
Bulletin of Electrical Engineering and Informatics

Vol. 14, No. 1, February 2025, pp. 377~387

ISSN: 2302-9285, DOI: 10.11591/eei.v14i1.8103  377

Journal homepage: http://beei.org

Detection and prevention of Man-in-The-Middle attack in cloud

computing using Openstack

Najat Tissir1, Noureddine Aboutabit1, Said El Kafhali2
1Process Engineering, Computer Science, and Mathematics Laboratory, National School of Applied Sciences Sultan Moulay Slimane

University, Khouribga, Morocco
2Computer, Networks, Mobility, and Modeling Laboratory: IR2M, Faculty of Sciences and Techniques, Hassan First University of

Settat, Settat, Morocco

Article Info ABSTRACT

Article history:

Received Dec 27, 2023

Revised Jul 15, 2024

Accepted Aug 7, 2024

 This paper proposes a new technique designed to prevent and detect address

resolution protocol (ARP) spoofing attacks in general, and specifically Man-

in-the-Middle (MitM) attacks, within the context of cloud computing. The

solution focuses on establishing appropriate flow filtering rules based on

parameters such as 'time feature' and internet control message protocol

'(ICMP) protocol'. The tests were conducted using the Openstack platform.

One of the key benefits of this proposed approach is the improved

performance in effectively detecting a significant number of malicious

packets. We implemented this solution on the Openstack platform and

conducted evaluations to demonstrate its efficacy. The results confirm that

our method achieves superior performance in detecting MitM attacks, with a

packet detection ratio (PDR) of 60.4%. Moving forward, this work will

contribute to protecting cloud environments from a large number of MitM

attacks.

Keywords:

Address resolution protocol

Cloud computing

Internet control message protocol

Man-in-the-Middle attack

Openstack

Packet detection ratio

Prevent and detect

This is an open access article under the CC BY-SA license.

Corresponding Author:

Najat Tissir

Process Engineering, Computer Science, and Mathematics Laboratory

National School of Applied Sciences Sultan Moulay Slimane University

Khouribga, Morocco

Email: tissir.najat@gmail.com

1. INTRODUCTION

Cloud computing has become an integral aspect of every business in the modern day. Both the public

and private sectors require a well-functioning network in order to operate effectively. With the rising use of

cloud computing, numerous challenges have arisen, and security is of paramount importance [1]. According to

the report on the state of the cloud in 2022, respondents identified security as the greatest obstacle for both

businesses (85%) and SMBs (82%), as well as for advanced cloud users [2]. In cloud systems, prior research

has predominantly addressed issues such as denial of service (DoS), distributed denial of service (DDoS), and

anomaly detection in service level agreements [3]-[5]. This study shifts its focus to the security vulnerabilities

present in cloud computing, specifically examining the risks associated with address resolution protocol (ARP)

spoofing and its related indirect attacks, including the Man-in-the-Middle (MitM) attack.

The ARP is an essential protocol within the field of computer networking, operating specifically at

the data link layer (Layer 2) of the OSI model. The primary objective of this system is to simplify the process

of mapping or resolving an IP address to a media access control (MAC) address within a local network. The

ARP mechanism comprises five distinct processes: address resolution request, broadcast ARP request, target

device response, updating ARP cache, and communication. The ARP request packet includes the specified IP

address to identify the corresponding MAC address. The sender delivers the request to the broadcast MAC

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

378

address, which is subsequently distributed to all devices within the network. The target device provides an

ARP reply that contains the MAC address. The ARP cache is updated with the new MAC address,

optimizing packet routing. Once updated, the device can transmit data packets directly to the intended device,

eliminating the need for ARP resolution. In a network, direct communication between the source host and the

destination host is only possible if the source host knows about the destination host's MAC address.

Nevertheless, ARP is missing a set of security measures to ensure data integrity and authenticity. ARP cache

tables will be updated by hosts regardless of whether an ARP packet is legitimate. Even worse, ARP serves

as the basis for network connections and could lead to more serious consequences, such as Mac flooding [6],

host impersonation, MitM attacks [7], [8], DoS attacks [5], [9], session hijacking [10], and cloning attacks

[11]. Consequently, ensuring ARP security in the cloud environment is crucial.

MitM actually involves manipulating the ARP cache in order to intercept and alter data being sent

back and forth between two communication parties. In order to mitigate the risks posed by ARP attacks,

network administrators frequently employ security measures such as the monitoring of ARP activity and the

implementation of algorithms designed to detect and prevent ARP spoofing. Furthermore, the

implementation of network segmentation and the utilization of technologies such as virtual local area

networks (VLANs) can effectively separate possible points of vulnerability.

Studies have suggested diverse approaches for preventing, detecting, and mitigating attacks

associated with the ARP protocol. These methods have been explored across various contexts such as IoT

networks, wired networks, Bluetooth low energy (BLE) networks, wireless networks, cloud computing, and

software-defined networking (SDN) networks [8], [12]-[21]. Table 1 presents an overview of the main

relevant approaches employed in the detection and prevention of ARP spoofing and MitM attacks. The table

also outlines the specific characteristics exploited by these approaches, along with the advantages and

disadvantages associated with each approach.

Researchers have investigated the detection of attacks within suspicious packets by employing neural

networks, as documented in studies [13], [14]. The proposed methodology encompasses the incorporation of

payload bytes embedding, as well as the examination of TCP, UDP, and ARP packets, in conjunction with

statistical data analysis. The methods employed in this study resulted in a notably high degree of precision.

However, it is important to acknowledge that the experiment was carried out with a restricted dataset. One of

the most straightforward approaches among the ways that have been analyzed is the utilization of static ARP

entries [15]. In the absence of DHCP utilization, the manipulation of IP entries is not feasible. This defense

exhibits considerable potential; however, its viability in bigger networks appears limited. In addition, detection

tools such as scapy [16] and XArp [17] possess effective detection methods, although they do not offer

comprehensive defensive capabilities. The internet control message protocol (ICMP) is employed in various

contexts, including the detection of ARP spoofing attacks. Researchers in [18] have utilized ICMP ping packets

to determine the characteristics of the host. The advantage of their approach lies in its ability to offer a cost-

effective solution through the utilization of open source technologies, while also insuring the preservation of the

unchanged state of the ARP protocol. Nevertheless, the authors failed to offer a proficient method for rating.

However, Chkirbene et al. [19] provides a framework based on intrusion detection systems. The

framework proposed comprises three main stages. Initially, there is a learning phase where the machine

learning algorithm is trained and a model is built. Following this, the decision history is stored using the

EICD scheme, which records past decisions for each network node in separate databases. Finally, in the

combined decision phase, the ultimate classification decision is made based on the stored information.

Furthermore, the issue of ARP cache poisoning attack was addressed by Prabadevi et al. [20] in their study.

Three strategies have been proposed for big data center networks. They provide superior performance in

detecting malicious packets, effectively serving 89% of cases. Moreover, Rangisetti et al. [12] have

developed a solution involving host_certification and floodlight modules to prevent ARP spoofing. The

floodlight modules consist of a DHCP server, a link discovery module, and forwarding modules. These

modules serve the purpose of obtaining IP information for different hosts during the host certification and

authentication process, assisting the host_certification module in authenticating hosts within the network, and

facilitating the installation of wildcard forwarding flow rules for legitimate flows. They argue that their

proposal is designed to mitigate the risks associated with ARP message spoofing, MITM attacks, and session

hijacking. In another connected research, Sun et al. [8] studied detecting and mitigating ARP attacks within

an SDN-based cloud environment. Their methodology uses DHCP for obtaining reliable IP MAC mappings

as well as real-time packet processing. This approach is designed to receive packets transmitted by hosts,

process them accordingly and subsequently establish flow entries on switches or discard them. The process

involves monitoring statistical data associated with packet transmission on the ports of edge switches. In a

related study Kang et al. [21] conducted research within the Openstack environment, aiming to address ARP

spoofing issues through the enhancement of keystone authentication. The proposal entails the process of

maintaining ARP tables, followed by the handling of ARP reply messages using a component referred to as

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

379

the 'comparison handler'. However, this work presents some limitations: The proposal focuses on a specific

scenario involving the location of the attacker host, OpenStack nodes, and victim host. This limited scope

may not fully represent diverse real-world scenarios. Additionally, it assumes that hosts are set up with

windows operating systems, which may not be applicable to all network environments and infrastructures.

Table 1. Related works comparison

Studies
Detection/mitigation

technique
Method Pros and cons

Sun et al.

[8]

SDN The task involves real-time packet

processing, which includes receiving packets
from hosts, managing these packets, and

subsequently installing flow entries on

switches or discarding them. Following this,
statistical data on packet activity across edge

switch ports is monitored

It makes use of DHCP to acquire

trustworthy IPMAC mappings,
ensuring the precision of ARP attack

detection

Rangisetti

et al. [12]

A DARP spoofing

approach with a

Host_Certification and

floodlight modules

The authors proposed a D-ARPSpoof

module using SDN with a host_certification

module and floodlight modules

The D-ARPSpoof plays a significant

role in preventing MITM, session

hijacking, VLAN-ID spoofing, and

ARP message spoofing attacks
Husain et

al. [13]

Neural networks and

ARIMA approach

Several neural networks were trained to take

TCP, UDP and ARP packets as input to
detect ARP Spoofing attacks

The accuracy rate of this neural

network was great (more than 90%)

Lahmadi et

al. [14]

Neural network They use a reconstruction technique to

identify suspicious network data batches

The detection accuracy was

high(~0:99) and false positive rate was
low (~0:03) (small dataset)

Rohatgi and

Goyal [15]

Static ARP IP and MAC addresses It becomes exhausting in large

networks
Majumdar

et al. [16]

Scapy python library a. Attack generating module

b. Detecting module

c. Preventing module
Using static entries for preventing ARP

attacks

A reliable ARP table enhances the

dependability of the proposal within a

cloud computing environment.
However, maintaining both the

comparison handler and the ARP table

can lead to some partial loss of resources
Rupal et al.

[17]

Dynamic IP

configuration

System has three modules:

a. DHCP server

b. Radius server and MySQL database for
authentication

c. Detecting and preventing ARP poisoning

The author observed that while XArp

provides a detection method, it does

not have a preventative strategy

Arote and
Arya [18]

Modified ICMP The server keeps track of the data and uses
ICMP ping packets to determine the host's

identity. The central server is chosen using a

voting mechanism

Backward compatibility ensures that the
remaining systems are unaffected if the

primary server fails

Chkirbene

et al. [19]

Intrusion detection and

classification technique

a. Creating the learning model

b. Storing the decision history

c. Combined decision phase

This method is more effective at detecting

attacks and can raise classification

accuracy from 66% to 90%
Prabadevi

et al. [20]

CLCC, TCBA, and

extended TCBA

The CLCC technique carries out three

operations: updating the fake list table,

crosslayer consistency checking, and alert
message generation

The method showed 77% of detection

ratio individually

Kang et al.

[21]

Reliable ARP table in

Keystone authentication
service of OpenStack

a. Creating and maintaining ARP tables

b. ARP reply message handling

One of the disadvantages is the partial

resource loss required to maintain
comparison handler and the table

Upon reviewing the methods and tools discussed, we identified several limitations. These include

challenges in large and dynamic network environments, making the proposed methods impractical, more

difficult, and time-consuming. There are also limitations related to attack prevention capabilities and the

feasibility of implementation in large networks, which pose scalability and effectiveness challenges in

complex network infrastructures.

Hence, this paper focuses on building a cloud computing environment using OpenStack.

Additionally, we propose an algorithm designed to prevent and detect MitM attacks. Our algorithm utilizes

the ICMP protocol and concentrates on establishing suitable flow filtering rules based on various parameters,

primarily the calculation of the time interval between successive packets originating from the same Source

and destination IP. The calculated time difference is then compared to a predefined threshold value. Our

objective is to safeguard the system against a high volume of malicious packets and enhance performance

while increasing the packet detection ratio (PDR). The following is a summary of our contributions:

− We present a comprehensive overview on various techniques used to facilitate detecting and preventing

ARP spoofing attacks across diverse environments, as documented in existing literature.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

380

− We propose an algorithm for protecting cloud computing networks against ARP spoofing attacks, with a

specific focus on MitM attacks. Our strategy involves the utilization of ICMP packets.

− We introduce an implementation on the Openstack platform and conduct an evaluation to demonstrate the

efficacy of our technique in enhancing performance by effectively detecting a significant number of

malicious packets.

The following parts of this paper are organized as follows: section 2 outlines the approach employed

and presents the proposed algorithm. The findings and evaluation of our experiment are presented in the

section 3. Section 4 serves as the concluding section of the paper.

2. METHOD

This paper presents an algorithm aimed at detecting and preventing MitM attacks within a cloud

computing environment using OpenStack. The experiments cover various scenarios to determine optimal

outcomes. The proposed detection technique involves several essential steps. Initially, network sniffing is

employed to capture and log IP-MAC addresses, timestamps, and relevant data of instances within the

OpenStack cloud. This information is then utilized to construct static IP-MAC tables. The technique

comprises two primary components: one for creating and managing ARP tables and the other for

implementing attack prevention measures. Specifically, the collected IP and MAC address data is utilized to

build a reliable ARP table via the ping command between instances and packet capture using Wireshark.

Subsequently, the reply message is compared with the reliable ARP table for verification. In the first stage,

any mismatched address marks the package as altered, indicating potential spoofing. The second stage

involves comparing time interval calculations between successive ICMP packets, adding an additional layer

of protection with a two-stage verification process.

2.1. Environment setup

In order to establish the necessary environment for the experiment, the utilization of the following

tools and libraries is required:

− A server Dell EMC 540 for all-in-one Openstack cloud installation.

− Openstack platform: this experiment aims to gather IP and MAC addresses of the instances created within

the OpenStack environment. The OpenStack framework is comprised of two main components, namely

the controller and compute nodes. These nodes have the capability to be dynamically adjusted in size,

either increased or decreased, in alignment with the scale of the cloud infrastructure. The Nova Scheduler,

located on the controller node, is responsible for selecting a suitable host for the deployment of virtual

instances. The host selection process is contingent upon the availability of the accessible compute nodes.

Following the host selection process, the Nova Compute service starts the instantiation of instances

according on the memory and volume size criteria supplied by the users. After the instantiation procedure,

Nova-Network begins with the construction of both internal and external networks [22], [23]. In the

present scenario, the Dell server accommodates both the computing and controller nodes.

− Kali Linux: originating from Debian, Kali Linux is an operating system distribution designed for use in

digital forensics and penetration testing [24].

− Nmap: it is a powerful tool for scanning networks, we will use it here to find out the IP addresses

allocated to the devices on the local network.

− Wireshark: this tool facilitates real-time recording of network data. The data has the capability for

filtration based on IP addresses, protocols, and ports [25].

− Ettercap: it is a crucial tool to use when launching an ARP spoofing attack, manipulating data that has

been intercepted, or attacking SSL or SSH connections.

In this paper, we consider the scenario where the attacker is a host within the same network as the

OpenStack nodes. The victim, in this context, is attempting to communicate with either an external host or an

internal instance, depending on the scenario chosen. For evaluation purposes, we have opted to use Ettercap

as the attacking tool, a well-known tool designed for ARP Spoofing. Kali Linux is installed on the attacker's

host computer, while the instances created for testing are configured with either CentOS 7 or Ubuntu

Desktop operating systems. Table 2 provides the specifications of the hardware used in the experiment.

2.2. Attack generation module

The studies were conducted through real network testing to address MitM attack inside a cloud

environment. The attack was executed through a series of four sequential steps. Initially, the 'router' address

was defined using the command: $ip route.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

381

Table 2. Hardware specification
Nature of machines Operating systems Hardware details Purpose

Server Dell EMC
540

CentOS-7-x86_64 Xeon Quad Core 3,1 Ghz, RAM 16 GB,
Disques durs: 3 * 1 TB, Contrôleur Raid H330,

all-in-one OpenStack
Cloud

Lenovo T480s Windows 10 pro 64 bits Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz

1.99 GHz, 8,00 GB RAM, 500 GB HDD

Laptop1

HP 290 G2 Windows 10 pro 64 bits I5-8500 @ 3.00 GHz, 4 GB RAM, 500 GB Host1

Openstack instance Kali Linux-2021.4 4 VCPU, 4 GB RAM, 60 GB Instance1: Attacker

Openstack instance Centos-7 1 VCPU, 2 GB RAM, 20 GB Various instances: victims
Openstack instance Ubuntu-17.04- desktop 1 VCPU, 2 GB RAM, 20 GB Various instances: victims

After that, we employed the Ettercap graphical tool for the purpose of conducting the attack. It is

essential to identify the targets, which refer to the instances of victims of a MitM attack. These instances may

consist of physical hosts, routers, or instances that are operational within an OpenStack environment (as seen

in Figure 1).

Figure 1. MitM generation at the selected targets

After initiating the attack in the designated instance named "attacker”, we proceed to establish a

ping between hosts. Subsequently, we utilize the Wireshark protocol analyzer to capture the network traffic

for each ICMP connection, both under normal conditions and during the attack phase, as seen in the provided

illustration (Figure 2). The capture of around 2408 packets is observed throughout each scanning session.

Figure 2. ICMP packet sniffing with wireshark

After initiating an attack, the process unfolds as depicted in Figure 3. Host1, intending to

communicate with Victim1 within the OpenStack environment, first checks for Victim1's MAC address.

Similarly, Victim1 needs Host1's address for communication, which is stored in its ARP table. When Host1

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

382

doesn't find the corresponding address, it broadcasts an ARP request message to its subnet. Upon receiving

this request, Victim1 sends a unicast ARP reply message back to Host1, containing its MAC address.

Simultaneously, the attacker intercepts these messages and sends modified replies to both Host1 and Victim1,

substituting their MAC addresses with its own. Consequently, Host1 now perceives the attacker as Victim1,

and Victim1 perceives the attacker as Host1. This deception leads to both hosts communicating with the

attacker, believing they are communicating with each other, thereby exposing their information to the attacker.

Figure 3. Spoofing attack scenario

Following that, we proceeded to capture ICMP traffic under normal and attack conditions.

Figure 4(a) showcases the ICMP traffic in its normal state before the attacker's spoofing activities on the

targeted system. The illustration provides a comprehensive view of the packet's information, encompassing

details such as the packet number, emission time, source and destination addresses, employed protocol,

packet length, and other relevant packet attributes. Upon the attack's initiation, our analysis focuses on

identifying anomalous packets, particularly by scrutinizing the IP-MAC addresses and the time intervals

between consecutive ICMP packets.

In Figure 4(b), the IP address of the Router is represented by 192.168.242.1, whereas the IP address

of Victim1 is represented by 192.168.242.50. Additionally, the picture provides a description of the MAC

addresses associated with each IP address. Figure 4(b) depicts the ICMP packet capture subsequent to the

occurrence of the attack. The MAC address of Victim1 (c4:65:16:2b:61:4e) has been altered to the MAC

address of the Attack Host (fa:16:3e:5c:ff:d0) as a result of Spoofing.

2.3. Attack detection/prevention module

The act of ARP spoofing can lead to many network attacks that pose significant risks. Therefore, it

is imperative to prioritize the detection of such activities in order to effectively address any security concerns

and prevent hosts from becoming vulnerable to these attacks. Hence, prior to implementing a preventive

approach, it is advisable to consider employing a detecting system as the optimal choice.

After capturing network traffic, collecting log files, and establishing IP-MAC entries from the ARP

table of each device manually (for non-DHCP environments) or automatically (for DHCP environments), we

proceed to read the sniffed files in CSV format. These files consist of seven columns: number of packets,

time, source IP, destination IP, protocol, length, ethernet source, and destination MAC. Subsequently, we

examine each device's authorization by comparing the destination IP address in the log files with the IP

addresses in the built table, and then cross-referencing that address with its associated MAC address to figure

out whether the IP-MAC combinations are legitimate. Two cases emerge from this examination: first, if the

examined IP-MAC pair is consistent, no attack is detected; second, if the examined IP-MAC pair does not

match, it suggests evidence of a MitM attack between the source IP and destination IP.

To filter only ICMP packets belonging to a specific address (for example the router), the following

filter is applied in wireshark protocol analyzer: ip.address==192.168.242.1 and we can add also the icmp.type

==0 or 8 to select the request and reply packets. In this paper, we propose the utilization of time as a feature

for a MitM attack detection and prevention. In order to enhance preventive measures, an additional step

(referred to as step 3-4) is incorporated. This step involves the calculation of the time interval between two

consecutive packets originating from the same source_IP and dest_IP. This calculated time difference is

subsequently compared to a specified threshold value.

ARP Reply

Message

ARP Reply

Message

ARP Reply

Message

ARP Reply

Message

External

Network

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

383

(a)

(b)

Figure 4. Packet capture: (a) in normal condition and (b) in attack condition

Our study has been based on the intercommunication among ten machines situated in various

environments, including instances in the Openstack cloud, physical servers, laptops, and personal computers.

In the conducted experiment, the ICMP protocol was utilized for the purpose of calculating the threshold.

The threshold is determined as the mean of the values of the time interval that have been calculated. Based on

our experiment, we determined that the appropriate threshold value is equal to 0.003 seconds. We considered

that the value of 'Treply-Trequest' may vary when all the hosts are internal OpenStack instances, as well as

all the measurements taken during the experiment. Here, 'Trequest' refers to the time of an echo ping request

packet, while 'Treply' is the time of an echo ping reply packet.

2.4. Our proposed detection/prevention algorithm

By utilizing the time interval and comparing it to our predefined threshold of 0.003 seconds, our

approach aims to decrease the system's exposure to a MitM attack. This stage often reveals a significant

number of anomalous packets. Subsequently, our program enhances the detection process by verifying each

device's authorization and comparing the IP-MAC pairs. Upon detection, the program generates a warning

message stating "There is a MitM attack between the source and destination IP of the infected host." The

steps of our algorithm are shown in Figures 5 and described as Algorithm 1. Table 3 provides a description of

the variables employed in our approach.

Figure 5. Our proposed algorithm for MitM detection

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

384

Algorithm 1: MitM prevention and detection

1. Sniff the network and extract the log files and ARPtab entries

2. Establish IP-MAC entries from ARP table of every device

3. for i from 0 to table.size()

4. if (table.Time[i+1] - table.Time[i]) < treshold

5. for k from 0 to ARPtab.size()

6. if table[i].DestIP == ARPtab[k].ipAddress then

7. if table[i].DestMAC ==ARPtab[k].ethernetAddress then

8. Update the ARP cache every 10 minutes

9. else

10. Discart the request packet

11. if the pair <DestIP,DestMAC> already exists in fake list

12. Generate alarm message

13. else

14. Add the pair <DestIP,DestMAC> to the fake list

15. End if

16. End if

17. End if

18. End for

19. else

20. Discart the request packet

21. End if

22. End for

Table 3. Our algorithm’s nomenclature
Variables Description

ARPtab The file that contains the pairs of the IP-MAC address of the instances in the network

table The snifed file that contains 7 columns: no. of the packet, time, SourceIP, DestIP, protocol, length,

SourceMAC, and DestMAC

DestIP The destination IP address of the packet in the snifed file

SourceIP The source IP address of the packet in the snifed file
DestMAC The destination MAC address of the packet in the snifed file

SourceMAC The source MAC address of the packet in the snifed file

ipAddress IP address of a host in ARPtab
ethernetAddress MAC address of a host in ARPtab

Time Time of on packet in the snifed file

Treshold A predetermined threshold is derived by taking the average of the time between two successive packets and
dividing it by the length of the packet

3. EXPERIMENTAL RESULTS AND DISCUSSION

The above graphic, labeled as Figure 6, presents data on the duration of a machine's response to an

ICMP request both before and after a MitM attack. The calculation process entails measuring the time

interval between two successive packets, specifically the "echo ping request" and "echo ping reply" packets.

Our experiment encompassed machines with diverse characteristics and operational setups. For instance,

Host1 operates as a network station external to the cloud, while instance 1 and the attacker are both internal

instances within the OpenStack framework. The variations in results are influenced by factors such as

machine placement, technical specifications, and network affiliation. We found that the time interval (Treply-

Trequest) before a MitM attack is consistently shorter than the time interval after the attack, as shown in

Figure 6. This observation is logical, as the presence of an intermediary connecting the source and the

destination would naturally lead to increased packet processing time.

Our findings indicate that the attack scenarios are influenced by various factors such as the position

of the attacker and victims, the network infrastructure they are connected to, hardware configurations, and

other related aspects. Attack scenarios can involve attackers from physical hosts, OpenStack instances,

external networks, or internal networks. We assume that A=an Openstack instance; internal network; B=an

internal physical host; internal network; C=an Openstack instance; external network; and D=an internal

physical host. We will utilize the fourth scenario presented in Table 4. These scenarios seek to provide

outcomes that are ideal and extremely accurate. We can manipulate certain parameters to come up with a

suitable threshold value that may be used in any situation where the attack occurs.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

385

Figure 6. ICMP Packet time comparison before and after the attack

Table 4. The adopted scenarios
 Attacker Victims

Scenario 1 C C

Scenario 2 D C
Scenario 3 D A

Scenario 4 A A

The PDR is a metric used to evaluate the performance of intrusion detection and prevention systems

(IDPS) in network security. It determines the percentage of malicious packets correctly detected by the IDPS

among all malicious packets present in the network. The formula used to calculate the PDR is as follows:

𝑃𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
×100

In our testing, 682 ICMP packets were collected, and by integrating our predefined threshold, we

successfully identified 41.7% of anomalous packets. The positive outcome of this initial detection stage is

evident, as it has enabled us to shield the system from 285 harmful packets. The positive aspect of our

proposal is that it improves performance and raises the ratio to 60.4% by detecting 127 additional packets.

Our proposed algorithm is evaluated against several existing approaches, namely CLCC algorithm,

reliable ARP table approach ARP, GARP, and centralized approach [5], [19], [26], [27]. The performance of

these solutions is dependent on the specific environmental context in which the attack is deployed, as well as

the particular detection technique applied. Table 5 makes clear that our algorithm performs better than the

majority of existing methods. It is worth noting that, when compared to our method, the CLCC algorithm

achieves a greater PDR. However, it is important to realize that our solution is deployed on an Openstack

architecture, which introduces more complexity when compared to a typical local area network (LAN).

Table 5. Our algorithm’s comparison with other solutions
 Attack’s environment Performance

GARP [26] LAN 52%

Centralized approach [27] LAN 60%

Reliable ARP table approach [19] CLOUD (OPENSTACK) No PDR calculated and loss of resources limitation is stated

Our algorithm CLOUD (OPENSTACK) 60.4%

CLCC [5] LAN 77%

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

386

4. CONCLUSION

In this study, we delved into the realm of MitM attacks, evaluating several existing techniques

aimed at their detection and prevention. Moreover, we put forth a novel algorithm designed specifically for

detecting and preventing MitM attacks, leveraging the ICMP protocol and showcasing its superior

performance. Our algorithm's effectiveness was validated by surpassing a notable PDR, substantiating the

selection of our threshold. These evaluations were conducted through real network testing using the

OpenStack platform.

However, similar to any other academic study, our work possesses several limitations that

necessitate acknowledgment. Initially, the tests and implementation were conducted on a single server that

simultaneously functions as the controller and compute node. This arrangement may have an impact on the

effectiveness of the tests. Additionally, the architecture only allows for the detection of MitM attacks and is

not effective in mitigating other forms of attacks. Moreover, in subsequent research work, we plan to

evaluate the efficacy of machine learning methods in order to enhance the precision and reliability of our

findings.

ACKNOWLEDGEMENT

We truly appreciate the anonymous reviewers' insightful recommendations and informative

comments, which have significantly raised the level of this paper.

REFERENCES
[1] N. Tissir, S. El Kafhali, and N. Aboutabit, “Cloud Computing security classifications and taxonomies: a comprehensive study and

comparison,” 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications
(CloudTech), Marrakesh, Morocco, 2020, pp. 1-6, doi: 10.1109/CloudTech49835.2020.9365884.

[2] Flexera, “State of the Cloud Report,” Flexera, version 11, 2022. [Online]. Available: https://path.flexera.com/cm/report-state-of-

the-. (Accessed: Jan. 20, 2023.)
[3] S. Dong, K. Abbas, and R. Jain, “A Survey on Distributed Denial of Service (DDoS) Attacks in SDN and Cloud Computing

Environments,” in IEEE Access, vol. 7, pp. 80813-80828, 2019, doi: 10.1109/ACCESS.2019.2922196.

[4] P. Singh, S. U. Rehman, and S. Manickam, “Comparative Analysis of EMM with Existing State-of-the-Art EDoS Mitigation
Techniques in Cloud Computing Environments,” arXiv, 2019, doi: 10.48550/arXiv.1905.13447.

[5] B. Prabadevi, N. Jeyanthi, N. I. Udzir, and D. Nagamalai, “Lattice structural analysis on sniffing to denial of service attacks,”

arXiv, 2019, doi: 10.48550/arXiv.1907.12735.
[6] A. F. Daru, K. D. Hartomo, and H. D. Purnomo, “IPv6 flood attack detection based on epsilon greedy optimized Q learning in

single board computer,” International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 5, 2023, pp. 5782-

5791, doi: 10.11591/ijece.v13i5.pp5782-5791.
[7] A. Sebbar, K. Zkik, Y. Baddi, M. Boulmalf, and M. D. E. El Kettani, “MitM detection and defense mechanism CBNA-RF based

on machine learning for large-scale SDN context,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 12,

pp. 5875–5894, 2020, doi: 10.1007/s12652-020-02099-4.
[8] S. Sun, X. Fu, B. Luo, and X. Du, “Detecting and Mitigating ARP Attacks in SDN-Based Cloud Environment,” IEEE INFOCOM

2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 2020, pp. 659-

664, doi: 10.1109/INFOCOMWKSHPS50562.2020.9162965.
[9] M. N. Yasir and M. S. Croock, “Cyber DoS attack based security simulator for VANET,” International Journal of Electrical and

Computer Engineering (IJECE), vol. 10, no. 6, pp. 5832-5843, Dec. 2020, doi: 10.11591/ijece.v10i6.pp5832-5843

[10] W. S. Hwang, J. G. Shon, and J. S. Park, “Web session hijacking defense technique using user information,” Human-centric
Computing and Information Sciences, vol. 12, pp. 1-14, 2022, doi: 10.22967/HCIS.2022.12.016.

[11] A. A. Galal, A. Z. Ghalwash, and M. Nasr, “A New Approach for Detecting and Mitigating Address Resolution Protocol (ARP)

Poisoning,” International Journal of Advanced Computer Science and Applications(IJACSA), vol. 13, no. 6, 2022, doi:
10.14569/IJACSA.2022.0130647.

[12] A. K. Rangisetti, R. Dwivedi, and P. Singh, “Denial of ARP spoofing in SDN and NFV enabled cloud-fog-edge platforms,”

Cluster Computing, vol. 24, no. 4, pp. 3147-3172, 2021, doi: 10.1007/s10586-021-03328-x.
[13] A. Husain, H. Al-Raweshidy, and W. S. Awad. “ARP spoofing detection for IoT networks using neural networks,” Proceedings

of the Industrial Revolution & Business Management: 11th Annual PwR Doctoral Symposium (PWRDS) 2020, 2020.

[14] A. Lahmadi, A. Duque, N.Heraief, and J. Francq, “MitM attack detection in BLE networks using reconstruction and classification
machine learning techniques.” Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham:

Springer International Publishing, pp. 149-164, 2020.

[15] V. Rohatgi and S. Goyal, “A Detailed Survey for Detection and Mitigation Techniques against ARP Spoofing,” 2020 Fourth
International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 352-356,

doi: 10.1109/I-SMAC49090.2020.9243604.

[16] A. Majumdar, R. Shruti, and T. Subbulakshm, “ARP poisoning detection and prevention using Scapy,” International Conference
on Innovative Technology for Sustainable Development 2021 (ICITSD 2021), Chennai, India, 27-29 January 2021, doi:

10.1088/1742-6596/1911/1/012022.

[17] D. R. Rupal, D. Satasiya, H. Kumar, and A. Agrawal, “Detection and prevention of ARP poisoning in dynamic IP
configuration,” 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology

(RTEICT), Bangalore, India, 2016, pp. 1240-1244, doi: 10.1109/RTEICT.2016.7808030.

[18] P. Arote and K. V. Arya, “Detection and Prevention against ARP Poisoning Attack Using Modified ICMP and Voting,” 2015
International Conference on Computational Intelligence and Networks, Odisha, India, 2015, pp. 136-141, doi:

10.1109/CINE.2015.34.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

387

[19] Z. Chkirbene, A. Erbad, and R. Hamila, “A Combined Decision for Secure Cloud Computing Based on Machine Learning and
Past Information,” 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019, pp.

1-6, doi: 10.1109/WCNC.2019.8885566.

[20] B. Prabadevi, N. Jeyanthi, and A. Abraham. “An analysis of security solutions for ARP poisoning attacks and its effects on
medical computing,” International Journal of System Assurance Engineering and Management, vol. 11, no. 1, pp. 1-14, 2020.

[21] H. S. Kang, J. H. Son, and C. S. Hong, “Defense technique against spoofing attacks using reliable ARP table in cloud computing

environment,” 2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS), Busan, Korea (South),
2015, pp. 592-595, doi: 10.1109/APNOMS.2015.7275401.

[22] N. Tissir, S. El Kafhali, and N. Aboutabit,” How Much Your Cloud Management Platform Is Secure? OpenStack Use Case,” The

Proceedings of the 5th International Conference on Smart City Applications, Springer, Cham. 2020, pp. 1117-1129, doi:
10.1007/978-3-030-66840-2_85.

[23] S. Lima, A. Rocha, and L. Roque, “An overview of OpenStack architecture: a message queuing services node,” Cluster

Computing, vol. 22, pp. 7087-7098, 2019.
[24] G. D. Singh, “Learn Kali Linux 2019,” 1st ed. Packt Publishing, 2019.

[25] H. Iqbal and S. Naaz, “Wireshark as a tool for detection of various LAN attacks,” International Journal of Computer Sciences

and Engineering, vol. 7, no. 5, pp. 833-837, 2019, doi: 10.26438/ijcse/v7i5.833837.
[26] S. Dangol, S. Selvakumar, and M. Brindha, “Genuine ARP (GARP),” ACM SIGSOFT Software Engineering Notes, vol. 36, no. 4,

pp. 1-10, 2011, doi: 10.1145/1988997.1989013.

[27] S. Kumar and S. Tapaswi, “A centralized detection and prevention technique against ARP poisoning,” Proceedings Title: 2012
International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), Kuala Lumpur, Malaysia, 2012,

pp. 259-264, doi: 10.1109/CyberSec.2012.6246087.

BIOGRAPHIES OF AUTHORS

Najat Tissir graduated from Khouribga National School of Applied Sciences

with a state engineering diploma in network and telecommunications engineering, in 2017.

She is a Ph.D. student at Process Engineering, Computer Science and Mathematics

Laboratory, Sultan Moulay Slimane University, Beni Mellal, Morocco. She is currently

working as the head of infrastructure and IT resources, at Hassan First University. Her

research areas include cloud computing security, cybersecurity, and ARP spoofing attacks

detection. She can be contacted at email: tissir.najat@gmail.com.

Noureddine Aboutabit received his engineering degree from Ecole Normale

Supérieure d'Ingénieurs Electriciens de Grenoble (ENSIEG) in 2003 and his M.S. from

Grenoble INP (France) in 2004. He earned his Ph.D. in Signal Image Speech Telecom from

Grenoble INP in 2007. Since January 2023, he has been a Professor in computer science at

ENSA-Khouribga. His research. His research focuses on computer vision, machine learning,

multimodal speech processing, big data, and cloud computing security. He can be contacted at

email: n.aboutabit@usms.ma.

Said El Kafhali is a computer science professor at the Department of

Mathematics and Computer Science, Faculty of Sciences and Techniques, Hassan First

University of Settat, Morocco, where he has been a member since January 2018. Prior to

joining the Faculty of Sciences and Techniques, he spent four years at the National School of

Applied Sciences of Khouribga, Morocco. His current research focuses on queuing theory,

performance modeling and analysis, cloud computing, the internet of things, fog/edge

computing, networks security, machine learning, and artificial intelligence. He is actively

involved with various international journals as a reviewer and has served as an international

program committee member for numerous peer-reviewed conferences. He has made

significant contributions to the field, with extensive publications in computer systems

modeling and performance, queueing theory, cloud computing, internet of things, artificial

intelligence, and data sciences. He can be contacted at email: said.elkafhali@uhp.ac.ma.

https://orcid.org/0009-0009-3737-3779
https://scholar.google.com/citations?hl=en&user=7AnipRkAAAAJ&view_op=list_works&gmla=AH70aAXvvyfu4pbpTid3TYQeA_rrWODk1g3HMrPEN-nGG1ZXekZinJIBDZ1_CsyPJ5HXf48Y7Y_wTdL-o05I9dPmFEhQlW-MCB1Gqg
https://www.scopus.com/authid/detail.uri?authorId=57219438560
https://orcid.org/0000-0002-6984-4776
https://scholar.google.com/citations?hl=en&user=TzN61e4AAAAJ&view_op=list_works&citft=1&citft=2&email_for_op=Tissir.najat@gmail.com&gmla=AH70aAW14inkEYUaZtDPf8FaiQKg9bfTEtCJ2ZFGvTmfPwY75dXm183ailAt_b5hkecDrXfx-3udkWnBjF0Am3KErSxWcdM823iMMmEdIzLse-wPnhsuDPg5Tp2tT73z_ipvFy4A6mdYcyOQ32PkjxG72MIq0lycOxdbUavYkqSfixTUm4wFl7i8PbSzQucxUEh3dzeqPQvRY54i7_znNWiPEGNuDr0PB9fjagWe3cnAj2_bRu4
https://www.scopus.com/authid/detail.uri?authorId=16067923100
https://orcid.org/0000-0001-9282-5154
https://scholar.google.com/citations?user=tDQVTeYAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=55505648000
https://www.webofscience.com/wos/author/record/1775502

