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Globally, breast cancer is among the most prevalent and deadly tumors that affect
women. Early and accurate identification of breast cancer is essential for effec-
tive treatment planning and improving patient outcomes. This research focuses
on improving breast cancer classification accuracy through machine learning
(ML) methodologies, emphasizing interpretability. The study utilized the chi-
square method to enhance model testing performance by pinpointing the most
significant features for further analysis. The study also improved data quality by
identifying and removing outliers, thus minimizing the influence of data irregu-
larities on the performance of the models. For classification, the study evaluated
six different ML algorithms—namely extreme gradient boosting (XGBoost),
decision tree (DT), AdaBoost (AB), support vector machine (SVM), gradient
boosting (GB), and K-nearest neighbors (KNN)—each applied to distinguish
between the two variants of breast cancer. Among these, the XGBoost classifier
emerged as the most accurate, achieving an impressive 99.30% accuracy rate.
Moreover, the research incorporated shapley additive explanations (SHAP) and
local interpretable model-agnostic explanations (LIME) methods to boost the
interpretability of the proposed model, offering crucial insights into the model’s
decision-making process. Applying these interpretability techniques provided
significant insights into the predictive factors influencing healthcare outcomes,
ensuring the classification approach’s transparency and reliability.
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1. INTRODUCTION

Breast cancer affects women globally and is a common and potentially deadly illness. It must be
detected early and accurately to improve patient outcomes and survival rates. Surpassing lung cancer as the
most prevalent cancer globally, it saw around 2.3 million new cases diagnosed in both men and women com-
bined [1]. Among females, breast cancer constituted a quarter of all cancer cases in 2020, making it the most
commonly diagnosed cancer among women [2]. Its incidence has been steadily increasing, especially in tran-
sitioning countries, posing a significant burden on public health. Sadly, an estimated 685,000 women died of
breast cancer in 2020, representing 16% of all female cancer deaths or one in every six cancer-related deaths
in women. Recognizing the gravity of the situation, the World Health Organization has recently launched the
Global Breast Cancer Initiative to address it [3]. The conventional diagnosis procedure, which mainly depends
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on histological analysis, is both time-consuming and subject to interpretation variability. Machine learning
(ML) has become a transformative tool, allowing improved, precise, and reliable cancer classification. Among
ML algorithms, extreme gradient boosting (XGBoost) is a standout ML algorithm known for its efficacy in
managing complex datasets, making it well-suited for medical diagnostic purposes.

However, the effectiveness of ML in the medical field is frequently hampered by its "black box” char-
acter, which makes decision-making ambiguous and difficult for medical professionals to trust. Interpretabil-
ity techniques such as shapley additive explanations (SHAP) and interpretable model-agnostic explanations
(LIME) increase transparency and promote informed treatment decisions. These strategies clarify the predic-
tions of ML models by emphasizing the impact of specific features on outcomes.

Several recent methodologies for breast cancer prediction have been developed, demonstrating great
technological advances. Recent research in this field by Michael et al. [4] introduced a CAD framework for
breast ultrasound image classification, achieving remarkable results using LightGBM with a 99.80% F1 score,
100.0% precision, 99.86% accuracy, and 99.60% recall. Amethiya et al. [S] explored ML algorithms and
biosensors for early breast cancer classification, with the fuzzy ELM-RBF ML models achieving an impressive
accuracy of 98.05%. Elsadig et al. [6] evaluated classification models for breast cancer prediction, identifying
support vector machine (SVM) as the top performer with an accuracy of 97.7%. Egwom et al. [7] utilized
the LDA-SVM model for breast cancer diagnosis, achieving remarkable accuracy and precision by effectively
handling missing values. Tarawneh et al. [8] applied a decision tree (DT)-based data mining approach for
early breast cancer detection, with the DT classifier demonstrating high accuracy. Ebrahim et al. [9] com-
pared classical and deep learning methods, with DT and ensemble techniques achieving an accuracy of 98.7%.
Kadhim and Kamil [10] predicted breast cancer using the GB model with an impressive 96.77% F1 score, un-
derscoring the importance of ML in breast cancer prediction and diagnosis. Using the white blood cell (WBC)
dataset, Birchha and Nigam [11]] assessed the averaged-perceptron machine-learning classifier. They found
that it achieved a remarkable accuracy of 0.984 in breast cancer detection, with no false-negative predictions,
outperforming other models in similar studies. Massari et al. [[12] developed an ontological model using the DT
algorithm for breast cancer detection, achieving a remarkable prediction accuracy of 97.10%. The fast learning
network (FLN) model gained outstanding accuracy rates of 98.37% and 96.88% on the WBCD and WDBC
datasets, indicating its potential for broader medical applications in [13]]. Research by Omotehinwa et al. [14],
incorporating LightGBM, SMOTE, and tree-structured parzen estimator (TPE), achieved a notable 99.12%
accuracy on the WDBC dataset, highlighting the importance of data augmentation and hyperparameter opti-
mization in ML diagnostics. Liza et al. [[15]] exploration of early disease detection revealed that Random Forest
(RF) and AdaBoost (AB) models outperformed others with an impressive 99.20% accuracy and a near-99%
receiver operating characteristic (ROC) score. Gad et al. [16] emphasized the significance of feature selection
and, using a pigeon-inspired optimizer-based approach with the RF model on the WBC dataset, achieved an
accuracy of 97.2% along with uniform F-score, recall, and precision rates of 97.3%.

The main contribution of the research is to enhance breast cancer classification through ML techniques
while identifying the shortest performance time to deliver optimal classification results. The study employed
the chi-square feature selection technique to identify the most significant features and outlier detection methods
to improve the data quality, contributing to the proposed model’s high performance. Additionally, integrated
SHAP and LIME approaches enhance the interpretability of the proposed model, providing vital insight into
the decision-making process and ensuring transparency and trustworthiness in clinical applications.

This research paper is formatted as follows: section 2 presents a method. Section 3 shows the ex-
perimental environment’s setup and result analysis. Section 4 is a comparative analysis of the previous study.
Section 5 about discusses and conclusions.

2. METHOD

The primary goal of this study is to determine the most precise classification method for breast cancer
diagnosis. The full structure is shown in Figure 1. The work commences with data collection. Following the
dataset collection, various data preprocessing techniques are applied, including data clearing, outlier removal
and Chi-square. Labeled data is obtained to evaluate the algorithms. This dataset is divided into two sets, with
75% dedicated to training and test data, or 25% of the data utilized for evaluating the model’s effectiveness.
After splitting the dataset, multiple ML models are trained, and the best models are compared. Then, the best
models are subjected to the implementation of SHAP and LIME to determine the best-predicting features. The
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ultimate goal of the research is to determine the optimal algorithm for classifying breast cancer.

Collection
Datz

SHAP value and
LIME

Figure 1. Proposed method of the breast cancer classification

2.1. Describe the dataset

The dataset central to this investigation was sourced from Kaggle, a prominent online repository
renowned for its vast collection of datasets. The compilation of data, encompassing 569 items with 33 features,
was meticulously assembled by Dr. William H. Wolberg, Wisconsin, USA. The dataset’s features encompass a
comprehensive array of measurements, including the radius (mean of distances from the center to the perime-
ter), texture (standard deviation of grey-scale values), perimeter, area, smoothness (local variations in radius
lengths), compactness (calculated as the square of the perimeter divided by the area, less one), concavity (re-
flecting the severity of the concave portions of the contour), concave points (denoting the number of concave
portions of the contour), symmetry, and fractal dimension, described as the “’coastline approximation” minus
one. Each entry within this dataset has been meticulously categorized as either “malignant” (M) or “benign”
(B), terms that medically signify the nature of tumor cells [17]. Of all the data records considered, 357 (62.7%)
are identified with benign tumor cells, and the remaining 212 (37.3%) indicate malignant tumor cells.

2.2. Preprocessing
This study applies preprocessing techniques, such as outlier remove and the chi-square test, to improve
the model performance.

2.2.1. Outlier detection and removal

The dataset contains various features related to breast cancer characteristics, each with specific outlier
records identified through upper limits and quartile ranges. For instance, in the feature x.radius_mean, there
are 14 outlier records with values exceeding the upper limit of 21.9. Similarly, in x.texture_mean, seven out-
lier records exceed the upper limit of 30.2. This pattern repeats across other features, such as x.area_mean,
x.radius_se, and x.perimeter_worst, with varying numbers of outlier records detected in each feature (see Fig-
ures 2(a) and (b)). When these outliers are eliminated, the dataset’s statistical analyses and prediction models
can become more accurate and reliable [18]], [19]].

2.3. Feature selection

The study employs the chi-square statistical method for feature selection to analyze categorical data.
This technique underscores the significance of the relationship between two categorical variables by deter-
mining whether the observed frequency of a category significantly deviates from what would be expected
under the assumption of independence [20]]. Utilizing this method, the researcher identifies the top 20 fea-
tures deemed most relevant for analysis: /Zradius.means Ttexture_mean> Tperimeter_means Tareameans Lcompactness_means
Lconcavity_mean> Lconcave_pts_means Lradius_ses Lperimeter_se> Larea_ses Lcompactness_ses Lconcavity_ses> Lradius_worsts Ltexture_worsts
Tperimeter_worst> Larea_worsts Lsmoothness_worsts L compactness_worsts L concavity_worsts Lconcave_pts_worsts and L'symmetry_worst- These
selected features, indicative of the variables’ impact on the dataset, are critical for further analysis and modeling
in research.
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Figure 2. Outlier detection and removal in this proposed dataset; (a) before and (b) after

2.4. Machine learning algorithms
The study analyzes various machine-learning algorithms’ approaches to breast cancer diagnosis. These
models include XGB, DT, AB, SVM, gradient boosting (GB), and KNN.

2.4.1. Extreme gradient boosting

The XGBoost library, encompassing GB algorithms designed for speed and performance, is adept
at solving modern data science challenges and fits well into the latest toolsets. It operates using a scalable
ensemble of DT and applies GB to minimize loss functions iteratively, thereby improving the model’s predictive
accuracy. A distinctive feature of XGBoost is its use of DT as base learners, which significantly contributes to
its high accuracy levels in (1) and (2) [21]], [22]]:

N M
Ligy = Y L(ys, F(z:)) + Y Qhum) 1)
=1 m=1
1
Q(h) =T + Allw]? @

where T' denotes the number of tree leaves and w represents the leaf weights. XGBoost also incorporates a
shrinkage factor to control the learning rate, preventing overfitting by reducing the step size of each additive
model expansion.

2.4.2. Decision tree

Employing a graph resembling a tree for decision-making and data classification, the DT model is
supervised learning. Starting with a single node, it divides into multiple possible outcomes: an attribute test
is indicated by each internal node, each branch represents a test result, and a class label is shown by each leaf
node in (3) and (4) [23], [24]:

n

Entropy = = p; x log(p:) 3)
=1

Gini index =1-) _p} 4)

i=1

The entropy measures the disorder or uncertainty, and the Gini index quantifies the distribution of
classes within a subset of the dataset; both are used to choose the most informative features at each decision
node.

2.4.3. AdaBoost

AB, also known as adaptive boosting, is an ensemble technique that builds a powerful classifier by
combining weak classifiers. The method dynamically modifies the weights of erroneously classified examples,
directing succeeding classifiers’ attention toward more complex cases in (5) [25]:
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k
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where Hy, is the combined hypothesis, ay are the weights for each hypothesis, and hy(p) are the individual
weak hypotheses.

2.4.4. Support vector machine
SVM is a sophisticated classification approach that identifies the best hyperplane to maximize the
margin between classes. SVM seeks to identify the optimum border that divides the data into classes (6) [26]:

L(w) = Z max(0, 1 — y;(w?z; + b)) + A|w||? (6)

i=1

where the loss function is defined by the sum of the distances of misclassified points from the decision boundary,
and the regularization term penalizes the complexity of the model.

2.4.5. Gradient boosting
GB is a sequential learning method that corrects the mistakes of prior models and adds them to form
a final strong model. It is an effective method for regression and classification problems in (7) [27]:

Fr(X) = Frpe1(X) + 1 % fm(X) )
where F),, is the improved model, f,, is the weak learner, and 7 is the learning rate.

2.4.6. K-Nearest Neighbors

The non-parametric KNN technique is used for regression and classification. The input of a KNN is
the k closest training instances in the feature space; the output of the KNN is contingent upon whether it is
employed for classification or regression in (8) and (9) [28]:

V(s —21)2+ (y2 — y1)? (8)
. 67" (rank(p;) — rank(g;))
fij=1- ! n(n? — 1) : )

where "P’ represents the training tuples, while *Q’ stands for the testing tuples, with 'n’ indicating the overall
count of observations. Typically, the value of "Fij’ ranges between -1 and 1.

3. RESULT ANALYSIS

The study employed a Core i5-10210U CPU with a clock speed of 1.60 GHz. An NVIDIA GeForce
MX110 was utilized for graphics processing, complemented by 8 GB of RAM. The model construction was
facilitated using Python alongside libraries such as Numpy, Pandas, and Matplotlib. These components were
integrated within the Jupyter Notebook platform, forming the computational foundation for the research.

3.1. Accuracy
Accuracy is the ratio of successfully classified instances to total instances evaluated (10) [29]. This
statistic assesses the model’s ability to predict outcomes throughout the full dataset accurately [30]].

TP + TN
A - 10
Y = TP TN ¥ FP+ FN (10)

3.2. Precision
Precision is the percentage of successfully predicted positive samples among all cases projected as
positive by the model in (11) [31], [32]:

TP
Precision = ———— (11)

TP+ FP
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3.3. Recall

Recall estimates the proportion of correctly predicted positive instances from all actual positive sam-
ples in the dataset in (12) [33]]:

TP
Recall = m (12)

3.4. F1-Measure

F1-Measure is the harmonic mean of precision and recall in (13) [34]]. It supplies a balanced bench-
mark between precision and recall, primarily when an imbalance exists between the categories.

Precision x Recall
F1-M =2 13
easure x Precision + Recall (13

3.5. Performance analysis

The XGB model stands out for its outstanding performance, achieving the highest accuracy, preci-
sion, recall, and F1 score among the assessed models in (10) to (13). In contrast, models such as the DT, AB,
SVM, and KNN exhibit lower success metrics, with KNN notably registering the most insufficient accuracy.
While not reaching the pinnacle of accuracy demonstrated by the XGB model, the GB model still showcases
commendable performance metrics (see Tables 1 and 2). This study underscores the varied capabilities of dif-
ferent ML algorithms, highlighting the XGB model’s exceptional ability to predict outcomes and computational
efficiency accurately in this comparison.

Table 1. Models performance analysis

Models  Accuracy  Precision  Recall  Fl-measure Findings

XGB 0.9930 0.9946 0.9902 0.9923 Highest accuracy

DT 0.9510 0.9425 0.9532 0.9473 Lowest accuracy

AB 0.9790 0.9792 0.9750 0.9770 Lowest accuracy

SVM 0.9650 0.9639 0.9597 0.9617 Lowest accuracy

GB 0.9860 0.9848 0.9848 0.9848 Slightly reduce from highest accuracy
KNN 0.9301 0.9370 0.9107 0.9216 Lowest accuracy

Table 2. Models computational efficiency

Models Without feature selection With feature selection
Train(s)  Test(s)  Accuracy(%)  Training(s) Test(s) Accuracy(%)

XGB 0.0883 0.0138 99.30 0.0623 0.0050 99.30
DT 0.0129  0.0034 95.10 0.0077 0.0024 93.01
AB 0.3746  0.0199 97.90 0.1518 0.0100 94.41
SVM 0.8452  0.0035 96.50 0.4853 0.0026 97.20
GB 0.4497  0.0035 98.60 0.3255 0.0032 98.60
KNN 0.0040  0.0811 93.01 0.0035 0.0123 93.01

The confusion matrix, esteemed for mapping the counts of predicted versus actual values, emerges as
a pivotal tool in assessing the effectiveness of classification models, encompassing both binary, and multiclass
strategies. Employing an N x N matrix, this tool delineates the precision of model predictions about actual
outcomes [35]]. A closer inspection of Figure 3(a) reveals that XGBoost secures a commendable classification
prowess, distinctly outperforming KNN, demonstrating diminished accuracy in classification tasks.

The indicated ROC curve visually compares classifier performance, where SVM, XGBoost, and DT
models stand out with near-identical, exemplary AUC scores of 0.9928, reflecting their high effectiveness in
distinguishing between classes (see Figure 3(b)). Except for KNN, these models exhibit high accuracy in
classification tasks, as deduced from their proximity to the top left corner of the ROC space [36].

An interpretable machine learning-based breast cancer classification using XGBoost ... (Monoronjon Dutta)
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Figure 3. Proposed model: (a) confusion matrix and (b) ROC curve

3.6. Discussions using LIME and SHAPE

The study aimed to demystify the *black box’ character of the XGBoost algorithm by adding SHAP
parameters and explaining its mechanism in breast cancer predicted outcomes (created SHAP python package)
(371, [38]. Furthermore, they used SHAP dependence analysis to show how a single variable affected the
output of the XGBoost model, as shown in Figure 4(a). A more granular examination revealed the top 20
critical clinical features influencing the XGBoost model’s output, with ”X.area_worst” registering the highest
value. Conversely, ”x.texture_mean” and “’x.compactness_mean” were identified as the second and last lowest
values, respectively. Subsequently, the study employed SHAP force analysis and the LIME algorithm for a
nuanced explanation of individual predictions concerning death from breast cancer, categorizing cases into
Benign and Malignant, as shown in Figure 4(b). Using SHAP force analysis and the LIME method, Figure
4(b) illustrates a particular deceased example. The XGBoost model projected the probability of breast cancer
as benign at 0.99% and malignant at 0.01%. Notably, the “x.text _-Worst” value was 21.08 for Benign, while
the highest value for Malignant was 686.50 [39].

High
x.area_worst ...+..._...._..m....--—-. o o
Prediction probabilities
x.texture_mean '—-'—*---.-'h— -
x.concave_pts_mean -‘IH - oo B _ 0.99
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Figure 4. The SHAP summary plot; (a) shows the top 20 clinical features that contribute to the XGBoost
model and explaining individual prediction results and (b) using the LIME algorithm
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4. COMPARATIVE ANALYSIS

In the comparative analysis conducted by various authors in 2023, Birchha and Nigam [/L1]] utilized
the Avg-perceptron method, yielding an accuracy of 0.98%, the lowest among the methods assessed. Similarly,
Massari et al. [[12]] employed ontology, achieving an accuracy of 0.977%, ranking the most down. Albadr et
al. [13] applied FLN, with a reported accuracy of 0.9883%, still falling within the lower range of accuracies.
Omotehinwa et al. [14] utilized TBL, attaining an accuracy of 0.9912%, again recording one of the weakest
accuracies. The researchers in [[15], [[16]] employed RF, achieving accuracies of 0.9790% and 0.973%, respec-
tively, among the lowest in the analysis, and no one applied to shape and Lime. In contrast, the proposed
model, XGB, presented by an unspecified author, demonstrated the highest accuracy among the methods as-
sessed, achieving an accuracy of 0.9930% (see Table 3). This indicates a notable improvement in accuracy
compared to the other methods evaluated in the study.

Table 3. Comparative analysis

Authors name Publish year ~ Proposed method  Accuracy(%) XAlused Remarks

Birchha and Nigam [11] 2023 Avg-perceptron 0.98 No Lowest accuracy
Massari et al. [12] 2023 Ontology 0.977 No Lowest accuracy
Albadr et al. [[13] 2023 FLN 0.9883 No Lowest accuracy
Omotehinwa et al. [14] 2023 TBL 0.9912 No Lowest accuracy
Liza et al. [15] 2023 RF 0.9790 No Lowest accuracy
Gad et al. [16] 2023 RF 0.973 No Lowest accuracy
Proposed model XGB 0.9930 Yes Highest accuracy

5. CONCLUSION

ML models are increasingly utilized to model and predict spatial phenomena. A significant challenge
these models face, limiting their broader adoption in spatial data modeling, is their interpretability, especially
when the goal is to uncover underlying processes and features. The paper presented contributes to breast cancer
classification, distinguishing between benign and malignant cases. It addresses this gap by demonstrating which
features from the dataset are more important for deriving spatial insights from ML models, utilizing SHAP and
LIME with the best-performing XGBoost model. Applying the values of SHAP and the LIME method in ML
can help physicians make clinical decisions about cancer classification. The future work plan includes training
the model with additional data and improving the model’s testing time efficiency.
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