
Bulletin of Electrical Engineering and Informatics

Vol. 13, No. 5, October 2024, pp. 3317~3325

ISSN: 2302-9285, DOI: 10.11591/eei.v13i5.7905  3317

Journal homepage: http://beei.org

XSSer: hybrid deep learning for enhanced cross-site scripting

detection

Ammar Odeh, Anas Abu Taleb
Department of Computer Science, Princess Sumaya University of Technology, Amman, Jordan

Article Info ABSTRACT

Article history:

Received Nov 20, 2023

Revised Feb 12, 2024

Accepted Mar 20, 2024

 The importance of an effective cross-site scripting (XSS) detection system

cannot be overstated in web security. XSS attacks continue to be a prevalent

and severe threat to web applications, making the need for robust detection

systems more crucial than ever. This paper introduced a hybrid model that

leverages deep learning algorithms, combining recurrent neural network

(RNN) and convolutional neural network (CNN) architectures. Our hybrid

RNN-CNN model emerged as the top performer in our evaluation,

demonstrating outstanding performance across key metrics. It achieved an

impressive accuracy of 96.74%, excelling inaccurate predictions. Notably,

the precision score reached an impressive 97.78%, highlighting its precision

in identifying positive instances while minimizing false positives.

Furthermore, the model's recall score of 95.65% showcased its ability to

capture a substantial portion of true positive instances. This resulted in an

exceptional F1-Score of 96.70, underlining the model's remarkable balance

between precision and recall. Compared to other models in the evaluation,

our proposed model unequivocally demonstrated its leadership, emphasizing

its excellence in detecting potential XSS vulnerabilities within web content.

Keywords:

Content security policies

Cross-site scripting

Cyberattack

Deep learning

Intrusion detection system

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ammar Odeh

Department of Computer Science, Princess Sumaya University of Technology

Amman 1196, Jordan

Email: a.odeh@psut.edu.jo

1. INTRODUCTION

Cross-site scripting (XSS) represents a security flaw wherein a web application permits users to

embed harmful scripts into web pages seen by others. This widespread vulnerability among web applications

can lead to severe consequences such as data theft and session hijacking [1], [2]. XSS attacks transpire when

untrusted data is integrated into a web page without appropriate validation or encoding, enabling attackers to

implant malevolent scripts (typically in JavaScript). Consequently, these scripts execute when other users

access the page. Figure 1 delineates the three main categories of XSS attacks.

− Stored XSS (persistent XSS): in this attack, the injected script is permanently stored on the target server

and served to users who access the affected page. For example, an attacker might post a malicious script

on a forum, and anyone who views that forum post will execute the script [3]-[5].

− Reflected XSS: in a reflected XSS attack, the injected script is not stored on the target server but is

instead reflected off a web application, often via a URL. When a user clicks on a specially crafted link,

the script is executed in their browser [6], [7].

− DOM-based XSS: this is a more advanced form of XSS, where the attack occurs in the web page's

document object model (DOM). The attacker manipulates the DOM in a way that causes the script to run

when the user loads or controls the page [8], [9].

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 5, October 2024: 3317-3325

3318

It's crucial to employ effective input validation and output encoding to reduce XSS vulnerabilities.

This includes thoroughly validating and cleaning user inputs while encoding any output that contains user-

generated content. Additionally, web developers ought to integrate security measures like content security

policy (CSP) to hinder the execution of inline scripts [7], [8].

Figure 1. Types of XSS attacks

To protect against XSS attacks, web application developers and users should be aware of the risks

and best practices for prevention. Users should be cautious about clicking on untrusted links and use browser

extensions blocking known malicious scripts. Developers should follow secure coding practices, validate and

sanitize user input, and use security libraries and frameworks to help prevent XSS vulnerabilities. Regular

security testing, including automated and manual security audits, is essential to identify and fix potential XSS

issues in web applications [10], [11].

XSS detection plays a pivotal role in contemporary cybersecurity, addressing a range of critical

security concerns. XSS attacks can lead to data breaches, wherein sensitive user information, such as

credentials and personal data, is compromised. Effectively detecting XSS attacks is fundamental in protecting

this data from unauthorized access and theft. Furthermore, these attacks can be employed to hijack user

sessions and gain unauthorized access to user accounts, highlighting the significance of robust XSS detection

in maintaining the integrity of web-based user profiles. By preventing such attacks, web security measures

preserve user privacy, as XSS can leak sensitive personal information and shield against potential financial

losses that may occur due to financial fraud or unauthorized transactions [3], [6], [10].

Moreover, the importance of XSS detection extends beyond immediate security concerns. XSS attacks

can significantly impact an organisation's reputation, leading to a loss of trust and customers. A security breach

can tarnish an entity's reputation and have long-lasting consequences. Furthermore, falling victim to XSS

attacks may result in legal and regulatory repercussions, particularly in industries where data protection and

privacy are subject to strict compliance requirements. Implementing effective XSS detection mechanisms

becomes imperative for safeguarding data and adhering to legal and regulatory standards [12]-[14].

Deep learning, as a branch of artificial intelligence, offers a transformative approach to web

security, addressing the limitations of traditional XSS detection methods. Conventional methods often

struggle to identify evolving and sophisticated attack patterns. Deep learning models, in contrast, exhibit the

ability to adapt to these complex patterns and learn from extensive datasets. They can automatically learn

relevant features from the data, reducing the need for manual feature engineering. Moreover, deep learning

models capture malicious scripts' behaviour, allowing more accurate detection based on script execution

patterns [15], [16].

In addition to these advantages, deep learning models offer scalability, making them suitable for

handling vast amounts of data generated by web applications. They can be continuously updated and

retrained with new data, adapting to emerging threats and ensuring that security measures remain current.

Significantly, deep learning can help reduce false positives by distinguishing between benign and malicious

behaviors more accurately. It enables real-time detection, improving the responsiveness of web security

systems, and can adapt to the evolving landscape of web technologies. In summary, integrating deep learning

into web security is crucial for maintaining the integrity and trustworthiness of web applications in an ever-

evolving and complex threat landscape [17], [18].

Our primary contributions can be briefly outlined as follows:

− Our paper introduces an adaptable, budget-friendly, and exceptionally efficient cyberattack detection

system that harnesses deep learning methods.

− We analyze and evaluate the effectiveness of three deep learning approaches using the XSS Attacks-2019

dataset.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

XSSer: hybrid deep learning for enhanced cross-site scripting detection (Ammar Odeh)

3319

− We provide a systematic and comparative experimental assessment of three deep learning strategies

amenable to optimization. This evaluation involves utilizing traditional evaluation metrics, including the

confusion matrix, detection accuracy, detection precision, and F1-Score.

2. LITERATURE REVIEW

As per reference Ruse and Basu [19], the currently recommended strategy against XSS attacks

involves implementing content security policies (CSP). This direct approach aims to heighten security in

online communication between users and their devices. CSP primarily focuses on safeguarding secure web

services, including crucial information portals, web applications, and internet of things (IoT) networks. It

precisely defines communication elements and assets utilized in these services. One notable aspect of CSP is

its capacity to swiftly generate clear and compelling reports, promptly notifying administrators about

executed attacks.

In a different study [20], a method called "XSSChaser" was introduced, proposing a linear

automated approach to prevent XSS attacks within web applications. This technique utilizes chain analysis to

identify vulnerable patterns, effectively thwarting XSS attempts. These patterns are crafted through a

combination of forward and backward interpretation methods. Meanwhile, Singh [21] presents an intrusion

detection system based on containerization. This system employs a query request mapping model to detect

and halt XSS attacks. It evaluates impact by analyzing the HTTP load and utilizing the "autobench" tool

while assessing performance through metrics such as average page load times, pages per second, memory

usage, and processing time.

Another approach [19] demonstrates attacks using tags like "<script>" and "<iframe>" within web

requests to target clients' browsers with XSS or SQL queries. Clients access the application via a web server

offering a web service, sending web requests through the application's user interface. This triggers database

queries and data retrieval for each client. Choi et al. [20] investigates two attack types, "N" coding and binary

alphabets, proposing a dynamic access control technique to prevent them by leveraging existing detection

and prevention technologies.

A distinct framework, Zend [21], addresses XSS attack issues by providing a straightforward

security model to protect websites. This model comprises various tools within a sequence of levels for

implementation. It integrates the Zend framework web application with the HTML Purifier library, renowned

for its capacity to eliminate malicious code responsible for XSS attacks. Additionally, Al-Haija et al. [22]

introduces an automatic modeling algorithm for the HTML code of e-commerce websites, simplifying

HTML code modeling and generating a behavior model stored in an XML file.

Moreover, according to Al-Haija et al. [22], emphasis is placed on security vulnerabilities

originating from generic entry validation issues leading to XSS attacks. The proposed detection method

identifies malicious execution sequences based on a predefined list of legitimate ones and malicious or literal

strings generated during a training phase. These lists are organized into four distinct web application

execution profiles, each corresponding to a specific attack scenario—the detection module scans for the

occurrence of these execution sequences. In recent times, researchers have applied deep learning techniques

to the task of detecting XSS attacks. Riera et al. [23] introduced an innovative method for representing URL

features. They analyzed existing technology for URL attack detection and proposed a deep learning model-

based multisource fusion approach. This method enhances the overall accuracy of XSS detection systems and

contributes to system stability. Odeh et al. [24] also introduced the code-injection detection with deep

learning (CODDLE) model designed to combat web-based code injection attacks, including XSS. A vital

aspect of this model's innovation involves optimizing the effectiveness of convolutional deep neural networks

through a customized preprocessing phase that encodes XSS-related symbols as value pairs. The results

demonstrated that this model can significantly enhance the detection rate, achieving recall values of

approximately 92%, precision of 99%, and an accuracy rate of 95% compared to a baseline performance.

According to Odeh et al. [25], a system design is put forth to detect XSS attacks utilizing an

intrusion detection system (IDS). This system uses signatures to recognize these attacks, and a proof-of-

concept prototype was developed using the SNORT IDS. The system's implementation depends on rule sets

that monitor incoming and outgoing packets, assessing their adherence to predefined rules to identify XSS

attacks.

3. METHOD

The system put forward in this study was designed using Python version 3.8 and implemented on a

high-performance Windows 11 computing system. This computing system comprises a powerful 11th Gen

Intel(R) Core(T.M.) i5-1135G7 @ 2.40GHz 2.42 GHz component and 32 GB of RAM. An overview of the

development framework is depicted in Figure 2. The system, as envisioned, is divided into four distinct

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 5, October 2024: 3317-3325

3320

modules, each with a specific role, before it is deployed for field operation. These modules encompass data

collection, engineering, learning, and evaluation. According to the diagram, the model's architecture is

structured around the following components:

Figure 2. The block diagram for the proposed system

3.1. Data collection

To establish a robust foundation for (XSS) detection, we collected a dataset comprising web pages

encompassing benign and malicious instances. The dataset chosen for this endeavor, XSS-2019, includes a

balanced distribution of 461 samples, comprising 230 instances classified as anomalies and 231 as benign

cases, as shown in Figure 3. These data points are characterized by seven features, which include application

names, permissions, application programming interfaces (APIs), website domain name system (DNS)

information, internet protocol (I.P.) addresses, geolocation details, and labels denoting their security status.

Figure 3. XSS-2019 label balanced distribution

0 50 100 150 200 250

benign

malicious

Count

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

XSSer: hybrid deep learning for enhanced cross-site scripting detection (Ammar Odeh)

3321

Figure 3 shows a horizontal bar chart that presents the comparative counts of entities classified as

either 'malicious' or 'benign'. The chart is structured with the y-axis listing the two categories, with 'malicious'

at the top and 'benign' at the bottom. The x-axis represents the count of instances, ranging from 0 to 250. The

bar representing 'malicious' extends slightly beyond the 200 mark, indicating a count just over 200, while the

'benign' bar reaches past the halfway point between 150 and 200, suggesting a count that is significantly

lower than 'malicious' but exceeds 150. The bars are shaded in a uniform blue color against a clean white

background, without any additional embellishments or data labels. The simplicity of the chart’s design

facilitates immediate comprehension of the disparity between the two classifications. It clearly illustrates that

the frequency of 'malicious' instances surpasses that of 'benign' ones within the given dataset. This figure

effectively highlights the data's skew towards malicious classifications and may warrant further discussion

regarding the implications or causes of this observation within the context of the study.

3.2. Data preprocessing

The next crucial step in the dataset preparation involved meticulous preprocessing. This multi-

faceted stage encompassed several tasks. First and foremost, tokenization was applied, whereby the text data

was effectively split into words or subword tokens, allowing for a granular understanding of the content.

Subsequently, data cleaning was carried out, entailing the removal of HTML tags and special characters

while simultaneously normalizing the text to ensure uniformity. Finally, feature extraction techniques were

employed to convert the textual data into numerical representations for efficient analysis by deep learning

models, often leveraging techniques like embeddings.

Figure 4 illustrates a heatmap that represents the correlation coefficients between various features in

a dataset. The features included in this heatmap are 'App Names', 'Permissions', 'API Name', 'Website Name',

'IP', 'Location', and 'Label'. Each cell within the heatmap displays the correlation coefficient between the

features intersecting at that point, with a scale ranging from -1.0 to 1.0 as indicated by the color bar on the

right-hand side of figure.

Figure 4. Heatmap using XSS-2019 dataset

The color intensity varies according to the strength and direction of the correlation, with 1 indicating

a perfect positive correlation (dark red), 0 indicating no correlation (white), and -1 indicating a perfect

negative correlation (dark blue). For instance, the square at the intersection of 'API Name' and 'Label' shows

a strong negative correlation with a coefficient of approximately -0.78, marked by a deep blue color. In

contrast, most other cells exhibit a very weak correlation, as indicated by the lighter shades of red or white,

with coefficients close to zero.

The dataset was thoughtfully divided into three subsets to facilitate model training and evaluation: a

training set, a validation set, and a test set. This strategic partitioning ensures that the models can be

effectively trained on one portion, validated for performance, and rigorously tested on another. This ensures

that the resulting XSS detection system is accurate and robust.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 5, October 2024: 3317-3325

3322

3.3. Deep learning architecture-hybrid RNN-CNN model

In pursuit of a more potent (XSS) detection system, we embarked on a novel approach by

seamlessly fusing two distinct neural network architectures. The amalgamation combined a recurrent neural

network (RNN) with a convolutional neural network (CNN). This tandem of neural networks was

meticulously orchestrated to capitalize on their strengths. The RNN, with its inherent capability, was

harnessed to apprehend the intricate sequential dependencies intricately woven within HTML and JavaScript

code, deciphering the nuanced patterns that might escape other detection mechanisms.

On the other front, CNN, which was celebrated for its proficiency in image analysis, was repurposed

to extract features from code snippets and textual content embedded within web pages. By leveraging this

blend of RNN and CNN, we could simultaneously capture both the underlying code sequences and the

contextual meaning encoded within these web pages. In the culminating phase, the outputs of both networks

were harmoniously merged to form the bedrock of our system's final predictions. This innovative

amalgamation significantly enhances our ability to discern and flag potential XSS vulnerabilities within web

content with precision and depth.

3.4. Evaluation

Upon completing the (XSS) detection model's training, a comprehensive evaluation was conducted

to gauge its effectiveness in scrutinizing web content for potential threats. This assessment process

encompassed multiple vital components. Firstly, a confusion matrix was generated, providing a visually

insightful representation of the model's performance, vividly outlining the counts of true positives, true

negatives, false positives, and false negatives. This matrix clearly showed how well the model distinguished

between benign and malicious instances.

Furthermore, a battery of evaluation metrics was employed to provide a holistic understanding of

the model's capabilities. These metrics included accuracy, gauging the overall correctness of the model's

predictions; precision, pinpointing the proportion of true positives among the instances predicted as positive;

recall, illustrating the model's ability to identify positive instances correctly; and the F1-Score, offering a

balanced assessment of precision and recall. These meticulous evaluations culminated in a comprehensive

analysis of the model's performance, ensuring its readiness to tackle the challenges of real-world XSS

detection scenarios. Figure 5 shows confusion matrix that is commonly used in the evaluation of machine

learning algorithms. The matrix compares the actual versus predicted classifications of a binary classifier,

with the categories labeled as 'Positive (P)' and 'Negative (N)'.

Figure 5. Confusion matrix

The proposed model is assessed using a set of performance metrics derived from the confusion matrix.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (3)

𝑓 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

4. RESULTS AND DISCUSSION

This section explains the research results and, at the same time, gives. The comprehensive

discussion. The Table 1 encapsulates a comprehensive comparative analysis of the performance of various

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

XSSer: hybrid deep learning for enhanced cross-site scripting detection (Ammar Odeh)

3323

(XSS) detection models. At the forefront is the "Hybrid RNN-CNN (proposed)" model, representing an

innovative approach that combines a (RNN) with a (CNN). This novel fusion resulted in a remarkable

accuracy of 96.74%, signifying the model's ability to make correct predictions. Moreover, the "Hybrid RNN-

CNN" exhibited an impressive precision score of 97.78%, underscoring its proficiency in correctly

identifying positive instances with minimal false positives. While achieving a substantial recall score of

95.65%, the model demonstrated a commendable capacity to capture a significant portion of positive cases.

Consequently, its F1-Score of 96.70 attests to its balanced precision and recall.

Table 1. Comparative performance analysis of XSS detection models
Model Accuracy Precision Recall F1-Score

Hybrid RNN-CNN (proposed) 0.967391 0.977778 0.956522 0.967033

CNN 0.947867 0.970874 0.769231 0.858369
RNN 0.909091 0.909091 0.952381 0.930233

In comparison, while achieving a good accuracy of 94.79%, the standalone CNN model displayed a

lower recall score of 76.92%, indicating that it occasionally missed positive instances. Meanwhile, the

precision score of 97.08% demonstrated its accuracy in classifying positive instances, but the lower recall

affected the F1-Score, which stood at 85.84. On the other hand, the standalone RNN model showcased a

decent accuracy of 90.91% and a remarkable recall score of 95.24%. However, the F1-Score of 93.02,

although indicating a balance between precision and recall, revealed room for improvement. This

comprehensive evaluation highlights the efficacy of the proposed Hybrid RNN-CNN model in XSS

detection, offering both high accuracy and a well-balanced trade-off between precision and recall.

Table 2 comprehensively evaluates various (XSS) detection models with key performance metrics,

including accuracy, precision, recall, and F1-Score. Notably, our proposed hybrid RNN-CNN model,

represented as "proposed," stands out as the frontrunner regarding performance. With an outstanding

Accuracy of 96.74%, it showcases unparalleled precision in classifying web content. The precision score of

97.78% underscores its ability to accurately identify positive instances while maintaining minimal false

positives. Moreover, the hybrid RNN-CNN model achieves an impressive recall score of 95.65%, indicating

its proficiency in capturing a substantial portion of positive instances. This results in an exceptional F1-Score

of 96.70, emphasizing the model's balanced trade-off between precision and recall. In direct comparison with

the other models in the Table 2, our proposed hybrid RNN-CNN model demonstrates the highest level of

effectiveness in identifying potential XSS vulnerabilities within web content.

Table 2. Comparison with other XSS detection models
Reference Model Accuracy Precision Recall F1-Score

[26] Support vector machine (SVM) 0.85130408 0.86044464 0.84173936 0.85098904

[27] Gated recurrent unit (GRU) 0.84163017 0.85066686 0.83217414 0.84131871
[28] Naive Bayes (NB) 0.89967363 0.90933354 0.88956546 0.89934069

[29] Long short-term memory (LSTM) 0.90934754 0.91911132 0.89913068 0.90901102

[30] SVM+n-Gram 0.88032581 0.88977798 0.87043502 0.88000003
[31] O-DT 0.8706519 0.8800002 0.8608698 0.8703297

Proposed Hybrid RNN-CNN 0.967391 0.977778 0.956522 0.967033

5. CONCLUSION

Many applications that identify XSS vulnerabilities face several limitations, mainly stemming from

the inherent challenges of developing secure applications. Most existing XSS vulnerability scanning tools

primarily focus on public areas of internet resources, while vulnerabilities often reside in non-public or less

accessible sections. This paper proposes a hybrid model using deep learning algorithms (RNN and CNN).

The hybrid RNN-CNN architecture emerges as the frontrunner in our evaluation, exhibiting exceptional

performance across all key metrics. With a remarkable accuracy score of 96.74%, it excels in making

accurate predictions. The precision score, at an impressive 97.78%, underscores its ability to identify positive

instances while minimizing false positives precisely.

Moreover, the model's recall score of 95.65% demonstrates its competence in capturing a significant

portion of true positive instances. This, in turn, culminates in a remarkable F1-Score of 96.70, highlighting

the model's exceptional balance between precision and recall. In direct comparison with other models in the

evaluation, the proposed model unmistakably stands out as a leader, showcasing its superiority in identifying

and flagging potential XSS vulnerabilities within web content.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 13, No. 5, October 2024: 3317-3325

3324

ACKNOWLEDGEMENTS

The authors sincerely acknowledge the Princess Sumaya University for Technology for supporting

steps of this work.

REFERENCES
[1] M. S. Vidya and M. C. Patil, “Reviewing effectivity in security approaches towards strengthening internet architecture,”

International Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 3862–3871, 2019, doi:
10.11591/ijece.v9i5.pp3862-3871.

[2] I. Odun-Ayo, W. Toro-Abasi, M. Adebiyi, and O. Alagbe, “An implementation of real-time detection of cross-site scripting

attacks on cloud-based web applications using deep learning,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5,
pp. 2442–2453, 2021, doi: 10.11591/eei.v10i5.3168.

[3] M. Alsaffar et al., “Detection of Web Cross-Site Scripting (XSS) Attacks,” Electronics (Switzerland), vol. 11, no. 14, 2022, doi:

10.3390/electronics11142212.
[4] Q. A. Al-Haija, “Cost-effective detection system of cross-site scripting attacks using hybrid learning approach,” Results in

Engineering, vol. 19, 2023, doi: 10.1016/j.rineng.2023.101266.

[5] F. M. M. Mokbal, W. Dan, W. Xiaoxi, Z. Wenbin, and F. Lihua, “XGBXSS: An Extreme Gradient Boosting Detection
Framework for Cross-Site Scripting Attacks Based on Hybrid Feature Selection Approach and Parameters Optimization,” Journal

of Information Security and Applications, vol. 58, 2021, doi: 10.1016/j.jisa.2021.102813.

[6] J. Kaur, U. Garg, and G. Bathla, “Detection of cross-site scripting (XSS) attacks using machine learning techniques: a review,”
Artificial Intelligence Review, vol. 56, no. 11, pp. 12725–12769, 2023, doi: 10.1007/s10462-023-10433-3.

[7] M. M. Hassan, B. R. Ahmad, A. Esha, R. Risha, and M. S. Hasan, “Important factors to remember when constructing a cross-site
scripting prevention mechanism,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 2, pp. 965–973, 2022, doi:

10.11591/eei.v11i2.3557.

[8] S. Kascheev and T. Olenchikova, “The Detecting Cross-Site Scripting (XSS) Using Machine Learning Methods,” Proceedings -
2020 Global Smart Industry Conference, GloSIC 2020, pp. 265–270, 2020, doi: 10.1109/GloSIC50886.2020.9267866.

[9] R. W. Kadhim and M. T. Gaata, “A hybrid of CNN and LSTM methods for securing web application against cross-site scripting

attack,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 2, pp. 1022–1029, 2020, doi:
10.11591/ijeecs.v21.i2.pp1022-1029.

[10] M. Singh, P. Singh, and P. Kumar, “An Analytical Study on Cross-Site Scripting,” 2020 International Conference on Computer

Science, Engineering and Applications, ICCSEA 2020, 2020, doi: 10.1109/ICCSEA49143.2020.9132894.
[11] H. Pan, Y. Fang, C. Huang, W. Guo, and X. Wan, “GCNXSS: An Attack Detection Approach for Cross-Site Scripting Based on

Graph Convolutional Networks,” KSII Transactions on Internet and Information Systems, vol. 16, no. 12, pp. 4008–4023, 2022,

doi: 10.3837/tiis.2022.12.013.
[12] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia, “Riding out DOMsday: Toward Detecting and Preventing DOM Cross-Site

Scripting,” 25th Annual Network and Distributed System Security Symposium, NDSS 2018, 2018, doi: 10.14722/ndss.2018.23309.

[13] I. S. Joshi and H. J. Kiratsata, “Cross-Site Scripting Recognition Using LSTM Model,” International Conference on Intelligent
Computing and Communication, pp. 1–10, 2023, doi: 10.1007/978-981-99-1588-0_1.

[14] B. Peng, X. Xiao, and J. Wang, “Cross-Site Scripting Attack Detection Method Based on Transformer,” 2022 IEEE 8th

International Conference on Computer and Communications, ICCC 2022, pp. 1651–1655, 2022, doi:
10.1109/ICCC56324.2022.10065892.

[15] J. M. Gan, H. Y. Ling, and Y. B. Leau, “A Review on Detection of Cross-Site Scripting Attacks (XSS) in Web Security,”

Communications in Computer and Information Science, vol. 1347, pp. 685–709, 2021, doi: 10.1007/978-981-33-6835-4_45.
[16] B. Buz, B. Gülçiçek, and Ş. Bahtiyar, “A Hybrid Machine Learning Model to Detect Reflected XSS Attack,” Balkan Journal of

Electrical and Computer Engineering, vol. 9, no. 3, pp. 235–241, 2021, doi: 10.17694/bajece.927417.

[17] T. A. Taha and M. Karabatak, “A proposed approach for preventing cross-site scripting,” 6th International Symposium on Digital
Forensic and Security, ISDFS 2018 - Proceeding, vol. 2018-January, pp. 1–4, 2018, doi: 10.1109/ISDFS.2018.8355356.

[18] K. Pranathi, S. Kranthi, A. Srisaila, and P. Madhavilatha, “Attacks on Web Application Caused by Cross Site Scripting,”

Proceedings of the 2nd International Conference on Electronics, Communication and Aerospace Technology, ICECA 2018, pp.
1754–1759, 2018, doi: 10.1109/ICECA.2018.8474765.

[19] M. E. Ruse and S. Basu, “Detecting cross-site scripting vulnerability using concolic testing,” Proceedings of the 2013 10th

International Conference on Information Technology: New Generations, ITNG 2013, pp. 633–638, 2013, doi:
10.1109/ITNG.2013.97.

[20] J. H. Choi, C. Choi, B. K. Ko, and P. K. Kim, “Detection of cross site scripting attack in wireless networks using n-Gram and

SVM,” Mobile Information Systems, vol. 8, no. 3, pp. 275–286, 2012, doi: 10.3233/MIS-2012-0143.
[21] T. Singh, “Detecting and Prevention Cross–Site Scripting Techniques,” IOSR Journal of Engineering, vol. 2, pp. 854–857, 2012.

[22] Q. A. Al-Haija, A. Odeh, and H. Qattous, “PDF Malware Detection Based on Optimizable Decision Trees,” Electronics

(Switzerland), vol. 11, no. 19, 2022, doi: 10.3390/electronics11193142.
[23] T. S. Riera, J. R. B. Higuera, J. B. Higuera, J. J. M. Herraiz, and J. A. S. Montalvo, “A new multi-label dataset for Web attacks

CAPEC classification using machine learning techniques,” Computers and Security, vol. 120, 2022, doi:

10.1016/j.cose.2022.102788.
[24] A. Odeh, I. Keshta, and E. Abdelfattah, “Machine LearningTechniquesfor Detection of Website Phishing: A Review for Promises

and Challenges,” 2021 IEEE 11th Annual Computing and Communication Workshop and Conference, CCWC 2021, pp. 813–818,

2021, doi: 10.1109/CCWC51732.2021.9375997.
[25] A. Odeh, I. Keshta, and E. Abdelfattah, “Efficient detection of phishing websites using multilayer perceptron,” International

Journal of Interactive Mobile Technologies, vol. 14, no. 11, pp. 22–31, 2020, doi: 10.3991/ijim.v14i11.13903.

[26] G. E. Rodríguez, J. G. Torres, P. Flores, and D. E. Benavides, “Cross-site scripting (XSS) attacks and mitigation: A survey,”
Computer Networks, vol. 166, 2020, doi: 10.1016/j.comnet.2019.106960.

[27] P. Sriramya, S. Kalaiarasi, and N. Bharathi, “Anomaly Based Detection of Cross Site Scripting Attack in Web Applications Using

Gradient Boosting Classifier,” Communications in Computer and Information Science, vol. 1394 CCIS, pp. 243–252, 2021, doi:
10.1007/978-981-16-3653-0_20.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

XSSer: hybrid deep learning for enhanced cross-site scripting detection (Ammar Odeh)

3325

[28] Y. Lin, O. T. Onadele, and X. Gu, “CDL: Classified Distributed Learning for Detecting Security Attacks in Containerized
Applications,” ACM International Conference Proceeding Series, pp. 179–188, 2020, doi: 10.1145/3427228.3427236.

[29] A. Niakanlahiji and J. H. Jafarian, “WebMTD: Defeating Cross-Site Scripting Attacks Using Moving Target Defense,” Security

and Communication Networks, vol. 2019, 2019, doi: 10.1155/2019/2156906.
[30] P. I. Radoglou-Grammatikis and P. G. Sarigiannidis, “Securing the Smart Grid: A Comprehensive Compilation of Intrusion

Detection and Prevention Systems,” IEEE Access, vol. 7, pp. 46595–46620, 2019, doi: 10.1109/ACCESS.2019.2909807.

[31] A. W. Marashdih, Z. F. Zaaba, and K. Suwais, “Predicting input validation vulnerabilities based on minimal SSA features and
machine learning,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, pp. 9311–9331, 2022,

doi: 10.1016/j.jksuci.2022.09.010.

BIOGRAPHIES OF AUTHORS

Ammar Odeh received his Ph.D. from University of Bridgeport (UB), USA, in

2015. He is an Associate Professor at the Department of Computer Science, Faculty of King

Hussein School of Computing Sciences, Princess Sumaya University for Technology, Amman,

Jordan. His research interests include cybersecurity, cryptography, and the internet of things

(IoT). He can be contacted at email: a.odeh@psut.edu.jo.

Anas Abu Taleb is an associate professor in the Department of Computer Science

at Princess Sumaya University for Technology, Amman, Jordan. He received a Ph.D. in

Computer Science from the University of Bristol, UK 2010, an M.Sc. in Computer Science

from the University of the West of England, UK, 2007 and a B.Sc. Degree in Computer

Science from Princess Sumaya University for Technology, Jordan, 2004. He has published

several journal and conference papers on sensor networks. In addition to sensor networks, he is

interested in network fault tolerance, routing algorithms, and mobility models. He can be

contacted at email: a.abutaleb@psut.edu.jo.

https://orcid.org/0000-0002-9929-2116
https://scholar.google.com/citations?hl=id&user=lBc6CO8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55320073300
https://www.webofscience.com/wos/author/record/3810986
https://orcid.org/0000-0002-8286-1829
https://scholar.google.com/citations?hl=id&user=5NhxktsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=24831286900

