8]. The mechanical integrity of IPMSMs is also notable, as the embedded magnets 

provide better structural strength [9]. To further enhance torque and efficiency, two primary approaches are 

applied in electric drive systems. The first involves mechanical enhancements, such as increasing the number 

of pole pairs in the stator to improve torque production [10], [11]. The second approach centers on the 

development of advanced control strategies that optimize dynamic response and energy utilization. A range 

of control methods has been proposed for PMSM drives. Huang et al. [12] provided a comprehensive review 

of classical and nonlinear control strategies, including field-oriented control (FOC), direct torque control 

https://creativecommons.org/licenses/by-sa/4.0/
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(DTC), fuzzy logic control (FLC), model predictive control (MPC), and sliding mode control (SMC), all of 

which improve torque tracking and robustness. Nicola and Nicola [13] implemented FOC on an FPGA 

platform, integrating PI controllers with space vector PWM (SVPWM), achieving high efficiency and rapid 

dynamic response. Demir and Vural [14] employed SMC in a PMSM traction drive powered by a multi-level 

inverter, which resulted in a significant reduction in torque ripple and improved system stability. Moreover, 

recent advancements have introduced intelligent control algorithms such as genetic algorithms (GA), particle 

swarm optimization (PSO), FLC, and neural networks (NN) [15], [16]. These methods optimize control 

behavior through learning and adaptation, especially under varying conditions. Hybrid approaches—such as 

combining FLC with NN, PID, or SMC—have also been explored to enhance robustness and adaptability 

[17], [18]. While nonlinear controllers like MPC and SMC deliver strong performance, they typically require 

accurate system models and involve complex design procedures, particularly for systems with high-order 

dynamics [19], [20]. Nevertheless, they remain highly responsive and robust. In contrast, intelligent 

controllers such as GA, PSO, FLC, and NN primarily rely on the input error vector and its derivative, using 

rule-based logic to generate control actions. Although they may require longer computational time, these 

methods offer high accuracy and are less dependent on detailed system modelling [21]. Their fast response, 

precision, and reliability make them well-suited for applications involving linear systems, such as current or 

torque control, or systems exposed to parameter variations and environmental disturbances. 

This research introduces a reinforcement learning (RL)-based strategy for controlling the torque of 

IPMSM motors in EV applications. The proposed reinforcement learning agent (RLAgent) adaptively 

modulates the stator voltages by controlling the d-axis and q-axis currents to achieve the target rotational speed. 

The RLAgent structure comprises three essential elements: i) the observation vector combined with the outer-

loop speed reference, ii) the voltage control actions generated by the agent, and iii) the reward signal, which is 

dynamically calculated at each time step using a cost function. Due to its data-driven nature, the training process 

is computationally intensive and may require a considerable amount of time to converge [22]–[25]. 

The paper is divided into five sections. The first introduces the motivation and context of IPMSM 

motor control in EVs. The second section presents the mathematical modeling of the IPMSM system.  

Section 3 details the design and development of the RLAgent-based torque controller using the established 

model. Section 4 evaluates the proposed method through MATLAB/Simulink simulations. Finally, the paper 

concludes with a summary of findings, control performance analysis, and potential directions for future 

improvements.   

 

 

2. MATHEMATICAL MODEL OF A PERMANENT MAGNET SYNCHRONOUS MOTOR AND 

LOAD 

2.1.  Mathematical model of the permanent magnet synchronous motor 

The IPMSM motor is controlled using the FOC strategy, which is advantageous due to its cascaded 

loop structure. In the dq rotating reference frame, the mathematical equations governing the motor behavior 

can be expressed as (1): 
 

{
𝑢𝑠𝑑 = 𝐿𝑠𝑑

𝑑𝑖𝑠𝑑

𝑑𝑡
+ 𝑅𝑠𝑖𝑠𝑑 − 𝜔𝐿𝑠𝑞𝑖𝑠𝑞

𝑢𝑠𝑞 = 𝐿𝑠𝑞
𝑑𝑖𝑠𝑞

𝑑𝑡
+ 𝑅𝑠𝑖𝑠𝑞 + 𝜔𝐿𝑠𝑑𝑖𝑠𝑑 + 𝜔𝜓

 (1) 

 

where: 𝑖𝑠𝑑 , 𝑖𝑠𝑞  are the d and q-axis stator currents; 𝑢𝑠𝑑 , 𝑢𝑠𝑞 are the corresponding stator voltages; 𝐿𝑠𝑑 , 𝐿𝑠𝑞  are 

the d- and q-axis inductances; 𝑅𝑠 is the stator resistance; 𝜔 is the electrical angular speed; and 𝜓 is the rotor 

flux linkage. The electromagnetic torque of the IPMSM can be calculated using: 
 

𝑚𝑀 =
3

2
𝑃𝑐[𝜓𝑝𝑖𝑠𝑞 + 𝑖𝑠𝑑𝑖𝑠𝑞(𝐿𝑠𝑑 − 𝐿𝑠𝑞)] (2) 

  

In the case of optimal rotor flux orientation, the d-axis current is typically set to zero (𝑖𝑠𝑑 , = 0), 

simplifying the torque equation to: 
 

𝑚𝑀 =
3

2
𝑃𝑐𝜓𝑝𝑖𝑠𝑞 (3) 

 

2.2.  Mathematical model of the electric vehicle drivetrain 

The EV dynamics are coupled with the motor through the drivetrain. The relationship between 

motor torque and wheel torque is: 
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{
𝑇. 𝑘𝑔𝑒𝑎𝑟 = 𝑇𝑊ℎ

𝜔𝑊ℎ = 𝜔𝑚𝑘𝑔𝑒𝑎𝑟
 (4) 

 

where: 𝑇 is the motor torque; torque acting on the wheel; 𝑘𝑔𝑒𝑎𝑟  is the gear ratio; 𝜔𝑚 is the motor angular 

speed; and 𝑇𝑊ℎ  is the torque applied to the wheel. 

Applying Newton’s second law for rotational systems gives: 

 

𝑇 − 𝑇𝑊ℎ = 𝐽
𝑑𝜔𝑚

𝑑𝑡
 (5) 

 

Additionally, the motion of the wheel is described by: 

 

𝑅𝑊ℎ

𝑣𝑊ℎ = 𝜔𝑊ℎ

𝑇𝑊ℎ = 𝑇𝐿 = 𝑅𝑊ℎ
 (6) 

 

where: 𝑅𝑊ℎ is the radius and 𝐹𝑡 is the traction (or drag) force applied to the wheel. 

 

 

3. DESIGN OF REINFORCEMENT LEARNING AGENT TORQUE CONTROLLER 

RL is a machine learning approach in which an agent learns to make decisions through interaction 

with an environment, aiming to maximize a cumulative reward. In the proposed method, an RLAgent 

controls the torque of an IPMSM by adjusting the stator voltages that affect the d- and q-axis currents. The 

way of learning to improve erection is shown in Figure 1. 

 

 

 
 

Figure 1. The structure of the RLAgent method 
 

 

Figure 1 shows a RL system with an agent and an environment. The agent learns and decides, while 

the environment represents the system or task, like an RV. At each step t, the environment provides a state 

observation 𝑂𝑡. Using this, the agent chooses an action 𝐴𝑡 based on how the policy affects it. The 

environment responds with a new observation and reward 𝑅𝑡, reflecting action quality. The agent adjusts its 

policy to optimise cumulative reward through this iterative process, improving control through experience. 

The objective is to find an optimal policy π(s) that selects the best action in each state. The expected return is 

expressed as: 
 

∑ 𝛾𝑡∞
𝑡=0 𝑟(𝑠𝑡 , 𝑎𝑡) (7) 

 

In RL, the agent’s objective is to maximize the cumulative reward over time, which is 

mathematically expressed as (7). This equation 𝑟(𝑠𝑡 , 𝑎𝑡) denotes the immediate reward received after acting, 

𝑎𝑡in state 𝑠𝑡 at time step t, and 𝛾 is the discount factor determining the importance of future rewards relative 

to immediate ones. A discount factor 0<𝛾<1 ensures that rewards received shortly are given more weight 

than future rewards. This formulation allows the agent to learn a policy that balances short-term gains with 

long-term benefits, which is essential for achieving optimal performance in dynamic environments such as 

EV motor control systems. 
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3.1.  The Markov decision process 

A Markov decision process (MDP) is a foundational framework in RL used to describe 

environments where outcomes are partly random and partly controlled by a decision-maker. It is defined by 

five key components: a finite set of states S, a set of possible actions A, a transition probability function P, a 

reward function R, and a discount factor γ. At each time step t, the agent observes the current state 𝑆𝑡, selects 

an action 𝐴𝑡, receives a reward R (𝑠𝑡, 𝑎𝑡), and transitions to a new state 𝑠(𝑡+1) according to the probability 

distribution P(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡). The agent's goal is to learn an optimal policy 𝜋(𝑠) which defines the best action to 

take in each state to maximise the expected cumulative reward over time. This objective is mathematically 

expressed as ∑ 𝛾𝑡𝑟𝑎𝑡
(𝑠𝑡 , 𝑠𝑡+1

∞
0 ); where 𝛾 (0,1) is the discount factor that emphasises the importance of 

immediate rewards while gradually reducing the weight of future rewards. The optimal policy maximises this 

discounted return, enabling the agent to make intelligent, long-term decisions in dynamic environments. 

 

3.2.  Q-learning 

In the RL method, the Q-value matrix also known as the action-value function is computed using 

(8), which enables the agent to evaluate the potential outcomes of different actions in each state. By updating 

the Q-values over time, the agent learns to estimate which action yields the highest expected cumulative 

reward. This process allows the agent to make optimal decisions by selecting actions that maximize the  

long-term return based on its current knowledge of the environment. 

 

Q(s, a=r (s, a)+𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) (8) 

 

In (8) represents the update rule for the Q-table, where the value of each state-action pair Q(s, a) is 

incrementally adjusted based on the reward received r (s, a) and the estimated future rewards from the next 

state r (s, a). This update creates an action-value matrix that guides the agent’s decision-making by allowing 

it to select the action with the highest Q-value in any given state. Since RL is inherently stochastic, the values 

in the Q-table evolve as the agent experiences different transitions. To accommodate this variability, the  

Q-values are refined using the temporal-difference (TD) error, as shown in (9). This error measures the 

difference between the predicted and actual rewards and ensures that the agent continually improves its 

policy based on new experiences. 

 

𝑄𝑡 (s, a)=𝑄𝑡−1 r (s, a)+𝛼𝑇𝐷𝑡(𝑎, 𝑠) (9) 

 

Is calculated by for (10): 

 

𝑇𝐷𝑡 =R (s, a)+𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄𝑡−1(𝑠, 𝑎) (10) 

 

where α is the learning rate factor. 

 

3.3.  Created environment for reinforcement learning agent 

The training environment designed for the RLAgent consists of several critical components that 

define the agent’s perception and interaction with the system. The observations provided to the agent include 

the outer-loop reference speed, the d-axis and q-axis current errors (𝑖𝑑, 𝑖𝑞), their respective error derivatives, 

and the integral of those errors (𝑖𝑑𝑒𝑟𝑟𝑜𝑟 , 𝑖𝑞𝑒𝑟𝑟𝑜𝑟).  

These inputs allow the agent to accurately estimate the current state of the system. Based on this 

information, the agent outputs continuous control voltages 𝑢𝑑 and 𝑢𝑞 which directly affect the stator’s 

dynamic behavior. The agent operates at a high sampling rate (measured in seconds), whereas the outer 

control loop typically functions at a lower frequency. The simulation runs for a maximum of 1000 time steps, 

unless an early termination condition is satisfied—such as reaching the desired reference value of 𝑖𝑞 . The 

reward function, as defined in (11), penalizes both large current tracking errors and excessive control efforts, 

thereby guiding the agent to generate precise and energy-efficient control actions. 

 

𝑟1 = − (𝑄1 ∗ 𝑖𝑑𝑒𝑟𝑟𝑜𝑟
2 + 𝑄2 ∗ 𝑖𝑞𝑒𝑟𝑟𝑜𝑟

2 + 𝑅 ∗ ∑ 𝑢𝑖
𝑡−1
2

𝑖 ) − 100𝑑  (11) 

 

where 𝑄1=𝑄2=4.5 and R=0.15 are constants, 𝑖𝑑𝑒𝑟𝑟𝑜𝑟  the d-axis is the current error 𝑖𝑞𝑒𝑟𝑟𝑜𝑟 , the current q-axis 

mistake is the previous time step actions, and d is a flag that equals 1 when the simulation is ended 

prematurely. 
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The environment created for the RLAgent is programmed according to the algorithmic flowchart 

shown in Figure 2. To learn a parameterized policy, a deterministic actor network determines optimal actions 

in a continuous action space. This actor takes the current observation as input and outputs a deterministic 

control action. The policy is modelled using a NN with a single input layer. Training is conducted using 

random mini batches of size 600 drawn from an experience replay buffer with a 2𝑥105 capacity. To 

encourage long-term optimal behaviour, a discount factor of 0.995 is employed. The training architecture 

follows the twin delayed deep deterministic policy gradient (TD3) method, where both actor and critic target 

networks are updated every 10 steps using a soft update mechanism with a smoothing coefficient of 0.005. 

 

 

 
 

Figure 2. The algorithmic flowchart to create an environment for RLAgent 

 

 

Figure 2 presents the workflow for training a RLAgent. The process begins with setting the agent’s 

options, including learning rate, discount factor, buffer size, and policy structure. Once configured, the 

training phase is initiated. During each training episode, the agent interacts with the environment by 

executing actions based on its current policy. After each action, the environment returns feedback through 

new observations and rewards. The system then checks whether the episode has concluded. If the episode is 

complete, the agent updates its policy using the accumulated experience. Otherwise, it continues to step 

through the environment. This interaction and policy refinement loop continues iteratively, allowing the 

agent to learn and improve its decision-making over time based on the defined reward structure. 

 

 

4. RESULTS SIMULATION 

The simulation framework for the proposed RLAgent controller is constructed as depicted in Figure 3. 

This study evaluates the system under varying reference speeds of 200 rpm, 400 rpm, 600 rpm, 800 rpm, and 

1000 rpm to assess its adaptability and robustness. Both the conventional PI and RL-based controllers are tested 

over a 10-second simulation period, during which they respond to changes in the reference speed. The RLAgent 

is trained using a NN model. Each training episode comprises 150-time steps, which are repeated for up to 1000 

episodes. The learning rate is set to 0.003. Training is terminated when the agent achieves an average 

cumulative reward exceeding −190 over a rolling window of 100 episodes, indicating acceptable performance. 

Once trained, the agent is capable of effectively tracking various reference speeds. The technical specifications 

of the IPMSM motor used in the simulation are summarized in Table 1. 
 

 

Table 1. The parameter for the IMSM motor 
Motor parameters Value symbol 

Power 35 kW 
Rated speed 3000 rpm 

Rated voltage 300 V 

Number of pole pairs 2 
Magnetic flux density 0.0437 

Maximum torque 105 Nm 

Armature resistance 0.3 Ω 

Shaft inductance d 8.76e-5 H 
Shaft inductance q 7.72e-5 H 
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Figure 3 presents the integrated control architecture of an electric drive system employing a 

reinforcement learning-based torque controller (RLAgent) for an IPMSM. The system begins with a speed 

control loop, where the reference speed 𝜔∗is compared to the rotor speed 𝜔. A PI controller processes the 

resulting error to generate the reference torque 𝑇∗ subsequently, this torque command is fed into the torque 

and flux estimation model, which computes the reference currents 𝑖𝑑
∗ , 𝑖𝑞

∗  where typically 𝑖𝑑
∗ = 0 to ensure 

maximum torque per ampere. These reference currents are then utilized by the RLAgent, which acts as the 

central torque controller. Unlike conventional controllers, the RLAgent leverages learning-based decision-

making to output the voltage 𝑢𝑑, 𝑢𝑞, based on observed current errors and motor states. These voltage signals 

are transformed via the inverse Park transformation and passed into the space vector modulation (SVM) unit, 

which generates the necessary PWM signals to control the three-phase inverter. As a result, the inverter 

produces appropriate phase voltages to drive the IPMSM. Meanwhile, current feedback is collected through 

ADCs and transformed from the three-phase abc frame to the dq frame using Clarke and Park 

transformations, thus closing the feedback loop. Overall, this architecture seamlessly integrates traditional 

control with RL, enabling the system to adaptively manage torque and speed in real-time, even in the 

presence of nonlinearities and uncertainties typical of EV operations. The dynamic responses of the RLAgent 

are presented in Figures 4-6. 

 

 

 
 

Figure 3. The simulation structure of RLAgent controller 

 

 

  
  

Figure 4. The speed response of the RLAgent Figure 5. The id stator current responses of the RLAgent 
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Based on the results illustrated in Figure 5, the speed response of the RLAgent controller 

demonstrates a rapid and accurate convergence to the reference values. However, it exhibits a transient 

overshoot of approximately 20%. Figures 6 and 7 provide further insight into the current tracking 

performance, where the agent effectively follows both id and iq reference signals with a steady-state error of 

less than 2%. The iq current directly influences torque generation and closely matches its reference with 

minimal oscillation, indicating robust control behavior. Similarly, the id current exhibits a minor overshoot 

during transients but promptly stabilizes, contributing to the system’s dynamic efficiency. This level of 

precision in current control highlights the RLAgent’s capability to maintain reliable and smooth torque 

output for the IPMSM drive. To further assess its effectiveness, the RLAgent controller is compared to a 

conventional PI controller configured with Kp=20 and 𝐾𝐼=1.07.  

 

 

 
 

Figure 6. The iq stator current responses of the RLAgent 

 

 

As depicted in Figure 7, the RLAgent and PI controllers exhibit satisfactory speed-tracking 

performance during the initial 5 seconds of operation. However, the PI controller’s speed response 

deteriorates significantly beyond this point, whereas the RLAgent maintains stable and accurate tracking. 

Figure 8 illustrates the d-axis current responses, where both controllers closely follow the reference signal but 

exhibit noticeable overshoot during the transient phase. Despite this, the RLAgent demonstrates superior 

recovery and overall performance. In contrast, as shown in Figure 9, the torque-generating iq current exhibits 

a minor overshoot during transients but promptly stabilizes, contributing to the system’s current controlled by 

the PI controller failing to track the reference accurately after t=5 seconds, leading to degraded torque output.  

 

 

  
  

Figure 7. The speed responses of the RLAgent and PI 

controllers 

Figure 8. The id stator current responses of the 

RLAgent and PI controllers 
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Meanwhile, the RLAgent effectively maintains the desired iq current and exhibits a minor overshoot 

during transients but promptly stabilizes, contributing to the system’s dyn profile and ensuring consistent 

torque generation. These comparative results highlight the RLAgent’s robustness and adaptability under 

dynamic operating conditions. While the PI controller shows acceptable performance during steady-state or 

low-disturbance scenarios, it lacks the precision and stability needed for high-performance applications. The 

RLAgent leverages learning-based adaptation to outperform traditional control methods, reaffirming the 

promise of RL for advanced motor control in EV systems. 

 

 

 
 

Figure 9. The iq stator current responses of the RLAgent and PI controllers 

 

 

To provide a clearer comparison between the two control methods, Table 2 summarizes key 

quantitative performance metrics including rise time, overshoot, steady-state error, speed tracking accuracy, 

and torque smoothness. These metrics highlight the superior responsiveness and precision of the proposed 

RLAgent controller in dynamic EV scenarios. 

 

 

Table 2. Quantitative comparison of simulation results 
Control method Rise time (s) Overshoot (%) Steady-ttate error (% id/iq) Speed tracking accuracy Torque smoothness 

PI controller 0.55 24.7 ~3.2%/~4.1% Degrades after 5 s Moderate ripple 

RLAgent 0.32 19.8 ~1.1%/~1.6% Stable throughout Smooth and accurate 

 

 

As shown in Table 2, the RLAgent consistently outperforms the PI controller across all key metrics. 

It achieves a faster rise time (0.32 s vs. 0.55 s), lower overshoot (19.8% vs. 24.7%), and reduced steady-state 

errors in both 𝑖𝑑 and 𝑖𝑞  currents. The RLAgent maintains stable speed tracking throughout the simulation, 

unlike the PI controller, which degrades after 5 seconds. Additionally, the RLAgent ensures smoother torque 

output with minimal 𝑖𝑞  current oscillation, enhancing drive comfort and reliability in EV applications. 

 

 

5. CONCLUSION 

This paper demonstrates the feasibility and effectiveness of using RL for torque control in IPMSMs 

for EVs. The RL agent successfully regulates d - and q - axis currents without a mathematical model, relying 

solely on observable system states. Simulations demonstrate that the RL-based controller outperforms 

conventional PI control in terms of torque accuracy, dynamic adaptability, and steady-state performance. 

However, the design has limitations, including speed response overshoot and sensitivity to noise during rapid 

load changes, as well as high computational cost and training time. Future work will focus on optimizing the 

reward function, expanding training for diverse conditions, and integrating adaptive noise observers to 

improve robustness, minimize overshoot, and enable real-time deployment in EVs. 
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