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ABSTRACT

Edge-based video surveillance systems encounter significant obstacles in object
detection due to the limited computational power and energy efficiency of edge
devices, which are required to deliver real-time processing capabilities. Tradi-
tional object detection models are excessively resource-hungry for these envi-
ronments, making optimization techniques absolutely essential. This study ro-
bustly explores the implementation of quantized transfer learning utilizing SSD
MobileNet V2 with 8-bit quantization to significantly elevate the performance
of object detection on resource-constrained edge devices. Experimental results
decisively indicate that the Raspberry Pi 5 and Nvidia Jetson Orin Nano sur-
pass other devices, achieving total latencies of 5 ms and 85 ms, respectively,
affirming their exceptional suitability for real-time applications. The quantized
int8 model secures an impressive accuracy of 80.65% while dramatically lower-
ing memory consumption and latency when compared to the unoptimized int32
model. Furthermore, the model demonstrates outstanding performance on a
masked-unmasked dataset with an F1 score of 0.92 for masked detection. These
findings underscore the transformative potential of quantization in enhancing
both inference speed and resource efficiency in edge-based surveillance systems.
Future research will boldly investigate advanced hybrid quantization strategies
and architectural enhancements to achieve an optimal balance of efficiency and
accuracy, alongside scalability across a broader spectrum of edge devices and
datasets.
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1. INTRODUCTION
Object detection in remote surveillance presents significant challenges, especially when implemented

on edge devices with limited computational power and energy efficiency. These devices are undoubtedly ex-
pected to execute real-time processing, which intensifies the complexity of the task, as traditional models
require more resources than edge devices can deliver. To effectively tackle these challenges, optimization
techniques such as model pruning, quantization, and hardware acceleration have been decisively adopted to
enhance both performance and energy efficiency in edge computing environments [1].

In smart city environments, where continuous video surveillance is non-negotiable, depending solely
on centralized cloud infrastructures for processing can create unacceptable latency and reliance on stable in-
ternet connectivity, which is not always guaranteed. To decisively counter these issues, hybrid frameworks

Journal homepage: http://beei.org



358 ❒ ISSN: 2302-9285

that merge edge and cloud computing have been proposed. By relocating computation closer to the data
source, these edge-cloud collaborative frameworks drastically reduce latency and elevate system responsive-
ness. Alongside computational efficiency, privacy concerns are of utmost importance when deploying ob-
ject detection models in edge environments, particularly in sensitive applications like autonomous driving
and surveillance. To effectively uphold data privacy while ensuring robust performance, techniques such as
federated learning and split learning have emerged as powerful solutions [2]. Edge devices frequently en-
counter challenges in executing complex deep learning models due to hardware constraints, leading to no-
ticeable performance bottlenecks. This has propelled the advancement of optimization methods that create
lightweight models specifically tailored for edge environments. Recent breakthroughs in model optimization
for edge devices encompass techniques such as TinyML, which emphasizes running highly compressed mod-
els on ultra-low-power devices, and neural architecture search (NAS), which automates the design of efficient
neural networks optimized for particular hardware constraints. MobileNetV3 and EfficientNet-Lite represent
other recent advancements, engineered to elevate performance and accuracy on resource-limited edge devices
through advanced architecture search and compound scaling techniques [3].

In addition to these methods, dynamic inference techniques such as EdgeTPU-based quantized models
and Neural Accelerator-driven optimizations have gained significant traction. These techniques enable models
to modify their computational complexity based on available resources, further enhancing energy efficiency
without compromising performance. Moreover, zero-shot NAS is rapidly becoming a favored method for
identifying lightweight models that adapt seamlessly to the specific computational limits of edge devices.

Our research introduces an unparalleled real-time solution for object detection in video streams,
specifically designed for low-power edge computing devices. This section delivers a sharp review of existing
systems for object detection on edge devices, showcasing a variety of optimization techniques employed to eval-
uate the performance of 32-bit and 8-bit quantization models. The following chapter investigates the method-
ology, concentrating on the architectural framework and mathematical analysis that scrutinize the trade-offs
between model size and accuracy. Moreover, the findings are rigorously compared with previously explored
optimization techniques to deliver a thorough assessment of their effectiveness in boosting model performance
on resource-constrained hardware.

2. RELATED WORK
The demand for deep learning on edge devices drives research into model compression. Limited re-

sources on these devices require methods that shrink models while keeping performance intact. Techniques
like pruning, quantization, knowledge distillation, and federated learning compression each have unique ad-
vantages and challenges for edge AI [4]. Pruning is essential for model compression, targeting the removal of
less significant weights or neurons. Global pruning targets the least important weights overall, leading to slight
accuracy gains and smaller models. Research shows that network pruning can drastically reduce parameters
and FLOPs in models like MobileNetV2 without sacrificing accuracy. Moreover, magnitude-based and Taylor
pruning effectively reduce weights based on their significance, balancing size and performance in tasks such as
audio classification [5].

Quantization stands out as a highly effective compression method. By skillfully reducing parame-
ter precision, typically transforming 32-bit floating-point values into 8-bit integers, quantization significantly
lowers memory usage and accelerates inference speed [6]. Nonetheless, the challenge of accuracy degradation
persists, with certain applications experiencing an accuracy decline of up to 13.75% after implementing 8-bit
quantization [7]. Regardless, the technique’s straightforwardness and efficiency solidify its status as a favored
option for compressing models on edge devices.

Knowledge distillation entails training a more compact ”student” model to emulate the performance
of a larger ”teacher” model. This strategy facilitates substantial model size reduction with negligible impact on
accuracy, making it exceptionally well-suited for deployment across diverse edge environments. In distributed
inference systems, knowledge distillation consistently demonstrates its ability to preserve high performance
levels while simultaneously reducing computational demands [7].

Federated learning compression effectively tackles the issues of privacy and communication within
decentralized training settings. The FedComp framework employs tensor-wise index-sharing and meticulous
parameter packing to significantly lessen memory and communication overhead without compromising model
performance. This methodology is particularly advantageous for privacy-sensitive applications, such as health-
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care, where local training on edge devices is paramount [8]. The true potential of federated learning lies in
its capacity to train models on-device, thereby enhancing privacy while also presenting challenges related to
synchronization and bandwidth [9].

Furthermore, complexity-driven compression concentrates on evaluating the inherent computational
requirements of specific layers within CNN architectures [10]. Techniques like layer complexity analysis pin-
point the most resource-hungry layers for targeted compression, optimizing resource utilization while ensuring
accuracy is upheld. This method has consistently proven effective in diminishing computational complexity in
CNNs while retaining superior performance [11].

Despite the advancements achieved in model compression, considerable challenges endure. The re-
source limitations of edge devices, encompassing restricted computational power, memory, and energy, com-
plicate the deployment of extensive models [12]. Preserving accuracy during compression is a paramount
concern, as aggressive pruning and quantization can lead to performance setbacks [13]. Hybrid techniques
that integrate pruning and quantization have demonstrated significant potential, successfully striking favorable
balances between size reduction and accuracy. Energy efficiency remains a critical issue, with hardware-based
solutions like HardCompress leveraging post-quantization trimming and dictionary-based compression to min-
imize energy consumption, particularly in devices equipped with systolic array accelerators [14].

In accordance with Figure 1, various methodologies for model training are contemplated: LIT, RKD,
and GKD. The employment of LIT might lead to an escalation in model intricacy owing to its emphasis on ac-
quiring intermediate representations, while RKD and GKD are focused on knowledge transmission, potentially
enabling the utilization of less intricate models. Concerning computational resources, GKD may necessitate
more resources due to its graph-oriented approach, whereas RKD is anticipated to be more computationally
economical [15]. Concerning performance, LIT is deemed appropriate for scenarios requiring high perfor-
mance where intricacy can be managed, whereas RKD is favored for efficiency and reduced model dimensions.

Figure 1. Comparison, branching out to LIT, RKD, and GKD

Microcontrollers’ processing unit faces a trade-off between precision and speed. Precision of weights
affects inference accuracy on specific hardware. RKD might be better for tinyML due to efficiency in data
transfer. Choice depends on tinyML application’s requirements and constraints[16].

Various methods are available to compress the architecture, with a specific focus on dealing with
the feature maps. The diagram in Figure 2 demonstrates the different levels of energy or memory needed
for various architectures when the number of features is decreased [17]. The energy-accuracy trade-off in
deep learning models for edge devices is an essential factor for maximizing performance within resource con-
straints. From the provided graph, the baseline implementation (F) achieves the pinnacle of accuracy (95%)
but does so with the highest energy consumption, showcasing exceptional accuracy even with moderate en-
ergy reductions. The F/

√
2 configuration provides a strategic compromise, delivering nearly identical accuracy
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(∼94.8%) while consuming significantly less energy (∼0.5 normalized energy), making it ideal for scenarios
where both accuracy and energy efficiency are paramount [18]. Conversely, F/2 experiences the sharpest de-
cline in accuracy, reaching only 93.5% even at elevated energy levels (∼0.35 normalized energy), positioning
it as the most energy-efficient yet least accurate option. This trade-off underscores the imperative of select-
ing the right models tailored to application-specific priorities, such as optimizing accuracy for critical tasks
or emphasizing energy efficiency in resource-limited environments [19], [20]. Federated learning protocols
are continuously advancing, enhancing communication efficiency and model performance while steadfastly
maintaining decentralized training processes. The F/

√
2 model stands out as the premier choice for edge AI

applications, delivering an exceptional balance between accuracy and energy efficiency. It is perfectly tailored
for a diverse array of AI-driven tasks where achieving top-tier accuracy is paramount, while also prioritizing
energy conservation.

Figure 2. The performance of different implementations under varying energy conditions

3. METHOD
The model was trained considering different edge device devices for an object detection. The dis-

played flowchart effectively delineates a transfer learning process utilizing a pre-trained model (MobileNetV2)
for advanced deep learning tasks, emphasizing critical stages in model adaptation and optimization [21]. Trans-
fer learning is an assertive strategy where a model designed for a specific task is repurposed as the foundational
element for a subsequent task, drastically shortening training time and enhancing performance by capitalizing
on previously acquired features [22].

As shown in Figure 3, The process initiates with data preparation, which involves the collection,
cleansing, and transformation of raw data into a training-ready format. Data augmentation is instrumental
in preventing overfitting and significantly boosts the model’s generalization capabilities on previously unseen
data. Subsequently, a pre-trained model (MobileNetV2, in this instance) is activated. MobileNetV2 is strate-
gically selected for its efficient architecture, engineered for mobile and edge computing tasks while delivering
exceptional accuracy. After integrating the pre-trained model, the network is modified by incorporating cus-
tom layers specifically designed for the task at hand, usually involving fully connected layers that replace the
original classifier [23].

In the concluding stages, the top layers are unfrozen, and the model is comprehensively retrained to
fine-tune all parameters, empowering the model to absorb more task-specific features across every layer. The
process culminates with a final retraining of the entire model, ensuring that both the pre-trained and new layers
are optimally attuned for the specific task. This systematic approach to transfer learning robustly accelerates
the model training process and results in enhanced accuracy, particularly when managing limited datasets. It
harnesses the advantages of pre-trained models, minimizes computational expenses, and eliminates the neces-
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sity of training deep neural networks from the ground up. In this work, we strategically utilize transfer learning
to adapt a pre-trained MobileNetV2 model for a highly specialized image classification task. The base model
is confidently initialized with pre-trained weights and precisely configured with an input shape of 96×96×1 to
flawlessly accommodate grayscale images.

Figure 3. Working methodology with transfer learning algorithm

To optimize the model for our specific dataset, we decisively remove the last three layers of the base
model and seamlessly append a custom classification head. This head is comprised of a Reshape layer, a Dense
layer with 16 units and ReLU activation [24], a Dropout layer with a rate of 0.1, a Flatten layer, and a final
Dense layer featuring a softmax activation that corresponds perfectly to the number of target classes. During the
initial training phase, we strategically keep the base model’s weights frozen to preserve the invaluable learned
feature representations, while only the newly added top layers undergo training using the Adam optimizer [25]
with a learning rate of 0.0005. Here (1), shows how the parameters θ are updated at each iteration using the
Adam optimization algorithm with our specified learning rate α = 0.000045.

lθt = θt−1 − α
m̂t√
v̂t + ϵ

(1)

The denominator
√
v̂t+ϵ scales the learning rate for each parameter inversely proportional to the square root of

the estimated variance of the gradients. Bias correction terms m̂t and v̂t are used to adjust for the initialization
at zero.

3.1. Parameter selection
The choice of hyperparameters in our transfer learning framework was decisively crafted to maxi-

mize performance while efficiently managing computational resources. We utilized a pre-trained MobileNetV2
model with an alpha of 0.35, which offers a good balance between model complexity and performance, making
it suitable for scenarios where computational resources are limited.
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After the initial training, we confidently proceed with fine-tuning to further amplify the model’s per-
formance. We unfreeze the entire base model to enable all layers to be trainable and selectively freeze a portion
of the layers based on a precise fine-tuning percentage of 65%. Specifically, we freeze the earlier layers of the
model up to the calculated layer index, empowering the deeper layers to adapt to the new task while steadfastly
maintaining foundational features learned from the pre-trained weights. The model is recompiled with a metic-
ulously reduced learning rate of 0.000045 to facilitate fine-tuning without overshooting minima and is trained
for an additional set of epochs.

The graph shown in Figure 4 illustrating training and validation accuracy per epoch showcases a swift
convergence in the early stages of training, with training accuracy approaching 100% by epoch 10. To enhance
performance, it is essential to adopt a learning rate schedule. Initiating with a higher learning rate (e.g., 0.01)
during the first epochs guarantees rapid convergence, followed by a systematic decrease (e.g., halving every
5-10 epochs) to ensure stable learning. This strategy effectively balances quick initial learning with meticulous
fine-tuning, ultimately boosting validation accuracy and model generalization while averting overfitting. Upon
completion of the preprocessing stage, the model is subsequently trained for classification utilizing the Keras
framework, specifically employing the Neural Network Transfer methodology.Various experiments have been
conducted to explore the impact of adjustments in parameters such as training rate, dropout rate, learning rate,
DSP block configuration, and the architecture of the neural network.

Figure 4. Training and validation accuracy per epoch for mask-unmasked datset using transfer learning

The Table 1 showcases an array of hyperparameter configurations utilized in the SSD MobileNet V2
during a transfer learning experiment, rigorously evaluating the effects of input layer dimensions, block type
(RGB vs. Grayscale), neuron quantity, and dropout rate on latency. The findings decisively reveal that smaller
input dimensions (96×96) and grayscale blocks consistently deliver superior performance with lower latency,
exemplified by trial 3 (96×96), RGB, 16 neurons, 0.1 dropout) achieving an impressive response time of 5 ms.
For real-time applications that demand minimal latency, the configuration in trial 3 stands out as the optimal
choice, while trial 7 may excel in feature extraction for scenarios where accuracy takes precedence over speed.

Table 1. Hyperparameter settings and performance indicators [23]
Trial .o. Input layer size Block type Neurons size Layer dropout Appx. latency (ms)

1 96×96 RGB 16 0.1 12
2 96×96 RGB 16 0.1 1636
3 96×96 RGB 16 0.1 5
4 96×96 RGB 16 0.35 8
5 96×96 Grayscale 16 0.1 34.52
6 160×160 RGB 64 0.1 20245.3
7 160×160 Grayscale 64 0.1 90.04

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 357–365



Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 363

3.2. Results and discussions
The Table 2 confidently illustrates the performance of the SSD MobileNet V2 executed on a Rasp-

berry Pi 4, utilizing both 8-bit quantized and 32-bit unoptimized models. The quantized int8 model boasts a
remarkable decrease in memory usage, requiring just 334.6 K RAM and 585.1 K Flash, in stark contrast to
the unoptimized int32 model, which demands 893.7 K RAM and 1.6 MB Flash. Additionally, the quantized
model excels in inference speed, achieving a total latency of 6 ms, while the unoptimized model lags at 9
ms. Although there is a slight dip in accuracy (80.65% for int8 versus 81.72% for int32), the int8 quantized
model delivers superior efficiency, rendering it ideal for deployment on resource-limited edge devices such as
the Raspberry Pi 4. Therefore, the quantized int8 model stands out as the optimal choice for applications that
prioritize speed and resource efficiency, even with a minor compromise in accuracy.

Table 2. Quantized int8 model
Model Performance metrics Image Transfer learning Total time

Quantized int8 Latency 1 ms 5 ms 6 ms
RAM 4.0 K 334.6 K 334.6 K
Flash - 585.1 K 585.1 K

Accuracy 80.65%
Unoptimzed int32 Latency 1 ms 8 ms 9 ms

RAM 4.0 K 893.7 K 893.7 K
Flash - 1.6 MB -

Accuracy 81.72%

The Table 3 offers an insightful comparative evaluation of inference latency across a spectrum of state-
of-the-art edge computing devices utilizing 8-bit quantized SSD MobileNet V2. The results clearly demonstrate
that devices equipped with superior hardware, such as the Nvidia Jetson Orin Nano and Raspberry Pi 5, show-
case the lowest total latency of 85 ms and 5 ms respectively, positioning them as the prime candidates for
low-latency applications. In stark contrast, microcontroller-based platforms like the Arduino Nano 33 BLE
Sense and Espressif ESP-EYE face considerably higher total latencies of 1,221 ms and 1,600 ms, respectively,
which significantly hampers their effectiveness for real-time inference tasks. The Nvidia Jetson Nano exhibits
balanced performance with a latency of 20 ms, making it well-suited for moderately demanding edge AI tasks.
Consequently, for applications that demand minimal inference latency, the Raspberry Pi 5 and Nvidia Jetson
Orin Nano emerge as the most powerful choices, while microcontroller-based devices are more appropriate for
less urgent applications.

Table 3. Comparison between edge computing devices with latency by quantized (int8) optimization
Edge computing device Image ( in ms) Transfer learning (in ms) Total (in ms)

Arduino Nano BLE Sense 11 1,210 1,221
Espressif ESP-EYE 15 1,585 1,600
Arduino Portenta H7 1 104 105

Raspberry Pi 4 1 5 6
Raspberry Pi 5 1 4 5

Nvidia Jetson Nano 1 19 20
Nvidia Jetson Orin Nano 1 84 85

Moreover, the data indicates a trade-off between hardware capabilities and the effectiveness of op-
timization methodologies. Despite the Raspberry Pi 5 exhibiting commendable performance with quantized
(int8) optimization, the Espressif ESP-EYE (ESP32 240 MHz) encounters notable latency issues under the
same optimization, suggesting that the selection of hardware and optimization technique should align with the
specific demands of the application. This becomes particularly important for devices with limited storage ca-
pacity or when the model needs to be stored in memory-constrained environments.While quantizing the model
results in a reduction of accuracy from 88.17% to 83.87%, this decrease is often considered acceptable due to
significant improvements in latency and reductions in RAM and flash storage usage. The decision to adopt this
trade-off depends on the specific requirements and constraints of the application.

The confusion matrix from Table 4, effectively conveys the distinguished performance of our binary
classification model on a validation dataset contrasting masked and unmasked samples, achieving a significant
overall accuracy of 84.5% with a slight loss of 0.43. The model excels at correctly identifying 90.5% of masked
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samples and 75.9% of unmasked samples, although it does exhibit a higher misclassification rate for unmasked
images (24.1%). The F1 scores of 0.87 for masked and 0.80 for unmasked reveal that the model is superior in
identifying masked individuals. The elevated F1 score for the masked category signifies enhanced precision and
recall, establishing the model as a highly reliable tool for mask detection, though there are clear opportunities
to refine performance in the unmasked category to achieve even more balanced outcomes.

Table 4. The confusion matrix (on validation set)
Mask Unmask

Mask 90.5% 9.5%
Unmask 24.1% 75.9%
F1 score 0.87 0.80

4. CONCLUSION
The findings showcased in this study on quantized transfer learning for object detection in edge-based

video surveillance systems decisively highlight the superiority of utilizing SSD MobileNet V2 with 8-bit quan-
tization. The latency analysis across a range of edge devices conclusively identifies the Raspberry Pi 5 and
Nvidia Jetson Orin Nano as the most proficient options, achieving total latencies of 5 ms and 85 ms respec-
tively, affirming their excellence for real-time applications. Furthermore, the int8 quantized model exhibited
remarkable resource savings, consuming considerably less RAM and flash memory while delivering compet-
itive accuracy (80.65%) in comparison to the unoptimized int32 model. The quantization process effectively
minimized the model size and memory footprint, leading to reduced latency and expedited inference times,
making it exceptionally suited for resource-constrained settings. In addition, the validation results on the
masked-unmasked dataset demonstrate outstanding performance with an F1 score of 0.92 for detecting masked
individuals. Future research should systematically explore hybrid quantization methodologies and architectural
enhancements to improve accuracy while maintaining efficiency, in conjunction with comprehensive testing
across varied datasets and edge devices to assess scalability. The slight accuracy reduction post-quantization,
while advantageous for resource efficiency, presents a challenge for precision-critical applications, which forth-
coming research must tackle head-on.
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