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 The importance of an effective cross-site scripting (XSS) detection system 

cannot be overstated in web security. XSS attacks continue to be a prevalent 

and severe threat to web applications, making the need for robust detection 

systems more crucial than ever. This paper introduced a hybrid model that 

leverages deep learning algorithms, combining recurrent neural network 

(RNN) and convolutional neural network (CNN) architectures. Our hybrid 

RNN-CNN model emerged as the top performer in our evaluation, 

demonstrating outstanding performance across key metrics. It achieved an 

impressive accuracy of 96.74%, excelling inaccurate predictions. Notably, 

the precision score reached an impressive 97.78%, highlighting its precision 

in identifying positive instances while minimizing false positives. 

Furthermore, the model's recall score of 95.65% showcased its ability to 

capture a substantial portion of true positive instances. This resulted in an 

exceptional F1-Score of 96.70, underlining the model's remarkable balance 

between precision and recall. Compared to other models in the evaluation, 

our proposed model unequivocally demonstrated its leadership, emphasizing 

its excellence in detecting potential XSS vulnerabilities within web content. 
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1. INTRODUCTION 

Cross-site scripting (XSS) represents a security flaw wherein a web application permits users to 

embed harmful scripts into web pages seen by others. This widespread vulnerability among web applications 

can lead to severe consequences such as data theft and session hijacking [1], [2]. XSS attacks transpire when 

untrusted data is integrated into a web page without appropriate validation or encoding, enabling attackers to 

implant malevolent scripts (typically in JavaScript). Consequently, these scripts execute when other users 

access the page. Figure 1 delineates the three main categories of XSS attacks. 

− Stored XSS (persistent XSS): in this attack, the injected script is permanently stored on the target server 

and served to users who access the affected page. For example, an attacker might post a malicious script 

on a forum, and anyone who views that forum post will execute the script [3]-[5]. 

− Reflected XSS: in a reflected XSS attack, the injected script is not stored on the target server but is 

instead reflected off a web application, often via a URL. When a user clicks on a specially crafted link, 

the script is executed in their browser [6], [7]. 

− DOM-based XSS: this is a more advanced form of XSS, where the attack occurs in the web page's 

document object model (DOM). The attacker manipulates the DOM in a way that causes the script to run 

when the user loads or controls the page [8], [9]. 

https://creativecommons.org/licenses/by-sa/4.0/
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It's crucial to employ effective input validation and output encoding to reduce XSS vulnerabilities. 

This includes thoroughly validating and cleaning user inputs while encoding any output that contains user-

generated content. Additionally, web developers ought to integrate security measures like content security 

policy (CSP) to hinder the execution of inline scripts [7], [8]. 

 

 

 
 

Figure 1. Types of XSS attacks 

 

 

To protect against XSS attacks, web application developers and users should be aware of the risks 

and best practices for prevention. Users should be cautious about clicking on untrusted links and use browser 

extensions blocking known malicious scripts. Developers should follow secure coding practices, validate and 

sanitize user input, and use security libraries and frameworks to help prevent XSS vulnerabilities. Regular 

security testing, including automated and manual security audits, is essential to identify and fix potential XSS 

issues in web applications [10], [11]. 

XSS detection plays a pivotal role in contemporary cybersecurity, addressing a range of critical 

security concerns. XSS attacks can lead to data breaches, wherein sensitive user information, such as 

credentials and personal data, is compromised. Effectively detecting XSS attacks is fundamental in protecting 

this data from unauthorized access and theft. Furthermore, these attacks can be employed to hijack user 

sessions and gain unauthorized access to user accounts, highlighting the significance of robust XSS detection 

in maintaining the integrity of web-based user profiles. By preventing such attacks, web security measures 

preserve user privacy, as XSS can leak sensitive personal information and shield against potential financial 

losses that may occur due to financial fraud or unauthorized transactions [3], [6], [10]. 

Moreover, the importance of XSS detection extends beyond immediate security concerns. XSS attacks 

can significantly impact an organisation's reputation, leading to a loss of trust and customers. A security breach 

can tarnish an entity's reputation and have long-lasting consequences. Furthermore, falling victim to XSS 

attacks may result in legal and regulatory repercussions, particularly in industries where data protection and 

privacy are subject to strict compliance requirements. Implementing effective XSS detection mechanisms 

becomes imperative for safeguarding data and adhering to legal and regulatory standards [12]-[14]. 

Deep learning, as a branch of artificial intelligence, offers a transformative approach to web 

security, addressing the limitations of traditional XSS detection methods. Conventional methods often 

struggle to identify evolving and sophisticated attack patterns. Deep learning models, in contrast, exhibit the 

ability to adapt to these complex patterns and learn from extensive datasets. They can automatically learn 

relevant features from the data, reducing the need for manual feature engineering. Moreover, deep learning 

models capture malicious scripts' behaviour, allowing more accurate detection based on script execution 

patterns [15], [16]. 

In addition to these advantages, deep learning models offer scalability, making them suitable for 

handling vast amounts of data generated by web applications. They can be continuously updated and 

retrained with new data, adapting to emerging threats and ensuring that security measures remain current. 

Significantly, deep learning can help reduce false positives by distinguishing between benign and malicious 

behaviors more accurately. It enables real-time detection, improving the responsiveness of web security 

systems, and can adapt to the evolving landscape of web technologies. In summary, integrating deep learning 

into web security is crucial for maintaining the integrity and trustworthiness of web applications in an ever-

evolving and complex threat landscape [17], [18]. 

Our primary contributions can be briefly outlined as follows: 

− Our paper introduces an adaptable, budget-friendly, and exceptionally efficient cyberattack detection 

system that harnesses deep learning methods. 

− We analyze and evaluate the effectiveness of three deep learning approaches using the XSS Attacks-2019 

dataset. 
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− We provide a systematic and comparative experimental assessment of three deep learning strategies 

amenable to optimization. This evaluation involves utilizing traditional evaluation metrics, including the 

confusion matrix, detection accuracy, detection precision, and F1-Score.  

 

 

2. LITERATURE REVIEW 

As per reference Ruse and Basu [19], the currently recommended strategy against XSS attacks 

involves implementing content security policies (CSP). This direct approach aims to heighten security in 

online communication between users and their devices. CSP primarily focuses on safeguarding secure web 

services, including crucial information portals, web applications, and internet of things (IoT) networks. It 

precisely defines communication elements and assets utilized in these services. One notable aspect of CSP is 

its capacity to swiftly generate clear and compelling reports, promptly notifying administrators about 

executed attacks. 

In a different study [20], a method called "XSSChaser" was introduced, proposing a linear 

automated approach to prevent XSS attacks within web applications. This technique utilizes chain analysis to 

identify vulnerable patterns, effectively thwarting XSS attempts. These patterns are crafted through a 

combination of forward and backward interpretation methods. Meanwhile, Singh [21] presents an intrusion 

detection system based on containerization. This system employs a query request mapping model to detect 

and halt XSS attacks. It evaluates impact by analyzing the HTTP load and utilizing the "autobench" tool 

while assessing performance through metrics such as average page load times, pages per second, memory 

usage, and processing time. 

Another approach [19] demonstrates attacks using tags like "<script>" and "<iframe>" within web 

requests to target clients' browsers with XSS or SQL queries. Clients access the application via a web server 

offering a web service, sending web requests through the application's user interface. This triggers database 

queries and data retrieval for each client. Choi et al. [20] investigates two attack types, "N" coding and binary 

alphabets, proposing a dynamic access control technique to prevent them by leveraging existing detection 

and prevention technologies. 

A distinct framework, Zend [21], addresses XSS attack issues by providing a straightforward 

security model to protect websites. This model comprises various tools within a sequence of levels for 

implementation. It integrates the Zend framework web application with the HTML Purifier library, renowned 

for its capacity to eliminate malicious code responsible for XSS attacks. Additionally, Al-Haija et al. [22] 

introduces an automatic modeling algorithm for the HTML code of e-commerce websites, simplifying 

HTML code modeling and generating a behavior model stored in an XML file. 

Moreover, according to Al-Haija et al. [22], emphasis is placed on security vulnerabilities 

originating from generic entry validation issues leading to XSS attacks. The proposed detection method 

identifies malicious execution sequences based on a predefined list of legitimate ones and malicious or literal 

strings generated during a training phase. These lists are organized into four distinct web application 

execution profiles, each corresponding to a specific attack scenario—the detection module scans for the 

occurrence of these execution sequences. In recent times, researchers have applied deep learning techniques 

to the task of detecting XSS attacks. Riera et al. [23] introduced an innovative method for representing URL 

features. They analyzed existing technology for URL attack detection and proposed a deep learning model-

based multisource fusion approach. This method enhances the overall accuracy of XSS detection systems and 

contributes to system stability. Odeh et al. [24] also introduced the code-injection detection with deep 

learning (CODDLE) model designed to combat web-based code injection attacks, including XSS. A vital 

aspect of this model's innovation involves optimizing the effectiveness of convolutional deep neural networks 

through a customized preprocessing phase that encodes XSS-related symbols as value pairs. The results 

demonstrated that this model can significantly enhance the detection rate, achieving recall values of 

approximately 92%, precision of 99%, and an accuracy rate of 95% compared to a baseline performance. 

According to Odeh et al. [25], a system design is put forth to detect XSS attacks utilizing an 

intrusion detection system (IDS). This system uses signatures to recognize these attacks, and a proof-of-

concept prototype was developed using the SNORT IDS. The system's implementation depends on rule sets 

that monitor incoming and outgoing packets, assessing their adherence to predefined rules to identify XSS 

attacks. 

 

 

3. METHOD 

The system put forward in this study was designed using Python version 3.8 and implemented on a 

high-performance Windows 11 computing system. This computing system comprises a powerful 11th Gen 

Intel(R) Core(T.M.) i5-1135G7 @ 2.40GHz 2.42 GHz component and 32 GB of RAM. An overview of the 

development framework is depicted in Figure 2. The system, as envisioned, is divided into four distinct 
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modules, each with a specific role, before it is deployed for field operation. These modules encompass data 

collection, engineering, learning, and evaluation. According to the diagram, the model's architecture is 

structured around the following components: 

 

 

 
 

Figure 2. The block diagram for the proposed system 

 

 

3.1.  Data collection  

To establish a robust foundation for (XSS) detection, we collected a dataset comprising web pages 

encompassing benign and malicious instances. The dataset chosen for this endeavor, XSS-2019, includes a 

balanced distribution of 461 samples, comprising 230 instances classified as anomalies and 231 as benign 

cases, as shown in Figure 3. These data points are characterized by seven features, which include application 

names, permissions, application programming interfaces (APIs), website domain name system (DNS) 

information, internet protocol (I.P.) addresses, geolocation details, and labels denoting their security status. 

 

 

 
 

Figure 3. XSS-2019 label balanced distribution 
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Figure 3 shows a horizontal bar chart that presents the comparative counts of entities classified as 

either 'malicious' or 'benign'. The chart is structured with the y-axis listing the two categories, with 'malicious' 

at the top and 'benign' at the bottom. The x-axis represents the count of instances, ranging from 0 to 250. The 

bar representing 'malicious' extends slightly beyond the 200 mark, indicating a count just over 200, while the 

'benign' bar reaches past the halfway point between 150 and 200, suggesting a count that is significantly 

lower than 'malicious' but exceeds 150. The bars are shaded in a uniform blue color against a clean white 

background, without any additional embellishments or data labels. The simplicity of the chart’s design 

facilitates immediate comprehension of the disparity between the two classifications. It clearly illustrates that 

the frequency of 'malicious' instances surpasses that of 'benign' ones within the given dataset. This figure 

effectively highlights the data's skew towards malicious classifications and may warrant further discussion 

regarding the implications or causes of this observation within the context of the study. 

 

3.2.  Data preprocessing 

The next crucial step in the dataset preparation involved meticulous preprocessing. This multi-

faceted stage encompassed several tasks. First and foremost, tokenization was applied, whereby the text data 

was effectively split into words or subword tokens, allowing for a granular understanding of the content. 

Subsequently, data cleaning was carried out, entailing the removal of HTML tags and special characters 

while simultaneously normalizing the text to ensure uniformity. Finally, feature extraction techniques were 

employed to convert the textual data into numerical representations for efficient analysis by deep learning 

models, often leveraging techniques like embeddings. 

Figure 4 illustrates a heatmap that represents the correlation coefficients between various features in 

a dataset. The features included in this heatmap are 'App Names', 'Permissions', 'API Name', 'Website Name', 

'IP', 'Location', and 'Label'. Each cell within the heatmap displays the correlation coefficient between the 

features intersecting at that point, with a scale ranging from -1.0 to 1.0 as indicated by the color bar on the 

right-hand side of figure. 
 

 

 
 

Figure 4. Heatmap using XSS-2019 dataset 

 

 

The color intensity varies according to the strength and direction of the correlation, with 1 indicating 

a perfect positive correlation (dark red), 0 indicating no correlation (white), and -1 indicating a perfect 

negative correlation (dark blue). For instance, the square at the intersection of 'API Name' and 'Label' shows 

a strong negative correlation with a coefficient of approximately -0.78, marked by a deep blue color. In 

contrast, most other cells exhibit a very weak correlation, as indicated by the lighter shades of red or white, 

with coefficients close to zero. 

The dataset was thoughtfully divided into three subsets to facilitate model training and evaluation: a 

training set, a validation set, and a test set. This strategic partitioning ensures that the models can be 

effectively trained on one portion, validated for performance, and rigorously tested on another. This ensures 

that the resulting XSS detection system is accurate and robust. 
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3.3.  Deep learning architecture-hybrid RNN-CNN model 

In pursuit of a more potent (XSS) detection system, we embarked on a novel approach by 

seamlessly fusing two distinct neural network architectures. The amalgamation combined a recurrent neural 

network (RNN) with a convolutional neural network (CNN). This tandem of neural networks was 

meticulously orchestrated to capitalize on their strengths. The RNN, with its inherent capability, was 

harnessed to apprehend the intricate sequential dependencies intricately woven within HTML and JavaScript 

code, deciphering the nuanced patterns that might escape other detection mechanisms. 

On the other front, CNN, which was celebrated for its proficiency in image analysis, was repurposed 

to extract features from code snippets and textual content embedded within web pages. By leveraging this 

blend of RNN and CNN, we could simultaneously capture both the underlying code sequences and the 

contextual meaning encoded within these web pages. In the culminating phase, the outputs of both networks 

were harmoniously merged to form the bedrock of our system's final predictions. This innovative 

amalgamation significantly enhances our ability to discern and flag potential XSS vulnerabilities within web 

content with precision and depth. 

 

3.4.  Evaluation 

Upon completing the (XSS) detection model's training, a comprehensive evaluation was conducted 

to gauge its effectiveness in scrutinizing web content for potential threats. This assessment process 

encompassed multiple vital components. Firstly, a confusion matrix was generated, providing a visually 

insightful representation of the model's performance, vividly outlining the counts of true positives, true 

negatives, false positives, and false negatives. This matrix clearly showed how well the model distinguished 

between benign and malicious instances. 

Furthermore, a battery of evaluation metrics was employed to provide a holistic understanding of 

the model's capabilities. These metrics included accuracy, gauging the overall correctness of the model's 

predictions; precision, pinpointing the proportion of true positives among the instances predicted as positive; 

recall, illustrating the model's ability to identify positive instances correctly; and the F1-Score, offering a 

balanced assessment of precision and recall. These meticulous evaluations culminated in a comprehensive 

analysis of the model's performance, ensuring its readiness to tackle the challenges of real-world XSS 

detection scenarios. Figure 5 shows confusion matrix that is commonly used in the evaluation of machine 

learning algorithms. The matrix compares the actual versus predicted classifications of a binary classifier, 

with the categories labeled as 'Positive (P)' and 'Negative (N)'. 
 
 

 
 

Figure 5. Confusion matrix 
 

 

The proposed model is assessed using a set of performance metrics derived from the confusion matrix. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 
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𝑇𝑃+𝑇𝑁
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𝑓 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

 

4. RESULTS AND DISCUSSION 

This section explains the research results and, at the same time, gives. The comprehensive 

discussion. The Table 1 encapsulates a comprehensive comparative analysis of the performance of various 
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(XSS) detection models. At the forefront is the "Hybrid RNN-CNN (proposed)" model, representing an 

innovative approach that combines a (RNN) with a (CNN). This novel fusion resulted in a remarkable 

accuracy of 96.74%, signifying the model's ability to make correct predictions. Moreover, the "Hybrid RNN-

CNN" exhibited an impressive precision score of 97.78%, underscoring its proficiency in correctly 

identifying positive instances with minimal false positives. While achieving a substantial recall score of 

95.65%, the model demonstrated a commendable capacity to capture a significant portion of positive cases. 

Consequently, its F1-Score of 96.70 attests to its balanced precision and recall. 

 

 

Table 1. Comparative performance analysis of XSS detection models 
Model Accuracy Precision Recall F1-Score 

Hybrid RNN-CNN (proposed) 0.967391 0.977778 0.956522 0.967033 

CNN 0.947867 0.970874 0.769231 0.858369 
RNN 0.909091 0.909091 0.952381 0.930233 

 

 

In comparison, while achieving a good accuracy of 94.79%, the standalone CNN model displayed a 

lower recall score of 76.92%, indicating that it occasionally missed positive instances. Meanwhile, the 

precision score of 97.08% demonstrated its accuracy in classifying positive instances, but the lower recall 

affected the F1-Score, which stood at 85.84. On the other hand, the standalone RNN model showcased a 

decent accuracy of 90.91% and a remarkable recall score of 95.24%. However, the F1-Score of 93.02, 

although indicating a balance between precision and recall, revealed room for improvement. This 

comprehensive evaluation highlights the efficacy of the proposed Hybrid RNN-CNN model in XSS 

detection, offering both high accuracy and a well-balanced trade-off between precision and recall. 

Table 2 comprehensively evaluates various (XSS) detection models with key performance metrics, 

including accuracy, precision, recall, and F1-Score. Notably, our proposed hybrid RNN-CNN model, 

represented as "proposed," stands out as the frontrunner regarding performance. With an outstanding 

Accuracy of 96.74%, it showcases unparalleled precision in classifying web content. The precision score of 

97.78% underscores its ability to accurately identify positive instances while maintaining minimal false 

positives. Moreover, the hybrid RNN-CNN model achieves an impressive recall score of 95.65%, indicating 

its proficiency in capturing a substantial portion of positive instances. This results in an exceptional F1-Score 

of 96.70, emphasizing the model's balanced trade-off between precision and recall. In direct comparison with 

the other models in the Table 2, our proposed hybrid RNN-CNN model demonstrates the highest level of 

effectiveness in identifying potential XSS vulnerabilities within web content. 

 

 

Table 2. Comparison with other XSS detection models 
Reference Model Accuracy Precision Recall F1-Score 

[26] Support vector machine (SVM) 0.85130408 0.86044464 0.84173936 0.85098904 

[27] Gated recurrent unit (GRU) 0.84163017 0.85066686 0.83217414 0.84131871 
[28] Naive Bayes (NB) 0.89967363 0.90933354 0.88956546 0.89934069 

[29] Long short-term memory (LSTM) 0.90934754 0.91911132 0.89913068 0.90901102 

[30] SVM+n-Gram 0.88032581 0.88977798 0.87043502 0.88000003 
[31] O-DT 0.8706519 0.8800002 0.8608698 0.8703297 

Proposed Hybrid RNN-CNN 0.967391 0.977778 0.956522 0.967033 

 

 

5. CONCLUSION 

Many applications that identify XSS vulnerabilities face several limitations, mainly stemming from 

the inherent challenges of developing secure applications. Most existing XSS vulnerability scanning tools 

primarily focus on public areas of internet resources, while vulnerabilities often reside in non-public or less 

accessible sections. This paper proposes a hybrid model using deep learning algorithms (RNN and CNN). 

The hybrid RNN-CNN architecture emerges as the frontrunner in our evaluation, exhibiting exceptional 

performance across all key metrics. With a remarkable accuracy score of 96.74%, it excels in making 

accurate predictions. The precision score, at an impressive 97.78%, underscores its ability to identify positive 

instances while minimizing false positives precisely. 

Moreover, the model's recall score of 95.65% demonstrates its competence in capturing a significant 

portion of true positive instances. This, in turn, culminates in a remarkable F1-Score of 96.70, highlighting 

the model's exceptional balance between precision and recall. In direct comparison with other models in the 

evaluation, the proposed model unmistakably stands out as a leader, showcasing its superiority in identifying 

and flagging potential XSS vulnerabilities within web content. 
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