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 This paper proposes a methodology aimed at resolving catastropic forgetting 

problem by choosing a limited portion of the historical dataset to act as a 

representative memory. This method harness the capabilities of generative 

adversarial networks (GANs) to create samples that expand upon the 

representative memory. The main advantage of this method is that it not only 

prevents catastrophic forgetting but also improves backward transfer and has 

a relatively stable and small size. The experimental results show that 

combining real representative data with artificially generated data from 

GANs, yielded better outcomes and helped counteract the negative effects of 

catastrophic forgetting more effectively than solely relying on GAN-

generated data. This mixed approach creates a richer training environment, 

aiding in the retention of previous knowledge. Additionally, when 

comparing different methods for selecting data as the proportion of GAN-

generated data increases, the low probability and mean cluster methods 

performed the best. These methods exhibit resilience and consistency by 

selecting more informative samples, thus improving overall performance. 
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1. INTRODUCTION  

In practical applications, it is crucial for a machine learning model to continuously update it self 

with new data in order to incorporate the newly acquired knowledge [1]. Nevertheless, when we retrain a 

model by adjusting its parameters using the most recent data, the model tends to excel primarily on the 

recently acquired information. This occurs due to the fact that the model’s parameters are exclusively fine-

tuned for the latest data and may neglect the optimization that was initially achieved during earlier learning 

phases. This problem is commonly referred to as catastrophic forgetting or interference [2]. 

In the context of audio scene classification (ASC), it is customary for sounds within a given scene to 

undergo frequent changes. When recording audio data for training purposes, the captured sounds may deviate 

from the actual environmental conditions. For instance, in the scenario of a park scene, if an audio recording 

is conducted in a park during daylight hours, it may capture the sounds of children playing as an example. 

Nonetheless, if the recording is conducted during nighttime, it might encompass the sounds of insects and the 

serenity of the nocturnal environment. Thus, variations in ASC can also be contingent upon factors such as 

location, time, and recording conditions. Consequently, a machine learning model must possess the capability 

to adapt to these fluctuations. Furthermore, when there is an incorporation of new labels or categories 

pertaining to recording locations. 

https://creativecommons.org/licenses/by-sa/4.0/
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Recent research endeavors have been directing their attention towards rehearsal-based strategies, 

which entail the utilization of a limited subset of previous data. These approaches exhibit potential in 

mitigating the issue of catastrophic forgetting [3], [4]. The rehearsal methods, although valuable, frequently 

encounter the problem of overfitting since the quantity of data they retain is considerably smaller than the 

incoming new data. As a result, these stored samples can either contribute to overfitting or be disregarded 

during training due to their limited volume. While increasing memory storage for new data may appear to be 

a straightforward solution, it doesn”t align with the constraints of limited memory space in practical 

scenarios. The challenge lies in the efficient preservation of crucial old information using a restricted number 

of samples. 

This paper is an extension of our work presented in [5] and in previous research [6], [7], it has been 

observed that samples generated through a generative method can sufficiently retain the acquired knowledge. 

Nonetheless, the effectiveness of this approach is greatly contingent upon the caliber of the generator 

utilized. Therefore, our proposed methodology entails the storage of a single generator with the capability to 

generate representations for all past samples. Furthermore, we employ a distillation technique that harnesses 

the prior generator and engage in retraining with memory to counteract any biases in the generator”s output. 

The remainder of this paper is organized as: section 2 provides an overview of related research that 

has influenced this research. Section 3 outlines our proposed method. The experimental setup is elaborated 

upon in section 4, and section 5 offers an exhaustive analysis and discussion of the experimental outcomes. 

Finally, section 6 concludes this paper by summarizing the primary outcomes and presenting concluding 

remarks. 

 

 

2. RELATED WORK 

2.1.  Audio scene classification in the concept drift situation 

ASC refers to the procedure of identifying and categorizing environmental sounds within a 

particular context or environmental category [8]. ASC can find application in various tasks, including but not 

limited to surveillance [9], urban planning, and enhancing user experiences in multimedia [10]. The primary 

challenge in ASC stems from concept drift, which pertains to the alteration of sound distribution within an 

environment over time. This can have a notable impact on the efficacy of classification models, as the 

acoustic attributes within an environment may undergo changes due to fluctuations in weather, urban 

development, or daily and seasonal activity patterns. 

For instance, when capturing sounds in a garden, the timing of the recording can influence the 

occurrence and volume of sounds, such as birds chirping at sunrise. Additionally, the specific location within 

the park is of significance; a pond may feature the sounds of water and ducks, whereas a playground will be 

accompanied by the sounds of children playing. As time passes, the introduction of new factors, such as 

construction activities in nearby parks or seasonal variations, can result in alterations in sound distributions. 

A model that has been trained with park sounds during the morning hours may not be capable of recognizing 

the acoustic environment during the evening due to shifts in ambient noise levels and activity patterns. This 

phenomenon is referred to as concept drift. 

Concept drift is a phenomenon in machine learning wherein the data distribution undergoes changes 

over time [11]-[13]. This impacts the performance of models that were previously trained. Such alterations 

can be triggered by a variety of factors, including environmental shifts, modifications in user behavior, or 

transformations in the data source. Concept drift can pose a substantial challenge in the administration of 

machine learning models, particularly when these models are employed in applications demanding high 

levels of accuracy and performance consistency. Figure 1 illustrates concept drift as the shift in feature 

distribution over time. 

 

 

 
 

Figure 1. Feature and feature distribution change illustration in concept drift 
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Introducing a new class into an existing machine learning model constitutes one manifestation of 

concept drift. The inclusion of the new class can lead to alterations in the data distribution, potentially 

jeopardizing the performance of the pre-existing model. Hence, it holds significance to monitor and tackle 

concept drift when incorporating new classes into the model, ensuring that the model can sustain its accuracy 

and efficacy as time progresses. Within this context, strategies for handling concept drift and integrating new 

classes assume paramount importance in preserving the quality of machine learning models [14], [15]. 

Recent studies in the field of ASC have concentrated on the creation of resilient models to confront 

these difficulties. Methods such as transfer learning, which involves the application of knowledge from one 

domain to another, have been employed to mitigate concept drift. Moreover, incremental learning techniques, 

enabling the model to acquire knowledge in an ongoing manner, have been suggested to address the problem 

of catastrophic forgetting. 

 

2.2.  Continual learning 

Concept drift and catastrophic forgetting represent substantial challenges within the realm of 

machine learning. Concept drift denotes the situation in which a model must adapt to changing data patterns 

to uphold its performance. On the other hand, catastrophic forgetting describes the occurrence in which a 

model, upon assimilating new data, unintentionally erases previously acquired knowledge. To tackle these 

challenges, approaches such as preserving raw data, generating data abstractions, or retaining specific model 

components that encapsulate prior learning are utilized. Effective strategies are imperative to safeguard 

crucial historical knowledge for utilization in new contexts. Learning algorithms are typically developed with 

a focus on regularization to restrain modifications to learned information (regularization-based methods), 

architectural adjustments to accommodate new learning tasks (architecture-based methods), or rehearsal to 

reinforce prior knowledge concurrently with new learning (rehearsal-based methods). The strategies 

mentioned aim to establish a balance between preserving existing knowledge and integrating new 

information. This helps avoid the problems of concept drift and catastrophic forgetting. 

Regularization-based methods [16]-[19] constrain the update velocity of parameters vital to 

previously learned tasks to regulate the model”s updating process. While these methods can mitigate 

catastrophic forgetting by not directly storing instances of past data, their efficacy may diminish in more 

challenging scenarios [20] or when applied to complex datasets [21]. 

Architecture-based approaches aim to evolve or modify the model”s structure (network or 

components) during the incremental training process [22]-[26]. Some strategies involve the use of masks to 

selectively activate segments of the network [27]-[29], while others modify existing components within the 

model [8]. For instance, one approach discussed in [22] extending the network by augmenting each layer 

with a fixed number of neurons for new tasks, while preserving the parameters of the established layers to 

avoid the loss of previously learned information. Nevertheless, such methods generally result in heightened 

complexity and size of the network. Furthermore, certain techniques require knowledge of task identity to 

condition the network during inference, which could limit the network”s architectural adaptability and 

potentially hinder performance improvement [19].  

Rehearsal-based methods have demonstrated successful outcomes compared to other approaches. 

Rebuffi et al. [30] presented iCarl, which utilizes a technique known as herding to select and store exemplars 

that are representative of previous learning sessions. his method integrates distillation and classification 

losses to update a classifier incrementally, applying the nearest mean of exemplars as a rule for classification. 

Yoon et al. [3] investigated an approach for online core-set selection, focusing on selecting samples from 

previous tasks that are most representative of the data distribution. This method has shown superiority over 

state-of-the-art techniques like EWC [17], A-GEM [31], and ER-Reservoir [32]. introduced Gdumb, a 

method that greedily retains samples while ensuring class balance. Moreover, generative-based techniques 

like generative feature replay [33], memory replay-generative adversarial networks (MER-GAN) [7] have 

showcased the utilization of GANs for knowledge preservation. However, these approaches typically require 

additional storage to maintain information from previous learning experiences. 

 

 

3. PROPOSED METHOD 

This article presents an incremental learning mechanism founded on rehearsal, where the utilized 

data encompasses not only representative data but also a blend of various other data. This mix includes three 

critical types: the actual task-specific data (𝒟𝑡𝑎𝑠𝑘), a curated subset that represents the previous data 

distributions (𝒟𝑟𝑒𝑝), and synthetically generated data that serves to fill in gaps or extend the training regimen 

(𝒟𝑔𝑎𝑛). The procedure behind this approach is influenced by the learning techniques observed in educational 

settings. Typically, learners frequently employ repetitive research methods to reinforce their comprehension 

and memory of information. This can be accomplished through various repetitive strategies, such as rote 
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learning, repetition, note-taking, or emphasizing crucial sections of the text by underlining or highlighting. 

These strategies are recognized as advantageous for students to improve memory retention [34]. We 

incorporate these rehearsal-based learning techniques into computer neural networks to enhance their 

performance. 

In the realm of computational neural networks, the rehearsal process can be effectively modeled by 

capturing and preserving data from prior training sessions. This accumulated data is subsequently 

intelligently reused to strengthen the knowledge of the trained network and facilitate the incorporation of new 

information [35]. By employing this rehearsal-based framework, we can leverage the pre-existing knowledge 

within the network while consistently accommodating new knowledge. This, in turn, enables more robust and 

adaptive learning capabilities. 

We contemplate a sequential training setup comprising a sequence of tasks represented as  

𝒯 = (𝒯0, 𝒯1, . . . , 𝒯𝑁) where N represents the total number of tasks. Each individual task, 𝒯𝑡 is associated with 

a specific dataset 𝒟𝑡𝑎𝑠𝑘
𝑡 = {𝓍𝑛

𝑡 , 𝓎𝑛
𝑡 }𝑛=1

𝑁𝑡  containing 𝑁𝑡 data points along with their corresponding labels. 

Importantly, within task 𝒯𝑡, we assume that 𝓎𝑡 consists of unique classes that do not overlap with the label 

sets from previous tasks, 𝓎𝑡⋂{𝓎0. . 𝓎𝑡−1} = ∅. Our objective is to minimize the standard loss function, 

usually denoted as the cross-entropy loss, during the training of the model on task 𝒯𝑡. This guarantees that the 

model acquires proficiency in the particular task under consideration while sustaining its performance on 

tasks encountered previously. By adhering to this sequential training setup and minimizing the standard loss 

function, we can efficiently train the model to address each task independently while retaining the acquired 

knowledge from prior tasks. This approach empowers the model to progressively acquire new skills and 

adjust to the specific demands of each task, resulting in improved performance across a variety of tasks 

within the training sequence. 

The initial phase of this framework involves training the classifier 𝑀, selecting representative data 

𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 , and raining the generator G. Once this initial training is completed, the next step is to conduct 

incremental training to enhance the knowledge in 𝑀. The details of the process are: 

 

3.1.  Classifier 

In our experiment, we employ a convolutional neural network (CNN) model for the task of ASC. 

The CNN architecture consists of multiple layers, particularly convolutional layers, which have a vital role in 

capturing local patterns within the input feature map. Each convolutional layer is equipped with kernels that 

convolve with the feature map, enabling the network to extract pertinent features. The classifier, denoted as 

𝑀, consists of two main components: the feature extractor 𝐹 and the classifier head 𝐶 When presented with 

data x, the feature extractor 𝐹, parameterized by 𝜃, extracts the feature vector 𝑢. This feature vector is then 

fed into the classifier head C, which employs a projection matrix 𝑉 to transform u into class scores using a 

softmax function denoted as 𝒜. In other words, the classifier computes 𝐶 = 𝒜(𝑉𝑢), to classify the input 

feature, 𝑀(𝐹(𝑥; 𝜃); 𝒜(𝑉𝑢)). 

The feature extractor 𝐹 consists of six convolutional layers, drawing inspiration from VGG-like 

CNNs. Within each convolutional block, there are two convolutional layers with a kernel size of 3×3. To 

enhance training stability and efficiency, batch normalization is applied between each convolutional layer, 

and we employ the rectified linear unit (ReLU) for nonlinearity. Furthermore, in each convolutional block, 

we employ average pooling with a size of 2×2 to reduce the image dimensions. To obtain fixed-length feature 

vectors, we add a fully connected layer on top of the feature extractor F. This layer extracts high-level 

features from the convolutional outputs. For a comprehensive depiction of the network architecture, please 

consult Figure 2. 

 

3.2.  Representative data 

Data representative (𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡 ) refers to a subset of training data ( 𝒟𝑡𝑎𝑠𝑘

𝑡−1 ) from previous 

episodes or steps that is carefully chosen and retained for subsequent learning. This data is stored within the 

data reservoir 𝑅𝑡. 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡  was selected using several methods:  

- High or low probability: this approach employs the value generated from 𝒜 to to indicate the probability 

level of the classification result. A higher value signifies a greater probability of correct classification by 

the classifier. Opting for a higher logit value indicates a preference for retaining training data that is 

highly likely to be correctly categorized. Conversely, opting to prioritize data with a lower probability 

suggests that we are preserving data that is more susceptible to misclassification. 

- Mean clustering: mean clustering utilizes the mean of feature u to decide which data should be 

incorporated into the representative dataset. A smaller distance from the mean suggests that the chosen 

data is frequently found in the dataset. 

- Barycenter: the concept behind this approach is similar to mean clustering, but it involves selecting 

samples whose u values are closest to their moving barycenter distance [30]. 
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- Random selections: this method entails randomly selecting samples from the dataset currently in use.  

 

 
 

Figure 2. Audio scene classifier architecture 

 

 

3.3.  Pseudo-rehearsal data 

Pseudo-rehearsal data refers to training data that includes artificially generated samples used in the 

model”s retraining process. This research introduces two methods for generating pseudo-data: the first 

method involves augmenting existing data, and the second method employs generative techniques. To 

enhance our data, we utilize four audio augmentation techniques: Gaussian noise addition, TimeStretch, 

PitchShift, and Shift [36]. Incorporating Gaussian noise aids our model in adapting to slight variations and 

noise interference. This noise, introduced randomly, is determined by the transformation probability and is 

influenced by the amplitude factor (ranging from 0.2 to 0.7). TimeStretch enables us to modify the duration 

of audio without affecting its tonal quality, allowing us to make it faster or slower as required. PitchShift 

alters the pitch while preserving the tempo, achieved through time stretching and resampling. However, it”s 

important to acknowledge that phase vocoding can occasionally impact audio quality by modifying certain 

aspects of the sound. Lastly, shift entails shifting audio samples forward or backward, creating a smooth 

transition. At the end, when using augmentation, the dataset 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙
𝑡  contain 𝒟𝑡𝑎𝑠𝑘

𝑡 , 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡−1  and 

𝒟𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝑡−1 . 𝒟𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑡−1  is the augmentation result of 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒
𝑡−1 . 

In the generative approach, we employ (MER-GANs) [7] generator 𝐺𝑡 to generate dataset 𝒟𝑔𝑎𝑛
𝑡 . 

GANs, which map low-dimensional latent spaces to the intricate distributions of samples, have gained 

prominence for their data generation capabilities. Consisting of two networks, Generators and 

Discriminators, GANs function within a zero-sum game framework, where each network”s goal is to surpass 

the other. 

The MER-GAN is composed of three primary components: a generator 𝐺, a discriminator 𝐷, and a 

classifier 𝐶. The discriminator and classifier share nearly the same network, with the exception of the final 

layer, which is tailored to the task (referred to as the task-specific layer). The generator uses a set of 

parameters, 𝜃𝐺, to create sample 𝑥̃ = 𝐺𝜃𝐺(𝑧, 𝑐) when a latent vector z and a class c given. The discriminator, 

with its parameters, 𝜃𝐷, attempts to discern whether the samples are genuine or generated by the improving 

generator, which is becoming more proficient at producing realistic samples. Besides, there”s a classifier 

with parameters, 𝜃𝐶, that assigns a class to the samples. This aids the generator in producing samples that 

closely resemble those belonging to the correct class. 

In this paper, to train the MER-GAN model, we use a rehearsal dataset, 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙 , that contain task 

dataset 𝒟𝑡𝑎𝑠𝑘, representative dataset, 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒  and generated dataset from augmentation or generation 

by G), 𝒟𝑎𝑢𝑔 or 𝒟𝑔𝑎𝑛. Then we employ a joint-retraining approach to train 𝐺, 𝐷 and 𝐶. The generator (𝐺) 

actively reproduces data from previous tasks through generative sampling and is employed in the learning 

process of the current task to prevent forgetting. The depiction of the retraining process using GAN can be 

found in Figure 3. 
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Figure 3. MER-GAN joint training architecture 

 

 

Firstly, we generate dataset 𝒟𝑔𝑎𝑛
𝑡−1 contain generated sample from all previous tasks from task 0 to 

𝑡 − 1. Then we combine 𝒟𝑔𝑎𝑛
𝑡−1, 𝒟𝑟𝑒𝑝

𝑡−1, and 𝒟𝑡𝑎𝑠𝑘
𝑡  as retrain dataset 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡 . Once the rehearsal dataset has 

been formed, the network is trained through joint training: 

 

min
𝜃𝑡

𝐺
(𝐿𝐺𝐴𝑁

𝐺 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑟𝑠𝑎𝑙
𝑡 ) + 𝜆𝐶𝐿𝑆𝐿𝐶𝐿𝑆

𝐺 (𝜃𝑡, 𝒟𝑟𝑒ℎ𝑒𝑟𝑠𝑎𝑙
𝑡 )) (1) 

 

min
𝜃𝑡

𝐷
(𝐿𝐺𝐴𝑁

𝐷 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑟𝑠𝑎𝑙
𝑡 ) + 𝜆𝐶𝐿𝑆𝐿𝐶𝐿𝑆

𝐷 (𝜃𝑡, 𝒟𝑟𝑒ℎ𝑒𝑟𝑠𝑎𝑙
𝑡 )) (2) 

 

𝐿𝐺𝐴𝑁
𝐺 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑟𝑠𝑎𝑙

𝑡 ) = −𝔼𝑧~𝑝𝑧,𝑐~𝑝𝑐
[𝐷𝜃𝐷(𝐺𝜃𝐺(𝑧, 𝑐))] (3) 

 

𝐿𝐶𝐿𝑆
𝐺 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑟𝑠𝑎𝑙

𝑡 ) = −𝔼𝑧~𝑝𝑧,𝑐~𝑝𝑐
[𝑦𝑐𝑙𝑜𝑔 𝐶𝜃𝐶 (𝐺𝜃𝐺(𝑧, 𝑐))] (4) 

 

𝐿𝐺𝐴𝑁
𝐷 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑟𝑠𝑎𝑙

𝑡 ) = −𝔼(𝑥,𝑐)~𝑆[𝐷𝜃𝐷(𝑥)] + 𝔼𝑧~𝑝𝑧,𝑐~𝑝𝑐
[𝐷𝜃𝐷(𝐺𝜃𝐺(𝑧, 𝑐))] +

𝜆𝐺𝑃𝔼𝑥~𝑆,𝑧~𝑝𝑧 ,𝑐~𝑝𝑐,𝜖~𝑝𝜖
[(‖∇𝐷𝜃𝐷(𝜖𝑥 + (1 − 𝜖)𝐺𝜃𝐺(𝑧, 𝑐))‖ − 1)

2
]  (5) 

 
𝐿𝐶𝐿𝑆

𝐷 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑟𝑠𝑎𝑙
𝑡 ) = −𝔼(𝑥,𝑐)~𝑆[ 𝐶𝜃𝐶(𝐺𝜃𝐺(𝑧, 𝑐))] (6) 

 

The MER-GAN loss employs the WGAN formulation with gradient penalty, denoted as 

𝐿𝐺𝐴𝑁
𝐺 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡 ) and 𝐿𝐶𝐿𝑆
𝐺 (𝜃𝑡 , 𝒟𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙

𝑡 ) are loss for generator and the cross entropy loss for 

classification, respectively, 𝑝𝑐  = 𝑈(1, 𝑡), 𝑝𝑧 = 𝑁(0,1) are the sampling distributions (uniform and Gaussian, 

respectively), 𝑦𝑐 is the one-hot encoding of c for computing the cross-entropy, 𝜖 are parameters of the 

gradient penalty term sampled as 𝑝𝜖 = 𝑈(0,1) and the last term of 𝐿𝐺𝐴𝑁
𝐷  is the gradient penalty. 

 

 

4. EXPERIMENT SETUP 

In this experiment, we divide the research into three stages:  

 

4.1.  Feature extraction 

We utilize the TAU urban acoustic scenes 2019 dataset [37] to evaluate our approach. This dataset 

is a collection of audio recordings captured in various urban environments. These recordings include sounds 

commonly heard in cities, such as traffic noise, people talking, and street sounds. The dataset is organized 

into different acoustic scenes, allowing researchers to study and analyze the acoustic characteristics of urban 

environments.  

The initial phase in both the training and incremental processes involves feature extraction. In this 

study, we employ normalized mel-frequency cepstral coefficients (MFCCs) to represent the short-term power 

spectrum of audio in the Mel scale frequency domain. MFCCs are widely utilized as features in tasks related 

to audio processing and speech recognition. Initially, pre-emphasis is applied to amplify the energy content in 

high frequencies. Following this, the signal is windowed, and fast Fourier transformation is performed to 

convert the sample from the time domain to the frequency domain. The resulting frequencies are then 

mapped onto a Mel scale, and inverse discrete cosine transform (DCT) is applied. Finally, each MFCC 

undergoes normalization using mean and variance normalization techniques. 
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4.2.  Dataset splitting for experiment scenario 

The dataset contains 10 classes, which are further divided into 5 tasks, with each task encompassing 

two distinct classes. Each task consists of two distinct classes. In our experiment, we assessed the efficacy of 

integrating pseudo-data with GAN in comparison to using GAN alone, employing representative datasets of 

various sizes denoted as 𝒟𝑚𝑒𝑚. In total, we conducted nine distinct experimental scenarios, which included 

GAN alone (GAN-Alone), Small representative data combined with GAN, small representative data with 

augmentation (SmallRep+AUG), Medium representative data combined with GAN, and Medium 

representative data with augmentation. Additionally, we examined Large representative data combined with 

GAN and large representative data with augmentation (LargeRep+AUG). Table 1 provides an overview of 

the experimental scenarios and their respective data size configurations. 

 

 

Table 1. Experiment scenario 
Experiment scenario 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 𝒟𝑔𝑎𝑛 𝒟𝑎𝑢𝑔 

GAN-alone - 100% - 

Small representation data with GAN 10% 90% - 
Small representation data with augmentation 10% - 90% 

Medium representation data with GAN 50% 50% - 

Medium representation data with augmentation 50% - 50% 
Large representation data with GAN 75% 25% - 

Large representation data with augmentation 75% - 25% 

 

 

4.3.  Model training and evaluation 

We utilize average accuracy and backward transfer (BWT) as metrics to evaluate our proposed 

approach. BWT is commonly computed in the context of incremental or continual learning to gauge the 

extent to which knowledge acquired from previous tasks either endures or diminishes following the learning 

of the subsequent task. BWT is defined as the alteration in performance on earlier tasks after the model has 

been trained on the next task. A positive BWT value signifies that learning the subsequent task has a 

beneficial impact on the preceding tasks, whereas a negative value denotes “catastrophic forgetting” where 

learning the new task leads to a decline in performance on the earlier tasks. In (7) delineates the computing 

average accuracy, while (8) furnishes for BWT. In these equations, 𝑇 represents the total number of tasks, 

and 𝐴𝑐𝑐𝑖,𝑖 is the test accuracy score for task j after the model learned task 𝑖. 

 

ACC =
1

𝑁
∑ Acc𝑁,𝑖

𝑁
𝑖=1  (7) 

 

BWT =
1

𝑁−1
∑ 𝐴𝑐𝑐𝑁,𝑖

𝑁−1
𝑖=1 − 𝐴𝑐𝑐𝑖,𝑖 (8) 

 

In all of our experiments, the training process consists of 300 epochs for the classifier and 500 

epochs for the GAN. We employ the Adam optimizer with a learning rate of 1e-4 for both the classifier and 

the GAN. 

 

 

5. RESULT AND DISCUSSION 

Using GANs without representative data can initially help reduce catastrophic forgetting. However, 

this approach faces challenges in maintaining its effectiveness over time as the number of tasks increases. 

The average accuracy achieved in this experiment is 0.733. Nevertheless, this accuracy consistently decreases 

with each subsequent task. At the outset, the model demonstrates a notable high accuracy of 0.9852 in the 

initial task, but this figure declines to 0.7947 in the second task when GAN-generated data is introduced. 

Subsequently, the accuracy continues to deteriorate, reaching 0.5863 by the fifth task. However, it is 

important to highlight that a significant decrease in accuracy is observed when the training data transitions to  

GAN-generated data. As illustrated in Figure 4, the model exhibits robust performance when dealing with 

newly introduced classes trained using real data. For example, on the third task, the accuracy for the newly 

introduced classes reaches 0.8405, while for the previously established classes, it achieves lower accuracies 

of 0.6108 and 0.5387. 

While GANs possess the capability to generate diverse synthetic data and mitigate catastrophic 

forgetting, their effectiveness in capturing novel patterns and class variations is constrained. When we 

advance to the subsequent incremental stage, where the dataset  𝒟𝑟𝑒𝑡𝑟𝑎𝑖𝑛 , consists only of a combination of 

new task data  𝒟𝑡𝑎𝑠𝑘 and data generated by the GAN generator, the potential for mode collapse becomes 

more pronounced. Consequently, GANs tend to generate samples with lower diversity. This constraint 
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diminishes the New Generator”s ability to preserve previously acquired knowledge while incorporating new 

information. In simpler terms, the model”s capacity to learn and represent new data becomes less effective 

during the subsequent learning stage.  
 

 

 
  

Figure 4. Model performance using GAN only 
 
 

The use of  𝒟𝑟𝑒ℎ𝑒𝑟𝑠𝑎𝑙 , which is a combination of 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 with synthetic data generated 

through augmentation processes (𝒟𝑎𝑢𝑔) a GAN generator (𝒟𝑔𝑎𝑛), has been demonstrated that using GANs is 

more effective in mitigating the issue of catastrophic forgetting when compared to utilizing data solely from a 

GAN generator. Table 2 shows that the use of GANs consistently yields superior results in all types of 

experiments compared to data augmentation. 
 

 

Table 2. Experiment results using  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 

Data representative selection method Task id 
Augmentation data size GAN data size 

25% 50% 90% 25% 50% 90% 

High probability 1 0.9863 0.9863 0.9908 0.9963 0.9963 0.9713 

2 0.7884 0.6214 0.5766 0.8250 0.8034 0.7313 

3 0.7326 0.5970 0.5904 0.7730 0.7449 0.7162 

4 0.6682 0.6710 0.5562 0.7153 0.7199 0.6676 

5 0.6739 0.5898 0.5560 0.7627 0.7396 0.7333 

 Avg 0.7699 0.6931 0.6540 0.8145 0.8008 0.7639 
Low probability 1 0.9863 0.9876 0.9908 0.9926 0.9890 0.9675 

2 0.6905 0.5767 0.5730 0.8122 0.7979 0.8368 

3 0.7034 0.6298 0.6094 0.8145 0.8137 0.7168 
4 0.6447 0.6061 0.5069 0.8320 0.8100 0.7005 

5 0.6648 0.6173 0.4923 0.8039 0.8006 0.6811 

 Avg 0.7379 0.6835 0.6345 0.8510 0.8422 0.7805 
Random 1 0.9897 0.9823 0.9815 0.9908 0.9907 0.9809 

2 0.6671 0.7064 0.7491 0.8618 0.8188 0.7117 

3 0.7219 0.6516 0.5217 0.8229 0.8049 0.7227 
4 0.7131 0.6875 0.5537 0.8019 0.7483 0.6980 

5 0.6837 0.6355 0.4899 0.8134 0.7335 0.6616 

 Avg 0.7551 0.7327 0.6592 0.8581 0.8192 0.7550 
Barry centre 1 0.9897 0.9825 0.9889 0.9945 0.9925 0.9790 

2 0.6990 0.7479 0.6854 0.8589 0.8470 0.7820 

3 0.7426 0.5788 0.6444 0.8375 0.8275 0.7605 

4 0.7467 0.6426 0.5815 0.7910 0.7580 0.6421 

5 0.6897 0.6050 0.5879 0.8019 0.7681 0.6168 

 Avg 0.7735 0.7114 0.6976 0.8567 0.8386 0.7561 
Mean cluster 1 0.9932 0.9987 0.9760 0.9945 0.9943 0.9771 

2 0.8073 0.7018 0.6877 0.7721 0.7432 0.7514 

3 0.7036 0.6438 0.6273 0.7965 0.7641 0.7662 
4 0.7084 0.5988 0.5825 0.7969 0.7107 0.6869 

5 0.6491 0.6225 0.5984 0.7834 0.6998 0.6682 

 Avg 0.7723 0.7131 0.6944 0.8287 0.7824 0.7700 

 

 

The use of augmentation data produced good results at large representative data size (75% 

 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒  and 25%  𝒟𝑎𝑢𝑔) and medium representative data size (50%  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒  and 50%  𝒟𝑎𝑢𝑔). 

However, when the amount of augmentation data was reduced to low representative data size (10% 

 𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒  and 90%  𝒟𝑎𝑢𝑔), there was a significant decrease in accuracy. This phenomenon is attributed 

to overfitting, which is induced by the noise present in the augmented data, rendering it ineffective in 

enhancing the model”s performance. Figure 5 illustrates the performance of the model across different sizes 

of representative data using various data selection methods. For large and medium representative data, as 
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shown in Figures 5(a) and (b), respectively, the random and Barry Centre selection methods yielded superior 

results. The random method, which selects samples without considering classification probabilities or the 

broader distribution of representative data, provides adequate diversification for generalization purposes. 

Meanwhile, the Barry Centre method selects samples based on their proximity to the cluster center, utilizing 

both correctly and incorrectly classified samples to generate new centers that better represent existing and 

future data. Conversely, low probability selection methods, where most selected samples are misclassified, 

exhibit poor performance across different data sizes. In Figure 5(c), the use of small representative data 

shows that the results of all methods vary significantly. Some methods even have accuracies similar to those 

without using representative data (GAN only). This indicates that selection methods do not have a substantial 

impact when the data size is small, and their influence is not significant. 
 

 

  
(a) (b) 

  

 
(c) 

 

Figure 5. The performance of model; (a) large representative data and GAN, (b) medium representative data 

and GAN, and (c) small representative data and GAN 
 

 

In experiments involving GAN data ( 𝒟𝑔𝑎𝑛), a reduction in accuracy was observed as the size of the 

representation data decreased. However, there was no significant decrease between large representative data 

(75%  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 and 25%  𝒟𝑔𝑎𝑛) and small representative data (10%  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒  and 90%  𝒟𝑔𝑎𝑛) in 

all selection methods. The low probability and mean cluster selection methods exhibited greater stability as 

the size of  𝒟𝑔𝑎𝑛 increased to 90%. This stands in contrast to the other methods, which experienced a steep 

decline at the 90% level. Meanwhile, in terms of achieving optimal performance, the high probability and 

random selection method displayed a significant improvement when transitioning from a 25% to a 50% 

 𝒟𝑔𝑎𝑛 size, highlighting the positive impact of increasing the GAN data size. Nonetheless, both methods 

encounter a decline in performance at the 90% level, suggesting a saturation point in the incorporation of 

 𝒟𝑔𝑎𝑛. In terms of consistency, the barry centre method showed relatively good consistency, with a smaller 

drop in accuracy compared to the other methods when moving from 50% to 90%  𝒟𝑔𝑎𝑛 size. Finally, in the 

context of resistance to overfitting, mean cluster and low probability exhibit greater resilience to overfitting 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Continual learning on audio scene classification using representative data and memory … (Ibnu Daqiqil ID) 

577 

as larger  𝒟𝑔𝑎𝑛, datasets are incorporated, as evidenced by the more gradual changes in accuracy across 

various  𝒟𝑔𝑎𝑛 sizes. 

Figure 6 show the detail performance in random selection method using both GAN and data 

Augmentation. In Figures 6(a), (c), and (e) offer a comprehensive visualization of the model”s accuracy for 

each tested task using data augmentation using random selection. Figure 6(a) demonstrates that there is no 

significant difference in accuracy between the old and new tasks, suggesting that the model possesses strong 

generalization capabilities. Nevertheless, in Figures 6(c) and (e), a noticeable trend emerges: the model 

consistently exhibits superior performance on new tasks. For instance, in Figure 6(e), particularly for the 

third task (with N=3), the accuracy for the test data in the first task is 0.3133, for the second task is 0.5246, 

while for the third task (N=3) it reaches 0.7281. This shows that the high accuracy only exists for the new 

tasks that contain real data ( 𝒟𝑡𝑎𝑠𝑘). However, an intriguing and noteworthy observation arises: when we 

examine the second task (N=2), the accuracy for the test data specific to that task was previously 0.8309. 

This suggests a notable decline in accuracy when the model encounters the subsequent task, which could 

potentially exemplify an issue known as “catastrophic forgetting,” wherein the model loses the capability to 

execute the prior task after undergoing training for a new task. 

Furthermore, in Figures 6(b), (d), and (f), it is evident that there is an enhancement in performance 

for several specific tasks. As an example, in Figure 6(f), pertaining to the 5th task (N=5), a notable 

performance improvement is observed in the test data for the 3rd task, increasing from 0.7179 to 0.7722. This 

phenomenon illustrates the performance improvement that takes place in successive tasks, even with a 

relatively modest amount of representation data (10%). Additionally, on datasets with larger representations 

(Figures 6(b) and (d)), it becomes apparent that this enhancement occurs more frequently, and the decline in 

performance is less pronounced.  
 

 

  
(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

  

Figure 6. Detail accuracy of the random selection method in every task (N); (a) large representative data 

and augmentation, (b) large representative data and GAN, (c) medium representative data and 

augmentation, (d) medium representative data and GAN, (e) low representative data and augmentation, 

and (f) low representative data and GAN 
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5.1.  Positive backward transfer result 

In this experiment, the backward transfer in tasks 1 and 2 is consistently 0 because only  𝒟𝑡𝑎𝑠𝑘  so is 

used as data in the first two tasks, resulting in no improvement. Table 3 show the detail result of positive 

BWT for  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒  and  𝒟𝑔𝑎𝑛. Improvement is only observed in task 3 and subsequent tasks. 

Regarding backward transfer, low probability and mean cluster methods seem to be the most promising, 

particularly when the size of the representative data is medium or small. These two methods appear to be 

more effective in leveraging the knowledge acquired from new tasks to enhance the model”s comprehension 

of previous tasks. High probability tends to be less effective in achieving this objective, whereas random and 

barry centre exhibit more diverse and context-dependent outcomes.  

  

 

Table 3. Positive BWT result 

Data size Task 
Data representative selection method 

High probability Low probability Random Barry centre Mean cluster 

Large representative 

(75%  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 and 25%  𝒟𝑔𝑎𝑛) 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0.0637 0.0295 0 0.0314 0.0513 
4 0 0.0184 0.0142 0 0.0068 

5 0.0538 0 0.0281 0.0451 0.0018 

Total 0.1175 0.0479 0.0423 0.0765 0.0598 
Medium representative 

(50%  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 and 50%  𝒟𝑔𝑎𝑛) 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0.0215 0.0419 0.0236 0.0295 0.0513 
4 0.0161 0.0181 0 0 0.0048 

5 0.0261 0 0.0395 0.0376 0.0147 

Total 0.0637 0.0599 0.0631 0.0671 0.0708 
Small representative 

(10%  𝒟𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 and 90%  𝒟𝑔𝑎𝑛) 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0.0058 0.0157 
4 0.0048 0.0430 0.0146 0 0 

5 0.0353 0.0122 0.0181 0.0250 0.0285 

Total 0.0401 0.0553 0.0327 0.0307 0.0442 

 

 

In terms of storage usage, there are variations between the original dataset, representative data, and 

the size of the GAN model. The original dataset requires approximately 3.9 gigabytes (GB) of audio data per 

class. For the large-scale, medium-scale, and small-scale representations, 73.6 megabytes (MB), 54.6 MB, 

and 16 MB per class are needed, respectively. Our generator, denoted as G, consistently consumes 82.85 MB 

of storage space for all classes. Consequently, when utilizing the generator, the storage size remains constant, 

even as the number of trained models increases over time. 

 

 

6. CONCLUSION 

The main objective of this study is to handle the catastrophic forgetting problem of data that changes 

over time. The observation from this study suggests that the integration of retraining data and GANs emerges 

as a promising solution, offering improved preservation of prior knowledge compared to relying solely on 

GANs. Furthermore, the superiority of certain data selection methods, such as the low probability and mean 

cluster methods, highlights the importance of robust strategies in handling increasing proportions of GAN-

generated data. 

Initially, the experimental results indicate that the utilization of GANs demonstrated initial 

effectiveness in mitigating catastrophic forgetting, with the initial model accuracy reaching 0.9852. 

Nevertheless, as additional tasks were incorporated, the efficacy of the GANs declined, resulting in an 

accuracy decrease to 0.5863 by the fifth task. Despite the capability of GANs to generate diverse synthetic 

data, the model encounters challenges in preserving previous knowledge when exposed to novel patterns and 

class variations. This issue is particularly pronounced when the training data becomes increasingly dominated 

by GAN-generated data. 

To address this issue, the integration of retraining data, which comprises a blend of representative 

data and GAN-generated data, exhibited superior results and mitigated the impacts of catastrophic forgetting 

more effectively than relying solely on GANs. This hybrid approach appears to offer a more comprehensive 

training context that contributes to the preservation of prior knowledge. Moreover, when assessing the 

stability of different data selection methods amidst a rising proportion of GAN-generated data, the low 

probability and mean cluster methods exhibited superior performance. These methods demonstrate resilience 
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and consistency as they are capable of selecting more informative samples, thereby enhancing generalization. 

Lastly, an examination of storage efficiency highlights another advantage of GANs. Despite the growth in the 

number of classes and data representations, the storage requirement for the GAN model remains constant, 

rendering it an appealing choice for large-scale continuous learning applications. 
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