Bulletin of Electrical Engineering and Informatics
Vol. 14, No. 1, February 2025, pp. 377~387
ISSN: 2302-9285, DOI: 10.11591/eei.v14i1.8103 a 377

Detection and prevention of Man-in-The-Middle attack in cloud
computing using Openstack

Najat Tissir!, Noureddine Aboutabit?, Said El Kafhali?

Process Engineering, Computer Science, and Mathematics Laboratory, National School of Applied Sciences Sultan Moulay Slimane

University, Khouribga, Morocco

2Computer, Networks, Mobility, and Modeling Laboratory: IR2M, Faculty of Sciences and Techniques, Hassan First University of

Settat, Settat, Morocco

Article Info

ABSTRACT

Article history:

Received Dec 27, 2023
Revised Jul 15, 2024
Accepted Aug 7, 2024

Keywords:

Address resolution protocol
Cloud computing

Internet control message protocol
Man-in-the-Middle attack
Openstack

Packet detection ratio

This paper proposes a new technique designed to prevent and detect address
resolution protocol (ARP) spoofing attacks in general, and specifically Man-
in-the-Middle (MitM) attacks, within the context of cloud computing. The
solution focuses on establishing appropriate flow filtering rules based on
parameters such as 'time feature' and internet control message protocol
'(ICMP) protocol'. The tests were conducted using the Openstack platform.
One of the key benefits of this proposed approach is the improved
performance in effectively detecting a significant number of malicious
packets. We implemented this solution on the Openstack platform and
conducted evaluations to demonstrate its efficacy. The results confirm that
our method achieves superior performance in detecting MitM attacks, with a
packet detection ratio (PDR) of 60.4%. Moving forward, this work will
contribute to protecting cloud environments from a large number of MitM
attacks.

This is an open access article under the CC BY-SA license.

Prevent and detect

©00

Corresponding Author:

Najat Tissir

Process Engineering, Computer Science, and Mathematics Laboratory
National School of Applied Sciences Sultan Moulay Slimane University
Khouribga, Morocco

Email: tissir.najat@gmail.com

1. INTRODUCTION

Cloud computing has become an integral aspect of every business in the modern day. Both the public
and private sectors require a well-functioning network in order to operate effectively. With the rising use of
cloud computing, humerous challenges have arisen, and security is of paramount importance [1]. According to
the report on the state of the cloud in 2022, respondents identified security as the greatest obstacle for both
businesses (85%) and SMBs (82%), as well as for advanced cloud users [2]. In cloud systems, prior research
has predominantly addressed issues such as denial of service (DoS), distributed denial of service (DDoS), and
anomaly detection in service level agreements [3]-[5]. This study shifts its focus to the security vulnerabilities
present in cloud computing, specifically examining the risks associated with address resolution protocol (ARP)
spoofing and its related indirect attacks, including the Man-in-the-Middle (MitM) attack.

The ARP is an essential protocol within the field of computer networking, operating specifically at
the data link layer (Layer 2) of the OSI model. The primary objective of this system is to simplify the process
of mapping or resolving an IP address to a media access control (MAC) address within a local network. The
ARP mechanism comprises five distinct processes: address resolution request, broadcast ARP request, target
device response, updating ARP cache, and communication. The ARP request packet includes the specified IP
address to identify the corresponding MAC address. The sender delivers the request to the broadcast MAC

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

378 a ISSN: 2302-9285

address, which is subsequently distributed to all devices within the network. The target device provides an
ARP reply that contains the MAC address. The ARP cache is updated with the new MAC address,
optimizing packet routing. Once updated, the device can transmit data packets directly to the intended device,
eliminating the need for ARP resolution. In a network, direct communication between the source host and the
destination host is only possible if the source host knows about the destination host's MAC address.
Nevertheless, ARP is missing a set of security measures to ensure data integrity and authenticity. ARP cache
tables will be updated by hosts regardless of whether an ARP packet is legitimate. Even worse, ARP serves
as the basis for network connections and could lead to more serious consequences, such as Mac flooding [6],
host impersonation, MitM attacks [7], [8], DoS attacks [5], [9], session hijacking [10], and cloning attacks
[11]. Consequently, ensuring ARP security in the cloud environment is crucial.

MitM actually involves manipulating the ARP cache in order to intercept and alter data being sent
back and forth between two communication parties. In order to mitigate the risks posed by ARP attacks,
network administrators frequently employ security measures such as the monitoring of ARP activity and the
implementation of algorithms designed to detect and prevent ARP spoofing. Furthermore, the
implementation of network segmentation and the utilization of technologies such as virtual local area
networks (VLANS) can effectively separate possible points of vulnerability.

Studies have suggested diverse approaches for preventing, detecting, and mitigating attacks
associated with the ARP protocol. These methods have been explored across various contexts such as loT
networks, wired networks, Bluetooth low energy (BLE) networks, wireless networks, cloud computing, and
software-defined networking (SDN) networks [8], [12]-[21]. Table 1 presents an overview of the main
relevant approaches employed in the detection and prevention of ARP spoofing and MitM attacks. The table
also outlines the specific characteristics exploited by these approaches, along with the advantages and
disadvantages associated with each approach.

Researchers have investigated the detection of attacks within suspicious packets by employing neural
networks, as documented in studies [13], [14]. The proposed methodology encompasses the incorporation of
payload bytes embedding, as well as the examination of TCP, UDP, and ARP packets, in conjunction with
statistical data analysis. The methods employed in this study resulted in a notably high degree of precision.
However, it is important to acknowledge that the experiment was carried out with a restricted dataset. One of
the most straightforward approaches among the ways that have been analyzed is the utilization of static ARP
entries [15]. In the absence of DHCP utilization, the manipulation of IP entries is not feasible. This defense
exhibits considerable potential; however, its viability in bigger networks appears limited. In addition, detection
tools such as scapy [16] and XArp [17] possess effective detection methods, although they do not offer
comprehensive defensive capabilities. The internet control message protocol (ICMP) is employed in various
contexts, including the detection of ARP spoofing attacks. Researchers in [18] have utilized ICMP ping packets
to determine the characteristics of the host. The advantage of their approach lies in its ability to offer a cost-
effective solution through the utilization of open source technologies, while also insuring the preservation of the
unchanged state of the ARP protocol. Nevertheless, the authors failed to offer a proficient method for rating.

However, Chkirbene et al. [19] provides a framework based on intrusion detection systems. The
framework proposed comprises three main stages. Initially, there is a learning phase where the machine
learning algorithm is trained and a model is built. Following this, the decision history is stored using the
EICD scheme, which records past decisions for each network node in separate databases. Finally, in the
combined decision phase, the ultimate classification decision is made based on the stored information.
Furthermore, the issue of ARP cache poisoning attack was addressed by Prabadevi et al. [20] in their study.
Three strategies have been proposed for big data center networks. They provide superior performance in
detecting malicious packets, effectively serving 89% of cases. Moreover, Rangisetti et al. [12] have
developed a solution involving host_certification and floodlight modules to prevent ARP spoofing. The
floodlight modules consist of a DHCP server, a link discovery module, and forwarding modules. These
modules serve the purpose of obtaining IP information for different hosts during the host certification and
authentication process, assisting the host_certification module in authenticating hosts within the network, and
facilitating the installation of wildcard forwarding flow rules for legitimate flows. They argue that their
proposal is designed to mitigate the risks associated with ARP message spoofing, MITM attacks, and session
hijacking. In another connected research, Sun et al. [8] studied detecting and mitigating ARP attacks within
an SDN-based cloud environment. Their methodology uses DHCP for obtaining reliable IP MAC mappings
as well as real-time packet processing. This approach is designed to receive packets transmitted by hosts,
process them accordingly and subsequently establish flow entries on switches or discard them. The process
involves monitoring statistical data associated with packet transmission on the ports of edge switches. In a
related study Kang et al. [21] conducted research within the Openstack environment, aiming to address ARP
spoofing issues through the enhancement of keystone authentication. The proposal entails the process of
maintaining ARP tables, followed by the handling of ARP reply messages using a component referred to as

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 379

the 'comparison handler'. However, this work presents some limitations: The proposal focuses on a specific
scenario involving the location of the attacker host, OpenStack nodes, and victim host. This limited scope
may not fully represent diverse real-world scenarios. Additionally, it assumes that hosts are set up with

windows operating systems, which may not be applicable to all network environments and infrastructures.

Table 1. Related works comparison

Detection/mitigation

Studies - Method Pros and cons
technique
Sunetal. SDN The task involves real-time packet It makes use of DHCP to acquire
[8] processing, which includes receiving packets trustworthy IPMAC mappings,
from hosts, managing these packets, and ensuring the precision of ARP attack
subsequently installing flow entries on detection
switches or discarding them. Following this,
statistical data on packet activity across edge
switch ports is monitored
Rangisetti A DARP spoofing The authors proposed a D-ARPSpoof The D-ARPSpoof plays a significant
etal. [12] approach with a module using SDN with a host_certification role in preventing MITM, session
Host_Certification and module and floodlight modules hijacking, VLAN-ID spoofing, and
floodlight modules ARP message spoofing attacks
Husain et Neural networks and Several neural networks were trained to take ~ The accuracy rate of this neural
al. [13] ARIMA approach TCP, UDP and ARP packets as input to network was great (more than 90%)
detect ARP Spoofing attacks
Lahmadiet Neural network They use a reconstruction technique to The detection accuracy was
al. [14] identify suspicious network data batches high(~0:99) and false positive rate was
low (~0:03) (small dataset)
Rohatgi and Static ARP IP and MAC addresses It becomes exhausting in large
Goyal [15] networks
Majumdar Scapy python library a. Attack generating module A reliable ARP table enhances the
etal. [16] b. Detecting module dependability of the proposal within a
c. Preventing module cloud computing environment.
Using static entries for preventing ARP However, maintaining both the
attacks comparison handler and the ARP table
can lead to some partial loss of resources
Rupal etal. Dynamic IP System has three modules: The author observed that while XArp
[17] configuration a. DHCP server provides a detection method, it does
b. Radius server and MySQL database for not have a preventative strategy
authentication
c. Detecting and preventing ARP poisoning
Arote and Modified ICMP The server keeps track of the data and uses Backward compatibility ensures that the
Arya [18] ICMP ping packets to determine the host's remaining systems are unaffected if the
identity. The central server is chosen using a primary server fails
voting mechanism
Chkirbene Intrusion detection and a. Creating the learning model This method is more effective at detecting
etal. [19] classification technique b. Storing the decision history attacks and can raise classification
c. Combined decision phase accuracy from 66% to 90%
Prabadevi CLCC, TCBA, and The CLCC technique carries out three The method showed 77% of detection
etal. [20] extended TCBA operations: updating the fake list table, ratio individually
crosslayer consistency checking, and alert
message generation
Kang et al. Reliable ARP table in a. Creating and maintaining ARP tables One of the disadvantages is the partial
[21] Keystone authentication b. ARP reply message handling resource loss required to maintain

service of OpenStack

comparison handler and the table

Upon reviewing the methods and tools discussed, we identified several limitations. These include
challenges in large and dynamic network environments, making the proposed methods impractical, more
difficult, and time-consuming. There are also limitations related to attack prevention capabilities and the
feasibility of implementation in large networks, which pose scalability and effectiveness challenges in
complex network infrastructures.

Hence, this paper focuses on building a cloud computing environment using OpenStack.
Additionally, we propose an algorithm designed to prevent and detect MitM attacks. Our algorithm utilizes
the ICMP protocol and concentrates on establishing suitable flow filtering rules based on various parameters,
primarily the calculation of the time interval between successive packets originating from the same Source
and destination IP. The calculated time difference is then compared to a predefined threshold value. Our
objective is to safeguard the system against a high volume of malicious packets and enhance performance
while increasing the packet detection ratio (PDR). The following is a summary of our contributions:

— We present a comprehensive overview on various techniques used to facilitate detecting and preventing
ARP spoofing attacks across diverse environments, as documented in existing literature.

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

380 a ISSN: 2302-9285

— We propose an algorithm for protecting cloud computing networks against ARP spoofing attacks, with a
specific focus on MitM attacks. Our strategy involves the utilization of ICMP packets.

— We introduce an implementation on the Openstack platform and conduct an evaluation to demonstrate the
efficacy of our technique in enhancing performance by effectively detecting a significant number of
malicious packets.

The following parts of this paper are organized as follows: section 2 outlines the approach employed
and presents the proposed algorithm. The findings and evaluation of our experiment are presented in the
section 3. Section 4 serves as the concluding section of the paper.

2. METHOD

This paper presents an algorithm aimed at detecting and preventing MitM attacks within a cloud
computing environment using OpenStack. The experiments cover various scenarios to determine optimal
outcomes. The proposed detection technique involves several essential steps. Initially, network sniffing is
employed to capture and log IP-MAC addresses, timestamps, and relevant data of instances within the
OpenStack cloud. This information is then utilized to construct static IP-MAC tables. The technique
comprises two primary components: one for creating and managing ARP tables and the other for
implementing attack prevention measures. Specifically, the collected IP and MAC address data is utilized to
build a reliable ARP table via the ping command between instances and packet capture using Wireshark.
Subsequently, the reply message is compared with the reliable ARP table for verification. In the first stage,
any mismatched address marks the package as altered, indicating potential spoofing. The second stage
involves comparing time interval calculations between successive ICMP packets, adding an additional layer
of protection with a two-stage verification process.

2.1. Environment setup

In order to establish the necessary environment for the experiment, the utilization of the following
tools and libraries is required:

— A server Dell EMC 540 for all-in-one Openstack cloud installation.

— Openstack platform: this experiment aims to gather IP and MAC addresses of the instances created within
the OpenStack environment. The OpenStack framework is comprised of two main components, namely
the controller and compute nodes. These nodes have the capability to be dynamically adjusted in size,
either increased or decreased, in alignment with the scale of the cloud infrastructure. The Nova Scheduler,
located on the controller node, is responsible for selecting a suitable host for the deployment of virtual
instances. The host selection process is contingent upon the availability of the accessible compute nodes.
Following the host selection process, the Nova Compute service starts the instantiation of instances
according on the memory and volume size criteria supplied by the users. After the instantiation procedure,
Nova-Network begins with the construction of both internal and external networks [22], [23]. In the
present scenario, the Dell server accommodates both the computing and controller nodes.

— Kali Linux: originating from Debian, Kali Linux is an operating system distribution designed for use in
digital forensics and penetration testing [24].

— Nmap: it is a powerful tool for scanning networks, we will use it here to find out the IP addresses
allocated to the devices on the local network.

— Wireshark: this tool facilitates real-time recording of network data. The data has the capability for
filtration based on IP addresses, protocols, and ports [25].

— Ettercap: it is a crucial tool to use when launching an ARP spoofing attack, manipulating data that has
been intercepted, or attacking SSL or SSH connections.

In this paper, we consider the scenario where the attacker is a host within the same network as the
OpenStack nodes. The victim, in this context, is attempting to communicate with either an external host or an
internal instance, depending on the scenario chosen. For evaluation purposes, we have opted to use Ettercap
as the attacking tool, a well-known tool designed for ARP Spoofing. Kali Linux is installed on the attacker's
host computer, while the instances created for testing are configured with either CentOS 7 or Ubuntu
Desktop operating systems. Table 2 provides the specifications of the hardware used in the experiment.

2.2. Attack generation module

The studies were conducted through real network testing to address MitM attack inside a cloud
environment. The attack was executed through a series of four sequential steps. Initially, the 'router' address
was defined using the command: $ip route.

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 381

Table 2. Hardware specification

Nature of machines Operating systems Hardware details Purpose
Server Dell EMC CentOS-7-x86_64 Xeon Quad Core 3,1 Ghz, RAM 16 GB, all-in-one OpenStack
540 Disques durs: 3 * 1 TB, Controleur Raid H330, Cloud
Lenovo T480s Windows 10 pro 64 bits Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz Laptopl
1.99 GHz, 8,00 GB RAM, 500 GB HDD
HP 290 G2 Windows 10 pro 64 bits 15-8500 @ 3.00 GHz, 4 GB RAM, 500 GB Hostl
Openstack instance Kali Linux-2021.4 4VCPU, 4GB RAM, 60 GB Instancel: Attacker
Openstack instance Centos-7 1VCPU, 2GB RAM, 20 GB Various instances: victims
Openstack instance Ubuntu-17.04- desktop 1VCPU,2GB RAM, 20 GB Various instances: victims

After that, we employed the Ettercap graphical tool for the purpose of conducting the attack. It is
essential to identify the targets, which refer to the instances of victims of a MitM attack. These instances may
consist of physical hosts, routers, or instances that are operational within an OpenStack environment (as seen
in Figure 1).

m Q = Ettercap

Targets x

Target1 Target 2
192.168.242.1

Delete Add Delete

Listening on

ercap mi 0
s dropped to EUID 65534 EGID 6553

34 plugins
mac vendor fingerprint

cp OS fingerprint
wn services

Figure 1. MitM generation at the selected targets

After initiating the attack in the designated instance named "attacker”, we proceed to establish a
ping between hosts. Subsequently, we utilize the Wireshark protocol analyzer to capture the network traffic
for each ICMP connection, both under normal conditions and during the attack phase, as seen in the provided
illustration (Figure 2). The capture of around 2408 packets is observed throughout each scanning session.

No. Time Source Destination Protocc Length Frame Info

217 34.7395.. 192.168.242.120 192.168.242.1 IcMP 98 v/ Echo (ping) request id=0xe6ad, seq=1/256, ttl=64 (no response..
218 34.7481.. 192.168.242.120 192.168.242.1 ICMP 98 v/ Echo (ping) request 1id=0x06ad, seq=1/256, ttl=64 (reply in 21.
219 34.7492.. 192.168.242.1 192.168.242.1.. ICMP 98 v Echo (ping) reply id=0xe6ad, seq=1/256, ttl=64 (request in ..
220 34.7576.. 192.168.242.1 192.168.242.1.. ICMP 98 v Echo (ping) reply id=0xe6ad, seq=1/256, ttl=64

231 35.7400.. 192.168.242.120 192.168.242.1 ICMP 98 v/ Echo (ping) request id=@x@6ad, seq=2/512, ttl=64 (no response..
236 35.7886.. 192.168.242.120 192.168.242.1 IcMP 98 v Echo (ping) request id=0@x@6ad, seq=2/512, ttl=64 (reply in 23..
237 35.7964.. 192.168.242.1 192.168.242.1.. ICMP 98 v/ Echo (ping) reply id=0xe6ad, seq=2/512, ttl=64 (request in ..
238 35.8113.. 192.168.242.1 192.168.242.1.. ICMP 98 v/ Echo (ping) reply id=0xe6ad, seq=2/512, ttl=64

243 36.7430.. 192.168.242.120 192.168.242.1 ICMP 98 v Echo (ping) request id=0x@6ad, seq=3/768, ttl=64 (no response..
244 36.7570.. 192.168.242.120 192.168.242.1 ICMP 98 v Echo (ping) request 1id=0x@6ad, seq=3/768, ttl=64 (reply in 24..
245 36.7582.. 192.168.242.1 192.168.242.1.. ICMP 98 v/ Echo (ping) reply id=@xe6ad, seq=3/768, ttl=64 (request in ..
246 36.7651.. 192.168.242.1 192.168.242.1.. ICMP 98 v Echo (ping) reply id=6x06ad, seq=3/768, ttl=64

251 37.7442.. 192.168.242.120 192.168.242.1 IcMP 98 v/ Echo (ping) request id=@x@6ad, seq=4/1024, ttl=64 (no respons..
252 37.7571.. 192.168.242.120 192.168.242.1 ICMP 98 v/

Echo (ping) request id=0x@6ad, seq=4/1024, ttl=64 (reply in 2..

< >

Frame 217: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface ethe, id ©
Ethernet II, Src: fa:16:3e:9f:bb:ec (fa:16:3e:9f:bb:ec), Dst: fa:16:3e:fe:e9:28 (fa:16:3e:fe:e9:28)
Internet Protocol Version 4, Src: 192.168.242.120, Dst: 192.168.242.1

Internet Control Message Protocol

Figure 2. ICMP packet sniffing with wireshark

After initiating an attack, the process unfolds as depicted in Figure 3. Hostl, intending to
communicate with Victiml within the OpenStack environment, first checks for Victiml's MAC address.
Similarly, Victiml needs Hostl's address for communication, which is stored in its ARP table. When Hostl

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

382 a ISSN: 2302-9285

doesn't find the corresponding address, it broadcasts an ARP request message to its subnet. Upon receiving
this request, Victiml sends a unicast ARP reply message back to Hostl, containing its MAC address.
Simultaneously, the attacker intercepts these messages and sends modified replies to both Hostl and Victim1,
substituting their MAC addresses with its own. Consequently, Hostl now perceives the attacker as Victiml,
and Victim1 perceives the attacker as Hostl. This deception leads to both hosts communicating with the
attacker, believing they are communicating with each other, thereby exposing their information to the attacker.

Internet 1
External
Network

PHYSICAL SERVER 192.168.242.45

ARP Reply
Message —>
ARP Reply
Message

ARP Repl! Host1 192 16824250
Message ™ Compute/Controlier node

ARP Reply

Message OPENSTACK

Victm2 B

192.168.242.187 Laptop1 192.168.242. 52

Figure 3. Spoofing attack scenario

Following that, we proceeded to capture ICMP traffic under normal and attack conditions.
Figure 4(a) showcases the ICMP traffic in its normal state before the attacker's spoofing activities on the
targeted system. The illustration provides a comprehensive view of the packet's information, encompassing
details such as the packet number, emission time, source and destination addresses, employed protocol,
packet length, and other relevant packet attributes. Upon the attack’s initiation, our analysis focuses on
identifying anomalous packets, particularly by scrutinizing the IP-MAC addresses and the time intervals
between consecutive ICMP packets.

In Figure 4(b), the IP address of the Router is represented by 192.168.242.1, whereas the IP address
of Victim1 is represented by 192.168.242.50. Additionally, the picture provides a description of the MAC
addresses associated with each IP address. Figure 4(b) depicts the ICMP packet capture subsequent to the
occurrence of the attack. The MAC address of Victiml (c4:65:16:2b:61:4e) has been altered to the MAC
address of the Attack Host (fa:16:3e:5c¢:ff:d0) as a result of Spoofing.

2.3. Attack detection/prevention module

The act of ARP spoofing can lead to many network attacks that pose significant risks. Therefore, it
is imperative to prioritize the detection of such activities in order to effectively address any security concerns
and prevent hosts from becoming vulnerable to these attacks. Hence, prior to implementing a preventive
approach, it is advisable to consider employing a detecting system as the optimal choice.

After capturing network traffic, collecting log files, and establishing IP-MAC entries from the ARP
table of each device manually (for non-DHCP environments) or automatically (for DHCP environments), we
proceed to read the sniffed files in CSV format. These files consist of seven columns: number of packets,
time, source IP, destination IP, protocol, length, ethernet source, and destination MAC. Subsequently, we
examine each device's authorization by comparing the destination IP address in the log files with the IP
addresses in the built table, and then cross-referencing that address with its associated MAC address to figure
out whether the IP-MAC combinations are legitimate. Two cases emerge from this examination: first, if the
examined IP-MAC pair is consistent, no attack is detected; second, if the examined IP-MAC pair does not
match, it suggests evidence of a MitM attack between the source IP and destination IP.

To filter only ICMP packets belonging to a specific address (for example the router), the following
filter is applied in wireshark protocol analyzer: ip.address==192.168.242.1 and we can add also the icmp.type
==0 or 8 to select the request and reply packets. In this paper, we propose the utilization of time as a feature
for a MitM attack detection and prevention. In order to enhance preventive measures, an additional step
(referred to as step 3-4) is incorporated. This step involves the calculation of the time interval between two
consecutive packets originating from the same source_IP and dest IP. This calculated time difference is
subsequently compared to a specified threshold value.

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 383

No. Time Source Destination Protocel Length Frame Info
125 1.415968 192.168.242.58 192.168.242.1 Icmp 74 'y Echo (ping) request id=exeeel, seq=256/1, ttl=128 (reply in
126)

Frame 125: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \Devi:h\NPF_{SBlFBEFZ-Q6E-4393-EZ-ABEEIZAQEB@B}, id @
Ethernet IT, Src: HewlettP_2b:61:4e (c4:65:16:2b:61:4e), Dst: zte_f6:aa:d6 (98:f4:28:f6:aa:d6)

Internet Protocol Version 4, Src: 192.168.242.50, Dst: 192.168.242.1

Internet Control Message Protocol

No. Time Source Destination Protocol Length Frame Info
126 1.416698 192.168.242.1 192.168.242.58 ICHP 74 v Echo (ping) reply 1d=0x@@@1, seq=256/1, ttl=64 (request in
125)

Frame 126: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \Device\NPF_{591FBEF2-986E-4393-8B82-495E12496008}, id @
Ethernet II, Src: zte_f6:aa:d6 (98:f4:28:f6:aa:d6), Dst: HewlettP_2b:61:4e (c4:65:16:2b:61:4e)
Internet Protocol Version 4, Src: 192.168.242.1, Dst: 192.168.242.58

(@)

Internet Control Message Protocol
No. Time Source Destination Protocel Length Frame Info
76 1.175732 192.168.242.50@ 192.168.242.1 e 74 v Echo (ping) request ic=0x@@91, seq=863/24323, ttl=128 (reply ir
7

Frame 76: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \Device\NPF_{591FBEF2-986E-4393-8B82-495E12A96008}, id @
Ethernet II, Src: HewlettP_2b:61:4e (c4:65:16:2b:61:4e), Dst: zte_f6:aa:d6 (98:f4:28:f6:2a:06)
Internet Protocol Version 4, Src: 192.168.242.59, Dst: 192.168.242.1

Internet Control Message Protocol

No. Time source Destination Protocol Length Frame Info
77 1.183065 192.168.242.1 192.168.242.5@ IcHe 74 v Echo (ping) reply i0=0x0001, seq=863/24323, ttl=64 (request
in 76)
Frame 77: 74 bytes on wire (592 bits), 74 bytes captured (552 bits) on interface \Device\NPF_{591FBEF2-986E-4393-8B82-495E12A96008), id ©
Ethernet II, Src: fa:16:3e:5c:ff:do (VENISNSSNSENSNNNR), Ost: HewlettP_2b:61:de (c4:65:16:2b:61:4e)
Internet Protocol Version 4, Src: 192.168.242.1, Dst: 192.168.242.50

Internet Control Message Protocol
Figure 4. Packet capture: (a) in normal condition and (b) in attack condition

Our study has been based on the intercommunication among ten machines situated in various
environments, including instances in the Openstack cloud, physical servers, laptops, and personal computers.
In the conducted experiment, the ICMP protocol was utilized for the purpose of calculating the threshold.
The threshold is determined as the mean of the values of the time interval that have been calculated. Based on
our experiment, we determined that the appropriate threshold value is equal to 0.003 seconds. We considered
that the value of "Treply-Trequest' may vary when all the hosts are internal OpenStack instances, as well as
all the measurements taken during the experiment. Here, "Trequest' refers to the time of an echo ping request
packet, while "Treply' is the time of an echo ping reply packet.

2.4. Our proposed detection/prevention algorithm

By utilizing the time interval and comparing it to our predefined threshold of 0.003 seconds, our
approach aims to decrease the system's exposure to a MitM attack. This stage often reveals a significant
number of anomalous packets. Subsequently, our program enhances the detection process by verifying each
device's authorization and comparing the IP-MAC pairs. Upon detection, the program generates a warning
message stating "There is a MitM attack between the source and destination IP of the infected host." The
steps of our algorithm are shown in Figures 5 and described as Algorithm 1. Table 3 provides a description of
the variables employed in our approach.

 —— |
h" Capture the packet J

Extract the log files and
ARP table entries

/// ‘ .
~iftime(packeti+1)
- time(packet i)<treshold

NO

YES

Examine the suspicious
packet

YES

i if(<DesﬂPi,DestMm Noo| Discart the request
/) pm.jket ‘

=ARPTable pairs
\ /
- PN

'féhiry alréidy\ store the
< exists in fake >No+ palciois
list fake list
YES

|

1 Generate alarm message «
¢

Figure 5. Our proposed algorithm for MitM detection

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

384 a ISSN: 2302-9285

Algorithm 1: MitM prevention and detection

1. Sniff the network and extract the log files and ARPtab entries

2. Establish IP-MAC entries from ARP table of every device

3. for ifrom O to table.size()

4 if (table. Time[i+1] - table.Time[i]) < treshold

5. for k from 0 to ARPtab.size()

6 if table[i].DestlP == ARPtab[k].ipAddress then

7 if table[i].DestMAC ==ARPtab[k].ethernetAddress then
8. Update the ARP cache every 10 minutes

9. else

10. Discart the request packet
11. if the pair <DestIP,DestMAC> already exists in fake list
12. Generate alarm message
13. else
14, Add the pair <DestIP,DestMAC> to the fake list
15. End if
16. End if
17. End if
18. End for
19. else
20. Discart the request packet
21. End if
22. End for
Table 3. Our algorithm’s nomenclature
Variables Description
ARPtab The file that contains the pairs of the IP-MAC address of the instances in the network
table The snifed file that contains 7 columns: no. of the packet, time, SourcelP, DestIP, protocol, length,
SourceMAC, and DestMAC
DestIP The destination IP address of the packet in the snifed file
SourcelP The source IP address of the packet in the snifed file
DestMAC The destination MAC address of the packet in the snifed file
SourceMAC The source MAC address of the packet in the snifed file
ipAddress IP address of a host in ARPtab
ethernetAddress MAC address of a host in ARPtab
Time Time of on packet in the snifed file
Treshold A predetermined threshold is derived by taking the average of the time between two successive packets and

dividing it by the length of the packet

3. EXPERIMENTAL RESULTS AND DISCUSSION

The above graphic, labeled as Figure 6, presents data on the duration of a machine's response to an
ICMP request both before and after a MitM attack. The calculation process entails measuring the time
interval between two successive packets, specifically the "echo ping request" and "echo ping reply" packets.
Our experiment encompassed machines with diverse characteristics and operational setups. For instance,
Host1 operates as a network station external to the cloud, while instance 1 and the attacker are both internal
instances within the OpenStack framework. The variations in results are influenced by factors such as
machine placement, technical specifications, and network affiliation. We found that the time interval (Treply-
Trequest) before a MitM attack is consistently shorter than the time interval after the attack, as shown in
Figure 6. This observation is logical, as the presence of an intermediary connecting the source and the
destination would naturally lead to increased packet processing time.

Our findings indicate that the attack scenarios are influenced by various factors such as the position
of the attacker and victims, the network infrastructure they are connected to, hardware configurations, and
other related aspects. Attack scenarios can involve attackers from physical hosts, OpenStack instances,
external networks, or internal networks. We assume that A=an Openstack instance; internal network; B=an
internal physical host; internal network; C=an Openstack instance; external network; and D=an internal
physical host. We will utilize the fourth scenario presented in Table 4. These scenarios seek to provide
outcomes that are ideal and extremely accurate. We can manipulate certain parameters to come up with a
suitable threshold value that may be used in any situation where the attack occurs.

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 385

Time duration of ICMP packets From Hostl to router Time duration of ICMP packets From Hostl to
0.012 instance 1
h 0.0008
0.01 0.0007
0.008 - 0.0006
o
- A I = 0.0005
2 0.006
E \ I = \I \jj —— After attack g 0.0004 Bef ttack
Y F 0.0003 = = beloreatta
0.004 = ¥ v = = Before attack
J 0.0002 —— After attack
0.002 8
¢ 0.0001
B
0 Trrrrrrrrr 11111111 0 TTTTTTTITT T T IT T T I rTrrrrnri
1 3 5 7 9 111315171921 135 7 911131517192123125
Mumber of packets Mumber of packets

Time duration of ICMP packets From laptopl to
instance 1

0.008

0.006
% 0.004 ,%M
E ; L ,=
% == J Yy P Y

" 0.002 = =g
) N = = Before attack

s)

After attack

L0 o

13 57 9111315171921
Number of packets

Figure 6. ICMP Packet time comparison before and after the attack

Table 4. The adopted scenarios
Attacker Victims

Scenario 1 C C
Scenario 2 D C
Scenario 3 D A
Scenario 4 A A

The PDR is a metric used to evaluate the performance of intrusion detection and prevention systems
(IDPS) in network security. It determines the percentage of malicious packets correctly detected by the IDPS
among all malicious packets present in the network. The formula used to calculate the PDR is as follows:

Number of abnormal packets detected

PDR = %100

Total number of malicious packets sent

In our testing, 682 ICMP packets were collected, and by integrating our predefined threshold, we
successfully identified 41.7% of anomalous packets. The positive outcome of this initial detection stage is
evident, as it has enabled us to shield the system from 285 harmful packets. The positive aspect of our
proposal is that it improves performance and raises the ratio to 60.4% by detecting 127 additional packets.

Our proposed algorithm is evaluated against several existing approaches, namely CLCC algorithm,
reliable ARP table approach ARP, GARP, and centralized approach [5], [19], [26], [27]. The performance of
these solutions is dependent on the specific environmental context in which the attack is deployed, as well as
the particular detection technique applied. Table 5 makes clear that our algorithm performs better than the
majority of existing methods. It is worth noting that, when compared to our method, the CLCC algorithm
achieves a greater PDR. However, it is important to realize that our solution is deployed on an Openstack
architecture, which introduces more complexity when compared to a typical local area network (LAN).

Table 5. Our algorithm’s comparison with other solutions

Attack’s environment Performance
GARP [26] LAN 52%
Centralized approach [27] LAN 60%
Reliable ARP table approach [19] CLOUD (OPENSTACK) No PDR calculated and loss of resources limitation is stated
Our algorithm CLOUD (OPENSTACK) 60.4%
CLCC [5] LAN 7%

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

386 a ISSN: 2302-9285

4. CONCLUSION

In this study, we delved into the realm of MitM attacks, evaluating several existing techniques
aimed at their detection and prevention. Moreover, we put forth a novel algorithm designed specifically for
detecting and preventing MitM attacks, leveraging the ICMP protocol and showcasing its superior
performance. Our algorithm's effectiveness was validated by surpassing a notable PDR, substantiating the
selection of our threshold. These evaluations were conducted through real network testing using the
OpenStack platform.

However, similar to any other academic study, our work possesses several limitations that
necessitate acknowledgment. Initially, the tests and implementation were conducted on a single server that
simultaneously functions as the controller and compute node. This arrangement may have an impact on the
effectiveness of the tests. Additionally, the architecture only allows for the detection of MitM attacks and is
not effective in mitigating other forms of attacks. Moreover, in subsequent research work, we plan to
evaluate the efficacy of machine learning methods in order to enhance the precision and reliability of our
findings.

ACKNOWLEDGEMENT
We truly appreciate the anonymous reviewers' insightful recommendations and informative
comments, which have significantly raised the level of this paper.

REFERENCES

[1] N. Tissir, S. El Kafhali, and N. Aboutabit, “Cloud Computing security classifications and taxonomies: a comprehensive study and
comparison,” 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications
(CloudTech), Marrakesh, Morocco, 2020, pp. 1-6, doi: 10.1109/CloudTech49835.2020.9365884.

[2] Flexera, “State of the Cloud Report,” Flexera, version 11, 2022. [Online]. Available: https://path.flexera.com/cm/report-state-of-
the-. (Accessed: Jan. 20, 2023.)

[3] S. Dong, K. Abbas, and R. Jain, “A Survey on Distributed Denial of Service (DDoS) Attacks in SDN and Cloud Computing
Environments,” in IEEE Access, vol. 7, pp. 80813-80828, 2019, doi: 10.1109/ACCESS.2019.2922196.

[4] P. Singh, S. U. Rehman, and S. Manickam, “Comparative Analysis of EMM with Existing State-of-the-Art EDoS Mitigation
Techniques in Cloud Computing Environments,” arXiv, 2019, doi: 10.48550/arXiv.1905.13447.

[5] B. Prabadevi, N. Jeyanthi, N. I. Udzir, and D. Nagamalai, “Lattice structural analysis on sniffing to denial of service attacks,”
arXiv, 2019, doi: 10.48550/arXiv.1907.12735.

[6] A.F. Daru, K. D. Hartomo, and H. D. Purnomo, “IPv6 flood attack detection based on epsilon greedy optimized Q learning in
single board computer,” International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 5, 2023, pp. 5782-
5791, doi: 10.11591/ijece.v13i5.pp5782-5791.

[71 A. Sebbar, K. Zkik, Y. Baddi, M. Boulmalf, and M. D. E. El Kettani, “MitM detection and defense mechanism CBNA-RF based
on machine learning for large-scale SDN context,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 12,
pp. 5875-5894, 2020, doi: 10.1007/s12652-020-02099-4.

[8] S.Sun, X. Fu, B. Luo, and X. Du, “Detecting and Mitigating ARP Attacks in SDN-Based Cloud Environment,” IEEE INFOCOM
2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 2020, pp. 659-
664, doi: 10.1109/INFOCOMWKSHPS50562.2020.9162965.

[91 M. N. Yasir and M. S. Croock, “Cyber DoS attack based security simulator for VANET,” International Journal of Electrical and
Computer Engineering (IJECE), vol. 10, no. 6, pp. 5832-5843, Dec. 2020, doi: 10.11591/ijece.v10i6.pp5832-5843

[10] W. S. Hwang, J. G. Shon, and J. S. Park, “Web session hijacking defense technique using user information,” Human-centric
Computing and Information Sciences, vol. 12, pp. 1-14, 2022, doi: 10.22967/HCIS.2022.12.016.

[11] A. A. Galal, A. Z. Ghalwash, and M. Nasr, “A New Approach for Detecting and Mitigating Address Resolution Protocol (ARP)
Poisoning,” International Journal of Advanced Computer Science and Applications(IJACSA), vol. 13, no. 6, 2022, doi:
10.14569/IJACSA.2022.0130647.

[12] A. K. Rangisetti, R. Dwivedi, and P. Singh, “Denial of ARP spoofing in SDN and NFV enabled cloud-fog-edge platforms,”
Cluster Computing, vol. 24, no. 4, pp. 3147-3172, 2021, doi: 10.1007/s10586-021-03328-x.

[13] A. Husain, H. Al-Raweshidy, and W. S. Awad. “ARP spoofing detection for 10T networks using neural networks,” Proceedings
of the Industrial Revolution & Business Management: 11th Annual PwR Doctoral Symposium (PWRDS) 2020, 2020.

[14] A. Lahmadi, A. Duque, N.Heraief, and J. Francg, “MitM attack detection in BLE networks using reconstruction and classification
machine learning techniques.” Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham:
Springer International Publishing, pp. 149-164, 2020.

[15] V. Rohatgi and S. Goyal, “A Detailed Survey for Detection and Mitigation Techniques against ARP Spoofing,” 2020 Fourth
International Conference on 1-SMAC (IoT in Social, Mobile, Analytics and Cloud) (1-SMAC), Palladam, India, 2020, pp. 352-356,
doi: 10.1109/I-SMAC49090.2020.9243604.

[16] A. Majumdar, R. Shruti, and T. Subbulakshm, “ARP poisoning detection and prevention using Scapy,” International Conference
on Innovative Technology for Sustainable Development 2021 (ICITSD 2021), Chennai, India, 27-29 January 2021, doi:
10.1088/1742-6596/1911/1/012022.

[17] D. R. Rupal, D. Satasiya, H. Kumar, and A. Agrawal, “Detection and prevention of ARP poisoning in dynamic IP
configuration,” 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology
(RTEICT), Bangalore, India, 2016, pp. 1240-1244, doi: 10.1109/RTEICT.2016.7808030.

[18] P. Arote and K. V. Arya, “Detection and Prevention against ARP Poisoning Attack Using Modified ICMP and Voting,” 2015
International Conference on Computational Intelligence and Networks, Odisha, India, 2015, pp. 136-141, doi:
10.1109/CINE.2015.34.

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 377-387

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 387

[19] Z. Chkirbene, A. Erbad, and R. Hamila, “A Combined Decision for Secure Cloud Computing Based on Machine Learning and
Past Information,” 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019, pp.
1-6, doi: 10.1109/WCNC.2019.8885566.

[20] B. Prabadevi, N. Jeyanthi, and A. Abraham. “An analysis of security solutions for ARP poisoning attacks and its effects on
medical computing,” International Journal of System Assurance Engineering and Management, vol. 11, no. 1, pp. 1-14, 2020.

[21] H. S. Kang, J. H. Son, and C. S. Hong, “Defense technique against spoofing attacks using reliable ARP table in cloud computing
environment,” 2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS), Busan, Korea (South),
2015, pp. 592-595, doi: 10.1109/APNOMS.2015.7275401.

[22] N. Tissir, S. El Kafhali, and N. Aboutabit,” How Much Your Cloud Management Platform Is Secure? OpenStack Use Case,” The
Proceedings of the 5th International Conference on Smart City Applications, Springer, Cham. 2020, pp. 1117-1129, doi:
10.1007/978-3-030-66840-2_85.

[23] S. Lima, A. Rocha, and L. Roque, “An overview of OpenStack architecture: a message queuing services node,” Cluster
Computing, vol. 22, pp. 7087-7098, 2019.

[24] G. D. Singh, “Learn Kali Linux 2019,” 1st ed. Packt Publishing, 2019.

[25] H. Igbal and S. Naaz, “Wireshark as a tool for detection of various LAN attacks,” International Journal of Computer Sciences
and Engineering, vol. 7, no. 5, pp. 833-837, 2019, doi: 10.26438/ijcse/v7i5.833837.

[26] S. Dangol, S. Selvakumar, and M. Brindha, “Genuine ARP (GARP),” ACM SIGSOFT Software Engineering Notes, vol. 36, no. 4,
pp. 1-10, 2011, doi: 10.1145/1988997.1989013.

[27] S. Kumar and S. Tapaswi, “A centralized detection and prevention technique against ARP poisoning,” Proceedings Title: 2012
International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), Kuala Lumpur, Malaysia, 2012,
pp. 259-264, doi: 10.1109/CyberSec.2012.6246087.

BIOGRAPHIES OF AUTHORS

Najat Tissir Bd 2 graduated from Khouribga National School of Applied Sciences
with a state engineering diploma in network and telecommunications engineering, in 2017.
She is a Ph.D. student at Process Engineering, Computer Science and Mathematics
Laboratory, Sultan Moulay Slimane University, Beni Mellal, Morocco. She is currently
working as the head of infrastructure and IT resources, at Hassan First University. Her
research areas include cloud computing security, cybersecurity, and ARP spoofing attacks
detection. She can be contacted at email: tissir.najat@gmail.com.

Noureddine Aboutabit & E{ 12 received his engineering degree from Ecole Normale
Supérieure d'Ingénieurs Electriciens de Grenoble (ENSIEG) in 2003 and his M.S. from
Grenoble INP (France) in 2004. He earned his Ph.D. in Signal Image Speech Telecom from
Grenoble INP in 2007. Since January 2023, he has been a Professor in computer science at
ENSA-Khouribga. His research. His research focuses on computer vision, machine learning,
multimodal speech processing, big data, and cloud computing security. He can be contacted at
email: n.aboutabit@usms.ma.

Said El Kafhali By 2 is a computer science professor at the Department of
Mathematics and Computer Science, Faculty of Sciences and Techniques, Hassan First
University of Settat, Morocco, where he has been a member since January 2018. Prior to
joining the Faculty of Sciences and Techniques, he spent four years at the National School of
Applied Sciences of Khouribga, Morocco. His current research focuses on queuing theory,
performance modeling and analysis, cloud computing, the internet of things, fog/edge
computing, networks security, machine learning, and artificial intelligence. He is actively
involved with various international journals as a reviewer and has served as an international
program committee member for numerous peer-reviewed conferences. He has made
significant contributions to the field, with extensive publications in computer systems
modeling and performance, queueing theory, cloud computing, internet of things, artificial
intelligence, and data sciences. He can be contacted at email: said.elkafhali@uhp.ac.ma.

Detection and prevention of Man-in-The-Middle attack in cloud computing using Openstack (Najat Tissir)

https://orcid.org/0009-0009-3737-3779
https://scholar.google.com/citations?hl=en&user=7AnipRkAAAAJ&view_op=list_works&gmla=AH70aAXvvyfu4pbpTid3TYQeA_rrWODk1g3HMrPEN-nGG1ZXekZinJIBDZ1_CsyPJ5HXf48Y7Y_wTdL-o05I9dPmFEhQlW-MCB1Gqg
https://www.scopus.com/authid/detail.uri?authorId=57219438560
https://orcid.org/0000-0002-6984-4776
https://scholar.google.com/citations?hl=en&user=TzN61e4AAAAJ&view_op=list_works&citft=1&citft=2&email_for_op=Tissir.najat@gmail.com&gmla=AH70aAW14inkEYUaZtDPf8FaiQKg9bfTEtCJ2ZFGvTmfPwY75dXm183ailAt_b5hkecDrXfx-3udkWnBjF0Am3KErSxWcdM823iMMmEdIzLse-wPnhsuDPg5Tp2tT73z_ipvFy4A6mdYcyOQ32PkjxG72MIq0lycOxdbUavYkqSfixTUm4wFl7i8PbSzQucxUEh3dzeqPQvRY54i7_znNWiPEGNuDr0PB9fjagWe3cnAj2_bRu4
https://www.scopus.com/authid/detail.uri?authorId=16067923100
https://orcid.org/0000-0001-9282-5154
https://scholar.google.com/citations?user=tDQVTeYAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=55505648000
https://www.webofscience.com/wos/author/record/1775502

