
Bulletin of Electrical Engineering and Informatics 

Vol. 13, No. 6, December 2024, pp. 4168~4181 

ISSN: 2302-9285, DOI: 10.11591/eei.v13i6.8120      4168  

 

Journal homepage: http://beei.org 

Multispectral imaging and deep learning for oil palm fruit 

bunch ripeness detection 

 

  

Minarni Shiddiq1, Saktioto1, Roni Salambue2, Fiqra Wardana2, Vicky Vernando Dasta1, Ihsan Okta 

Harmailil1, Mohammad Fisal Rabin1, Nisa Arpyanti1, Dilham Wahyudi1 

1Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, Pekanbaru, Indonesia 
2Department of Computer Science, Faculty of Mathematics and Natural Sciences, University of Riau, Pekanbaru, Indonesia 

 

  

Article Info  ABSTRACT  

Article history: 

Received Dec 29, 2023 

Revised Jun 7, 2024 

Accepted Jun 26, 2024 

 

 Oil palm fresh fruit bunches (FFBs) are the raw material of crude palm oil 

(CPO) on which ripeness levels of FFBs are essential to obtain good quality 

CPO. Most palm oil mills use experienced graders to evaluate FFB ripeness 

levels. Researchers have developed rapid and non-destructive methods for 

ripeness detection using computer vision (CV) and deep learning. However, 

most of the experiments used color cameras, such as a webcam or a 

smartphone, limited to visible wavelengths, and used still FFBs on–trees or 

on the ground. This study developed a light-emitting diode (LED)-based 

multispectral imaging system with deep learning for rapid and real-time 

ripeness detection of oil palm FFBs on a moving conveyor. The ripeness 

levels used were unripe and ripe. We also evaluated the spectrum of 

reflectance intensities for the ripeness levels. The ripeness detection system 

employed a two-class you only look once version 4 (YOLOv4) detection 

model using a dataset of 2000 annotated unripe and ripe FFB multispectral 

images and a video of 30 moving FFBs for real-time testing. The results 

show a promising method to detect oil palm FFB ripeness with an average 

accuracy of 99.66% and a speed range of 3.32-3.62 frame per second (FPS). 
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1. INTRODUCTION  

Imaging methods have been developed and applied intensively in agriculture for fruit and vegetable 

quality assessments for the last decades. The fruit and vegetable assessment activities include maturity or 

ripeness detection, fruit counting, and storage life estimation. The methods can evaluate the external or 

internal qualities of fruits and vegetables. Maturity and ripeness stages are important fruit qualities that need 

monitoring and detection. Many efforts have explored innovative imaging technologies for fast, reliable, real-

time, and non-destructive methods to detect fruit and vegetable ripeness stages [1]. The imaging techniques 

fall into three main categories: vision-based, spectroscopic, and mechanical methods [2]. The vision-based 

method is computer vision (CV), which includes color imaging, hyperspectral, and multispectral imaging. 

Color imaging refers to the visible region red, green, blue (RGB) imaging. It is simple and low-cost imaging 

but limited spectral resolution since only three wavelength bands are available. Most fruits and vegetables 

reflect light in infrared (IR) regions. Hyperspectral and multispectral imaging consist of many wavelength 

regions (ultraviolet, visible, IR) depending on how many bands are applied. Multispectral imaging uses fewer 

bands (less than 10 ). Hyperspectral and multispectral imaging have flourished in applications due to their 

spatial and spectral resolution. It becomes an intelligent imaging method if accompanied by machine learning 

https://creativecommons.org/licenses/by-sa/4.0/
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or deep learning [3]. Hyperspectral and multispectral imaging have found applications in machine vision 

(MV). MV is a complete system that uses CV along with machine components to build an automatic system, 

such as a conveyor unit, motors, and separators, in addition to deep learning algorithms, such as artificial 

neural networks (ANN) and convolutional neural networks (CNN) [4].  

Hyperspectral and multispectral imaging are also called spectral imaging as the combination of CV 

and spectroscopy. The imaging techniques find broad applications in agriculture, including post-harvest fruit 

quality evaluation based on ripeness levels and physicochemical parameters such as moisture content, dry 

matter content, and firmness [5]. Multispectral imaging has some practical advantages over hyperspectral 

imaging when applied to fruit sorting and grading, such as low cost, simplicity, and less image processing 

time due to fewer wavelength bands. Recently, multispectral systems using light-emitting diodes (LEDs) 

have become an acceptable, low-cost choice due to the availability of commercial narrow-bandwidth LEDs. 

The traditional multispectral imaging system uses commercial multispectral or monochrome cameras and a 

color filter array with halogen lamps as light sources, which are relatively expensive and complex 

experimental setups. In addition, the LED array has a faster switching time for changing wavelength light [6]. 

Multispectral imaging systems based on LED arrays have applications for detecting rice false smut (RFS) of 

two different cultivars of rice seeds [7] and human tongue health [8]. CV system is an efficient fruit grading 

or classification system if supported by appropriate machine learning algorithms, such as partial least square 

discriminant analysis (PLS-DA), multi-layer perceptron (MLP), and linear discriminant analysis (LDA) [9].  

Spectral imaging with deep learning has been explored recently for two reasons: spectral imaging 

requires faster classification algorithms and the traditional object detection CV needs object spectral 

information. CV based on object detection method has gained many applications in fruit and vegetable 

classification due to the advancement of CNN series, such as faster region with CNN (R-CNN) and you only 

look once (YOLO). However, YOLO algorithms produce higher frame per second (FPS) than faster R-CNN 

[10]. Scanning using spectral imaging is prone to big spectral data, low image acquisition speed, and long 

image processing time. Spectral imaging with deep learning proposes fast reconstruction speed, quality, and 

less computational time [11]. Spectral imaging with object detection offers real-time, faster, and higher 

accuracy detection with fewer spectral images [12]. Some experiments have used deep learning based- 

spectral imaging, such as the developments of a region-free object detector named YOLO-FIRI for IR images 

with YOLOv5 algorithms [13] and a multispectral based object recognition system with YOLOv3 and 

YOLOv4 algorithms, for a well-organized dataset of outdoor scenes in three spectra: visible RGB, near-

infrared (NIR), and thermal [14]. Another application of deep learning-based spectral imaging was an 

intelligent separation method for coal gangue based on multispectral imaging technology and object detection 

of YOLO v4.1 models [15]. 

Crude palm oil (CPO) is one of the export commodities for Indonesia and Malaysia. CPO quality 

and palm oil industry sustainability are crucial, and some efforts are essential to promote quality assurance 

and automation in palm oil industries. Oil palm fresh fruit bunches (FFBs) are the raw material of CPO. 

Sorting and grading FFBs is a principal step when FFBs arrive at the sorting facility of a palm oil mill. The 

sorting and grading process at the sorting area usually uses experienced workers who sort defective and 

unripe oil palm FFBs. Grading criteria are related to internal characteristics of oil palm FFBs, such as oil 

contents (OC) and free fatty acid (FFA). The chemical contents are associated with the ripeness stages of oil 

palm FFBs, on which ripe FFBs have maximum OC and acceptable FFA content [16]. Manual and traditional 

sorting and grading processes of oil palm FFBs are prone to damaged FFBs and inaccuracy due to 

subjectivity, plenty of laborers, and long work hours. Palm oil industry stakeholders are reluctant to embrace 

the new technology of the Industry 4.0 concept in the palm oil industry, especially at the plantations and palm 

oil refineries [17]. Experiments to obtain a real-time, fast, reliable, low-cost, non-destructive assessment 

system for oil palm FFBs have been continuous strides for decades. Many non-destructive methods have 

been developed, such as fluorescence imaging, NIR spectroscopy, thermal imaging, visible CV, and spectral 

imaging. The quality parameters evaluated are ripeness stages and the related physico-chemical parameters. 

Hyperspectral and multispectral imaging have found applications for the oil palm FFB ripeness classification 

[18]. Deep learning using YOLO algorithms also has applications in on-tree oil palm FFB ripeness detection 

during harvesting, such as using the YOLOv3 algorithm [19], an optimized YOLOv3 tiny (YOLO-P) [20], 

and YOLOv4 [21]. Ripeness detection and classification of on-the-ground oil palm FFBs have also used 

YOLO algorithms, such as YOLOv5 series and other deep learning algorithms [22], and modified YOLOv4 

models [23]. 

This study used multispectral imaging and deep learning of the YOLO algorithm to detect the 

ripeness stages of oil palm FFBs on a moving conveyor. Most detection methods for oil palm ripeness levels 

used stationary oil palm FFBs on trees or on the ground. The cameras were attached to a drone or using a 

smartphone. The contributions of this study are as follows: i) CV with a USB camera and its driver enable 

integration to mechatronics of an automatic MV using the Python-based acquisition and processing program; 

ii) using YOLOv4 algorithms based on video frames allows the FFB ripeness detection without stopping the 
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conveyor, offering a rapid and real-time postharvest sorting and grading process. For this study, we used the 

ripeness levels as unripe and ripe and only a separator arm for practical reasons. Other ripeness levels can be 

easily included by adding more classes and their datasets in the detection model; iii) the imaging system used 

a donut-shaped LED array with eight wavelengths in visible and IR regions, which was a replacement for 

multispectral imaging based on halogen lamps and filter wheels; iv) the acquisition program allows each 

LED in the array to switch off or all LEDs turned on and record multispectral images simultaneously; and v) 

using a monochrome camera has the benefit of monochrome images, which are insensitive to background 

light compared to color cameras [14]. Monochrome camera sensors have higher quantum efficiency (QE) and 

sensitivity in visible and IR regions, unlike color cameras only in the visible region. 

 

  

2. METHOD 

The study has two experiments: analyzing ripeness levels of oil palm FFBs using reflectance 

intensities at different wavelengths and detecting the ripeness levels using a YOLO algorithm, as described in 

Figure 1. The first experiment aims to obtain the average reflectance intensity for each oil palm FFB based 

on its ripeness levels and the LED wavelengths. The numerical dataset can be analyzed afterward using 

principal component analysis (PCA) or, as the input of an ANN classification model or, partial least squares 

(PLS) [24]. The second experiment is to detect the ripeness levels of oil palm FFBs using multispectral 

images as the input of a YOLO model. The YOLO ripeness detection experiment has some stages, including 

image acquisition, annotation, dataset construction, model training, testing, and using the model to detect 

ripeness levels in a real-time scheme. All the stages used Python-based scripts. This study is the preliminary 

step toward applying IR multispectral images for oil palm FFB grading using the object detection algorithm. 

It is possible to reconstruct the images according to their wavelengths as spectral signatures using a 

wavelength-coded or with other properties of light involved, such as amplitude-coded and phase-coded 

methods [11]. The bounding box will have spatial and spectral resolution. 
 

 

 
 

Figure 1. Research stages of oil palm FFB ripeness detection 

 

  

2.1.  Multispectral imaging system 

The LED multispectral imaging system used in this study is part of a MV system for oil palm FFB, 

built in a previous experiment using a pair of halogen lamps and a filter wheel [24]. The main components of 

the MV system are shown in Figure 2. The system consists of a conveyor unit, an optical portal, a pneumatic-

based separator, and a personal computer (PC). The conveyor type is a driven-chain conveyor, which moves 

oil palm FFBs to the optical portal. The portal contains a multispectral imaging unit and black metal 

shielding to block the background light from entering the camera. The box has frames and holders for the 

multispectral imaging unit components. It has entrances with black-cloth fringes on the left and right side to 

pass through an oil palm FFB. The system has an Arduino UNO board to connect a PC to the actuators and 

LED array. A proximity sensor is positioned before FFB enters the optical portal to initiate the image 

recording and processing. 
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Figure 2. MV system for oil palm FFBs 

 

 

The multispectral imaging unit shown in Figure 2 has some optical components, including an LED 

array and a camera with a lens. The camera was a Sentech NIR monochrome complementary metal–oxide–

semiconductor (CMOS) camera with a resolution of 2.2 MP (2048×1088 pixels) and a sensor size of 2/3", 

167 FPS, a Navitar lens of 12 mm F/1.4 1". The camera and LED array control use a 3.10.2 Python-based 

acquisition program. Other specifications for the camera are a USB connection, trigger, I/O inputs, and a 

compatible camera driver. The multispectral unit was installed at the middle-top optical portal with a 65 cm 

distance from the lens to the conveyor surface (about 35 cm working distance). The conveyor plate at the 

portal base has a black film to reduce reflection from the plate surface. The LED array uses eight well-

defined bandwidth LEDs as light sources. The selected wavelengths were obtained previously using filter 

wheel-based multispectral imaging for oil palm FFBs [18].  

Figure 3 shows the optical and electronic components of the LED-based multispectral imaging unit. 

Figure 3(a) shows the unit has three printed circuit boards (PCBs), control, Arduino, and LED circuit boards. 

The LED circuit board is attached to an acrylic plate, functioning as the unit stand. The acrylic has bored 

1/4"-20 (M6) tapped holes to accommodate Thorlabs 1/2" optical posts. The optical posts help the unit attach 

to the upper middle of the optical portal with Thorlabs post holders and a 12×5-inch optical board posted to 

the inner top portal frame. The microcontroller and PCB board with a current divider control the currents 

through each LED and can turn each LED on and off accordingly. Figure 3(a) also shows an aluminum lamp 

cap used as the light reflector with 15 cm in diameter. It has a dome shape that helps to converge light from 

each LED to oil palm FFB. The LED array has 32 narrowband LEDs with eight wavelengths, which are 680, 

700, 750, 780, 810, 850, 880, and 900 nm. The LEDs have 8-24 mW powers and 25-35 nm bandwidths. Each 

wavelength has 4 LEDs positioned at four corners in the doughnut-shaped array. Figure 3(b) shows a 680 nm 

LED lighted up at four corners.  

 

 

  
(a) (b) 

 

Figure 3. Multispectral imaging unit based on LED array; (a) unit hardware and (b) 680 nm LED light 

 

 

The samples were Tenera oil palm FFBs from two plantations, a government-owned and a 

smallholder plantation. The samples consisted of unripe and ripe oil palm FFBs. Each oil palm FFB has a 

label on its base according to the sample number and ripeness level. The ripeness levels of the samples get 

validated by certified graders of the plantations based on skin and mesocarp colors and loose fruit numbers 

from bunches. Figures 4(a) to (h) shows the color images of unripe and ripe oil palm FFB samples. The 

unripe FFBs colors are blackish-purplish, while the ripe colors range from reddish to orange. There is a 

different fruit density between the front and back sides of oil palm FFB, especially at the basal part. Oil palm 
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FFB ripeness can also be classified based on several loose fruits called fractions (F). Unripe FFBs include the 

fractions of F0 and F1 with red blackish, while ripe FFBs have F2 and F3 fractions with red yellowish. F4 

fraction is overripe level but can be included as ripe FFBs in this experiment with the same color [25].  

  

 

    
(a) (b) (c) (d) 

 

    
(e) (f) (g) (h) 

 

Figure 4. Oil palm FFB samples; (a) front unripe S1, (b) back unripe S1, (c) front unripe S2, (d) back unripe 

S2, (e) front ripe S1, (f) back ripe S1, (g) front ripe S2, and (h) back ripe S2 

 

 

2.2.  Multispectral image analysis 

This study used two image acquisition schemes. The first scheme intends to obtain the reflectance 

intensity spectrum for each ripeness level, as described in Figure 4. The samples were 15 unripe and 15 ripe 

FFBs. The acquisition technique used single-shot multispectral imaging, which imitated the image 

acquisition stage of traditional multispectral imaging using an 8-wavelength filter wheel [18]. Here, we used 

eight LEDs with different wavelengths for multispectral imaging. In this scheme, the acquisition program 

recorded eight images for each oil palm FFB side, related to turning on and off each LED sequentially, and 

the camera recorded each image. The recording occurs when the FFB is placed at the center of the optical 

portal using the conveyor. After recording images of eight wavelengths on each side, the oil palm moved out 

of the portal. The acquisition stage resulted in 30 images for each ripeness level. White and dark reference 

images have been recorded and placed in the image processing database for calibration [24]. OC and FFA of 

each oil palm FFB were measured using the Soxhlet extraction method right after the image acquisition 

stage. Figure 5 shows the image processing flowchart.  

 

 

 
 

Figure 5. Multispectral image processing flowchart 
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The image processing for this scheme aims to obtain the relative intensity for each FFB at each 

wavelength. The acquisition step obtained 60 images, which consisted of 30 images for each ripeness level, 

corresponding to two FFB sides and 8 LED wavelengths. Figure 5 shows the image processing flowchart. 

The first step is to load and resize a recorded multispectral image into a size of (1024, 540) pixels. The 

multispectral image (Io) was then corrected using white reference (Iw) and black reference (Id) images to 

obtain a calibrated image (Ir). The white reference image is used as the reference reflectance intensity, while 

the black reference image eliminates the effect of dark currents from the sensitive detector. After image 

calibration, the ROI (region of interest) area is determined, which contains the FFB sample. In this case, the 

ROI was the (614,326) pixels in size. The average intensity calculation aims to obtain the FFB reflectance 

intensity at a particular wavelength and ripeness level. 

 

2.3.  Image acquisition for you only look once model 

We have used multispectral images from some sources to build a dataset for ripeness YOLO model 

detection of oil palm FFBs. The first source was from the state-owned plantation, PTPN V, Pekanbaru, Riau. 

We brought the system to the sorting area of the plantation. The dataset consisted of 356 ripe and 176 unripe 

oil palm FFB multispectral images, including 30 FFBs used for reflectance intensity analysis. Two 

experienced graders validated each FFB ripeness level. The image acquisition setting for each oil palm FFB 

was with all LEDs light on. Each FFB was scanned twice at the front and back sides. We recorded two videos 

of moving 15 unripe and 15 ripe FFBs for the model validation. The imbalance of image quantities of ripe 

and unripe FFBs is due to the strict regulation in the sorting area, which makes it hard to find unripe FFBs. 

We added more multispectral images from previous experiments using filter-wheel-based multispectral 

imaging with the same classification, ripe and unripe oil palm FFBs. The experiment used oil palm FFBs 

from private or smallholder plantations. As a result, we have collected 2000 multispectral images using oil 

palm FFB samples from PTPN V and private plantations for the YOLO model, which consisted of  

1000 unripe images and 1000 ripe images. The multispectral ripe FFB images had 356 images using the LED 

setup and 644 images using the previous halogen-based setup. In the meantime, the unripe TBS images had 

176 images using the LED setup and 824 images using the halogen experiment [18], [24]. 

 

2.4.  You only look once model construction 

Before building a custom YOLO model, an annotation process is essential. Annotation is a labeling 

stage using a labeling tool that aims to prepare the detection program to identify objects in a set of still 

images or video frames, in this case, oil palm FFBs in two ripeness classes, unripe and ripe. The labeling 

gives a bounding box and class name on an object inside an image. One of the available labeling tools is the 

Python application program LabelImg, which results in a file in .txt format, which contains image data such 

as the bounding box size and class number. Its coordinate numbers specify the bounding box size. The file 

.txt has format as <object-class> <x_center><y_center> <width><height>. In this study, <object-class> was 

0 for the ripe and 1 for the unripe class. The <x_center> and <y_center> coordinates represent the bounding 

box center, such as for ripe and unripe classes, respectively are (0.484568, 0.490741) and (0.510586, 

0.452454). The values of <width> and <height> mean as normalized width or height of the object's bounding 

box relative to the width or height of the image, as examples here are (0.722222, 0.956790) and (0.688925, 

0.898773).  

Construction of the YOLO model for oil palm FFB ripeness detection used the annotated dataset of 

multispectral images obtained by acquisition and annotation processes. The multispectral images had the 

LED wavelengths the same as in the previous experiment, which used a filter wheel [18]. The ripeness 

detection model used the YOLOv4tiny algorithm. YOLOv4 algorithms have had many applications recently 

in fruit and vegetable sorting MV due to more accuracy and less processing time. YOLOv4 tiny was the ideal 

model for high speed and less computational time [26]. The YOLOv4 tiny configuration file for oil palm FFB 

ripeness detection has parameters including batch number, subdivisions, width, height, classes, and filters. 

The used parameters are generic from the darknet framework and adjusted through the training stage to 

obtain the best ripeness detection model. The YOLOv4 configuration file had 6000 steps or iterations, a batch 

number of 64, a subdivision of 16, a width of 416, a height of 416, classes of 2, and filters of 21.  

 

2.5.  Model training and testing 

Training and testing are the crucial steps in constructing classification or detection models. The 

training aims to analyze the ripeness detection model, hence being able to recognize unripe and ripe oil palm 

FFBs from the annotated multispectral images. Dataset training has used the Google Colaboratory (Colab) 

platform and used pre-trained weight YOLOv4 tiny with fine-tuning. This study obtained 2000 annotated 

images for building the YOLO model, which consisted of 1.000 images for ripe and 1000 for unripe oil palm 

FFBs. The dataset was divided into training, testing, and validation subsets. Table 1 shows the dataset splits, 

comprising 1520 images for training, 380 images for testing, and 100 images for validation processes. So, the 
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total number of images for training and testing was 1900. We used 100 images for metrics analysis. 

Additional validation was performed using two separate 15 FFBs videos of ripe and unripe FFBs for real-

time detection.  

 

 

Table 1. Dataset splits for YOLO model training and testing 
Name of split Number 

“ripe” in training 761 
“unripe” in training 759 
“ripe” in testing 190 
“ripe” in testing 190 
“ripe” in validation 49 
“unripe” in validation 51 

 

 

The YOLO model for oil palm FFB ripeness detection requires performance analysis or evaluation. 

In this study, model evaluation used confusion matrix and other statistical values. Confusion matrix forms a 

value matrix that compares predicted and actual values (ground truth) using four components: true positive 

(TP), false positive (FP), true negative (TN), and false negative (FN). We assigned positive or negative 

values to unripe and ripe FFB states for the ripeness detection model. Other parameters of the confusion 

matrix are recall, precision, and F1-score, obtained using (1) to (3), respectively. There are three other 

parameters often used for YOLO model performance analysis: average precision (AP), mean average 

precision (mAP), and intersection over union (IoU), calculated using (4) to (6), respectively. They are related 

to the confusion matrix's four components [27]. In this study, the computation of the performance parameters 

of a YOLO detection model uses the sci-kit-learn package of Python.  

 

Recall (R)  =  
TP

TP+FN
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃)  =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 ( 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 

𝐴𝑃 = ∑(𝑅𝑒𝑐𝑎𝑙𝑙 (𝑛 + 1)  −  𝑅𝑒𝑐𝑎𝑙𝑙 (𝑛)) 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑛 + 1) (4) 

 

𝑚𝐴𝑃 =  
1

𝑛
 ∑ 𝐴𝑃(𝑘)𝑘=𝑛

𝑘=1  (5) 

 

𝐼𝑜𝑈 =  
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 (6) 

 

  

3. RESULTS AND DISCUSSION  

This study aimed to use LED-based multispectral imaging and YOLOv4 tiny models to detect 

unripe and ripe oil palm FFBs on a moving conveyor. The unit is part of a MV system for sorting and grading 

oil palm FFBs. Annotated images of still oil palm FFBs on the conveyor were used for model training and 

streaming videos of moving oil palm FFBs for real-time testing. The testing results show that each detected 

oil palm bunch image displays a bounding box, ripeness classification, and accuracy value. The fine-tuning 

step of the YOLOv4 tiny model was performed using configuration files on the cloud Google Colab Pro 

Platform. The configuration file contains model parameters and pre-trained weights of previously trained 

YOLO models. 

  

3.1.  Multispectral images 

We used 30 oil palm FFBs to show the characteristics of oil palm FFBs ripeness stages in terms of 

relative reflectance intensities and chemical contents of the oil palm FFBs. The multispectral images were 

acquired at different wavelengths. Each FFB has a stack of monochrome images at LED wavelengths of  

680 nm, 700 nm, 750 nm, 780 nm, 810 nm, 850 nm, 880 nm, and 900 nm, as shown in Figures 6(a) and (b). 

The obtained monochrome images consisted of 2 ripeness levels, and each FFB has front and back side 

images. As shown in Figure 4, the RGB colors of unripe FFBs are darker than ripe FFBs, consistent with 

Figure 6, having lower intensities. The ripe fruits of oil palm FFBs reflect more light than the unripe fruits. 
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Unripe fruits have more chlorophyll and anthocyanin contents, which absorb more light in the visible region 

[28]. Figure 6 also shows increasingly less visible images as the wavelengths increase in the IR region, 

invisible to the human eye but sensible by the NIR monochrome camera.  

 

 

  
(a) (b) 

 

Figure 6. Multispectral data cube of oil palm FFB samples; (a) unripe and (b) ripe 
 

 

Figure 7 shows the relation of reflectance intensities to wavelength and chemical content of oil palm 

FFBs. Figure 7(a) represents the average relative reflectance intensities for each ripeness level versus LED 

wavelengths. Each FFB has 16 images that come from 2 sides and eight wavelengths. It means that each FFB 

side has eight scannings using different wavelengths. Since there are 15 ripe FFBs, a black data point 

represents the average relative intensities of 15 FFBs at each LED wavelength. It also applies to grey data 

points of unripe FFBs. The resulting reflectance intensities of ripe oil palm FFBs are 7.75% higher than the 

unripe reflectance intensities for each wavelength. The higher intensities of ripe FFB could be due to 

increasing OC in the mesocarp at the ripe stage and less chlorophyll content [24], [28]. The resulting 

reflectance intensities increase significantly at 750-900 nm (IR region) except at 780 nm and 880 nm. In 

other words, IR light is less absorbed by the chemical contents of oil palm mesocarps [24]. Increasing 

reflectance intensities in IR regions happened for the rapid detection of RFS in rice seed using LED-based 

multispectral imaging [7]. LEDs at wavelengths of 780 nm and 880 nm have full-width-half-maximum 

(FWHM) of 40 nm and 50 nm, but the optical powers of both LEDs are 45 mW, higher than other LEDs 

used. The decreased reflectance intensities at the wavelengths could be due to wide FWHM, which overlaps 

with adjacent LED wavelengths [6]. 

OC and FFA are the internal qualities of oil palm FFBs, which are related to the ripeness stage [24]. 

For ripeness stage validation, we measured the OC and FFA of 30 FFBs using the Soxhlet extraction method, 

which consisted of 15 unripe and 15 ripe oil palm FFBs. Figure 7(b) shows the OC distribution for the 

ripeness stages. The graph is displayed based on sample numbers labeled as (S1-S15) for ripe FFBs and 

(S16-S30) for unripe FFBs. It shows that the OC of ripe FFBs are higher than the unripe FFBs. The ripe 

FFBs have 16-28% of OC, while the unripe FFBs have 0.5-15%. The OC of oil palm FFB can vary from 

1.25% to 53.91% during the ripening stage [21]. The OC measurement shows the influence of the ripeness 

stages on reflectance intensities, as shown in Figure 7(a). Figure 7(c) shows the FFA content for 30 oil palm 

samples. The FFA values of the 30 oil palm FFB samples are roughly equal, with a range of 3.81-11.02% for 

ripe FFBs and 1.83-10.5% for unripe FFBs. However, the average FFA content is somewhat higher for ripe 

FFBs [24]. The FFA measured in this study is slightly higher than the standard (5%). It could be due to many 

causes, such as taking a long time between harvesting, scanning, and the Soxhlet extraction process. 

 

3.2.  Training and testing results of you only look once version 4 model 

The training stage aims to train a machine or deep learning model algorithm on a dataset that 

consists of annotated images. In this study, we use pre-trained weight YOLOv4 tiny using transfer learning to 

obtain a robust detection model. Two parameters, mAP and average loss, describe the training results, 

displayed in a loss function graph as shown in Figure 8. The red line represents the mAP values, while the 

blue line shows the loss function values. Both values are inversely proportional. Figure 8 shows mAP values 

increase as the iteration number increases during the training process, attaining 94% at the 1000th iteration 

and reaching 99.7% at the 6000th iteration. The highest mAP is the highest accuracy that the model can 

obtain. The loss curve reaches the minimum value at the 6000th iteration with an average loss of 0.0479. The 

graph shows that the ripeness detection model resulted in the best performance with the highest accuracy of 

99.7%. 
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Figure 7. Multispectral imaging results; (a) relative reflectance intensities, (b) OC, and (c) FFA content 
 
  

 
 

Figure 8. Training results of the loss function 
 
 

Testing performance evaluation used metric parameters including mAP at IoU values. Table 2 

shows the testing results for the two-class YOLOv4 model, on which the testing dataset has 380 images (20% 

of 1900 images). Each model class, ripe and unripe, has balanced 190 images for the testing stage. The 

results show the values of mAP @50% and mAp @75% above 75%, which means the model has detected the 
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ripeness levels of ripe and unripe oil palm FFBs with a confidence threshold above 75%. The AP results in 

Table 2 range from 99.4–99.6%. The testing results also display the model performance in terms of TP, FP, 

and FN, where the FP and FN numbers are far less than TP values, resulting in higher accuracy. Precision 

and recall reach values higher than 95%. Higher FP could be because of different image textures between 

front and back side FFBs included in the datasets. The performance parameters for the unripe level are lower 

than the ripe level, especially the precision value of 0.88, related to a higher FP of 26 than the ripe level.  
 
 

Table 2. Metrics results for still images dataset splits for YOLO model testing 
Parameters Ripe Unripe 

Class Ripe Unripe 
Confusion matrix [[189, 17], [1, 0]] [[188, 26], [1, 0]] 
TP 189 188 
FP 17 26 
FN 1 2 
Precision 0.92 0.88 
Recall 0.99 0.99 
F1-score 0.95 0.93 
AP 99.55% 99.40% 

mAP (@0.50) 99.47% 
mAP (@0.70) 81.01% 

 

 

The testing results are comparable to other YOLOv4 models. The results agree with the case for on–

tree oil palm FFBs using a USB color camera, which resulted in the mAP of 87.9% [21]. In addition, our 

results are also comparable to using the YOLOv4 models for stacked oil palm FFBs with six-class ripeness 

levels. It obtained mAP @50% of 99.89 for the testing stage, about 0.4% higher than the results in Table 2 

[23]. The experiment used a large dataset of about 3000 images of unripe and ripe oil palm FFBs in RGB 

color space. It showed that multispectral images with monochrome images and the YOLOv4 algorithm 

obtained similar and somewhat higher accuracy as the RGB color images [29]. The use of multispectral 

images has more advantages due to being less sensitive to background light [14] and being able to do 

classification, chemometrics, and object detection at the same time, such as detecting foreign objects on chili 

peppers using hyperspectral imaging and the YOLOv5 algorithm, which obtained a recognition rate of over 

96% with the shortest detection time of approximately 12 ms [30]. 

 

3.3.  You only look once version 4 model validation results 

Validation of the YOLO model in this study used two ways, with 100 still images and video of 30 oil 

palm FFBs. Figure 9(a) shows the validation result for still images recorded during dataset acquisition with each 

oil palm FFB sitting in the middle of the multispectral system (optical box). The bounding box of each class has 

a blue color for ripe and a green color for unripe class. Figure 9(a) shows the higher to lower detection or 

recognition accuracy from left to right. The detection accuracies are 0.98, 0.86, and 0.49 for ripe images  

(Figure 9(a) point (a)-(c)). The accuracy of 49% means the ripe FFB is still recognizable as ripe, but the image 

intensity is the same as the unripe class. The bottom figure is for unripe oil palm FFB images  

(Figure 9(a) point (d)-(f)), which have accuracy from left to right as 0.95, 0.83, and 0.74. The accuracy of 0.74 

shows the image is brighter than the other unripe image, which is most likely caused by the basal part of FFBs 

having brighter colors than the middle part. The unripe class detection accuracies vary only slightly due to less 

variety in blackish colors. The ripe class model has more accuracy variation, possibly caused by the color 

variety of ripe oil palm FFBs, which include under-ripe, ripe, and overripe FFBs [22]. Other causes of accuracy 

discrepancy were observed due to the variety of oil palm FFB sizes at the same class while the ripeness level is 

the same and illuminating light. They could affect the non-maximum suppression (NMS) threshold. 

Inconsistency in the labeling process could also influence the IoU [19], [23]. Table 3 shows the validation 

performance metrics of still FFBs and moving FFBs on the conveyor. The left part of Table 3 shows the 

validation results for 49 ripe and 51 unripe still oil palm FFB images. The validation stage obtained mAP of 

99.55% for ripe and 99.4% for unripe class with mAP (@0.50) of 98.60% and mAP (@0.70) of 81.71%. 

The validation process also used video recording of 30 oil palm FFBs (15 ripe and 15 unripe FFBs) for 

real-time testing. The videos utilized a monochrome camera and LED-based multispectral imaging of 

continuous oil palm FFBs on a moving conveyor. The conveyor has buckets made on two plates on the 

conveyor floor, each bucket filled with an oil palm bunch. In the video recording, all LEDs were on. Figure 9(b) 

shows some video frames with the accuracy and class name on each bounding box (red for “matang” or ripe) 

and (blue for “mentah” or unripe). The TP condition is feasible in Figure 9(b) point (a), where the actual value 

is ripe as the model detects it as ripe. The FP situation is shown in Figure 9(b) point (b), where the sample was 

unripe, but the model predicted it as ripe. The FN was seen in Figure 9(b) point (c), where the actual sample was 

ripe but predicted unripe. The FP and FN conditions are known as overfitting, in which the model performance 
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is better during training but worse during testing and validation, especially using video of moving oil palm 

FFBs. The cause could be an inhomogeneous LED light incident on the FFB top surface reflected by the 

conveyor plate. The improvements in light intensity and camera specifications can overcome lower recognition 

accuracy [31]. Table 3 right shows the model validation metrics using videos of moving oil palm FFBs. It 

shows the ability of the model to detect with an AP of 99.69% for ripe and 99.62% for unripe, with IoU of 

79.59% and mAP (@0.50) of 99.66%. The model has an FPS range of 2.99-3.88, and the average duration time 

per FFB was 2 seconds. The result was comparable with the experiment using videos of stacked oil palm FFBs 

on the concrete ground using a smartphone camera [29].  
 
 

   
(a) ripe (0.98) (b) ripe (0.86) (c) ripe (0.49) 

   

   
(d) unripe (0.95) (e) unripe (0.83) (f) unripe (0.74) 

(a) 
 

   
(a) true positive (TP) (b) false positive (FP) (c) false negative (FN) 

(b) 
 

Figure 9. Results of YOLOv4 tiny model validation on oil palm images, ripe (blue) and unripe (green) using; 

(a) still images and (b) videos 
 

 

Table 3.  Metrics for validation results of still oil palm images and video frames 
 Still images Video frames 

Parameters Ripe Unripe Ripe Unripe 

Class ripe unripe ripe unripe 
Confusion matrix [[49, 5], [0, 0]] [[49, 6], [2, 0]]   

TP 49 49 12 11 

FP 5 6 3 4 
FN 0 2 2 2 

Precision 0.91 0.89 0.8 0.73 

Recall 1.00 0.96 0.85 0.84 
F1-score 0.95 0.92 0.82 0.78 

AP 99.55% 99.4% 99.69% 99.62% 

mAP (@0.50) 98.60% 99.66% 
mAP (@0.70) 81.71%  

Duration  2 Second 

 

 

4. CONCLUSION 

This study has shown the ability of an LED multispectral system and deep learning of the YOLOv4 

algorithm to detect the ripeness of oil palm FFBs. The reflectance intensity measurement was capable of 

showing the difference between ripe and unripe oil palm FFBs. The OC and FFA were able to differentiate 

the ripeness levels. The results show higher values of OC and slightly higher values of FFA for ripe FFBs, 

which are related to higher relative reflectance intensities. The YOLO detection model has four tasks: 

training, testing, evaluation using still images, and evaluation using video of oil palm FFBs on a moving 

conveyor. There were 2000 images for the training, testing, and validation process. The training stage 

resulted in a mAP of 99.7% and an average loss of 0.0479. The testing stage obtained mAP above 95% for 

both ripeness levels. The evaluation using 100 still images and videos for each level showed that the 

precision, recall, and F1 scores were less for the unripe level and decreased for video than for still image 
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validation. Our future works include using YOLO algorithms to detect defective oil palm FFBs and to 

classify ripeness levels using an improved LED-based multispectral system and ANN in our sorting and 

grading MV, applied for sorting areas in palm oil mills.  
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