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The Indonesian SAR robot contest (KRSRI) is a development of the fire
extinguisher robot contest (KRPAI); initially, the robot at KRPAI only put
out fires. Still, at KRSRI, the robot was asked to prioritize the SAR function.
The robot had to overcome obstacles in this contest to complete it. Based on
this, an obstacle detection system for the robot was designed using machine
learning with the K-nearest neighbor algorithm and gray level co-occurrence
matrix feature extraction. Later, the robot is expected to be able to carry out
accurate obstacle detection to prioritize efficiency so that no more time is
consumed due to the robot incorrectly detecting an obstacle. The results of
the tests that have been carried out show that the detection accuracy based
on the test dataset is 80% for rising barriers, 100% for debris obstacles, and
90% for step obstacles, and an error value of 20% for increasing obstacles is
obtained, 0% for debris obstacles, and 10% for stair obstacles.
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1. INTRODUCTION

Nowadays, the development of research on robots continues to increase [1]-[4] including in
Indonesia. The development of robotics in Indonesia is said to have been rapid, as indicated by the large
number of participants participating in the Indonesian robot competition (KRI). The National Achievement
Center and the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
organized the KRI. This contest is a forum for student creativity in robotics design and engineering. One of
the Indonesian robot contest branches is the Indonesian SAR robot contest (KRSRI). This robot contest is a
development of the fire extinguisher robot contest (KRPAI). The difference between the KRSRI and KRPAI
competitions only lies in the task, but the robot's shape is still the same: a legged robot [5].

This Indonesian robot contest will continue the international robot competition, namely the
RoboCup robot league RoboCup rescue division, if there is a winner in the KRI competition. The robot's task
in the competition is to search for simulated victims showing signs of life in a maze with various rugged
terrain. Apart from that, the robot must also be able to mark the victim's location and landmarks detected
automatically on a map created by the robot online. These signs of life can include the victim's visual
appearance and movements, simulated body heat, CO? levels, and audio signals [6].

The KRSRI robot was built by utilizing several distance sensors placed on the robot's body as a
guide. However, the weakness of this system lies in the robot's limited ability to avoid obstacles, such as
walls or corners. In the latest development of the KRSRI robot, the focus is more on the search and rescue
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(SAR) function, so we decided to add obstacle elements such as debris, hollow up-and-down terrain, and
pyramid-shaped steps. So, it is necessary to detect obstacles to prioritize the efficiency of the robot's ability to
overcome these obstacles. This research uses machine learning with the K-nearest neighbor (KNN)
classification algorithm, which is assisted by an image processing algorithm, namely, the gray-level co-
occurrence matrix (GLCM) feature extraction, to recognize obstacle images. In this research, we use Python
programming to process machine learning using the Scikit-learn Package library [7], [8]. Python
programming is also used to program Arduino [9].

Several studies used the KNN algorithm to recognize images, such as prior research conducted by
Islama et al. [10] entitled "HOG feature extraction and KNN classification for detecting vehicles on the
highway," where this research used KNN and extraction image processing the histogram of oriented
gradients (HOG) feature, this research aims to recognize car using the KNN algorithm, this research
produces a detection accuracy of 84% in detecting cars. In the following previous study conducted by
Mulyono et al. [11] entitled "Parijoto fruits classification using K-nearest neighbor based on gray level co-
occurance matrix texture extraction,” in this research the KNN classification was used on parity fruit, this
research used GLCM in obtaining the extraction features, the results of this research got an accuracy of 80%
in detecting the parity fruit. In Akila and Pavithra [12] study entitled "Optimized scale invariant HOG
descriptors for object and human detection,” research using KNN and HOG feature extraction as human and
object detectors in this research resulted in a positive detection rate of 86%. These studies show that using the
KNN and GLCM algorithms is very good in designing systems for recognizing particular objects [13].

2. METHOD
2.1. System overview

In this research, the system for recognizing types of coffee bean roasting levels uses a computer to
run the KNN classification algorithm for obstacle detection. This algorithm performs classification based on
GLCM feature extraction of an image [14]. When the photo is taken, the system will immediately extract
GLCM features based on degrees 0, 45, 90, and 135 to obtain energy, homogeneity, entropy, and contrast
from each degree [15]-[17]. Figure 1 shows the design of the system.
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Figure 1. System block diagram

The system works in the block diagram through the integration and communication process carried
out in this research, which begins with carrying out an obstacle recognition/detection program on the
researcher's computer using the Python programming language. After that, communication is carried out
between Python and ESP32-CAM using Wi-Fi; this is done to capture images in real time and receive
characters for detected obstacles. After that, the characters will be sent to the OpenCM 9.04 microcontroller,
and then the symbols received by OpenCM will influence the robot's movement. The workflow for the
second stage of the system to be designed can be shown in Figure 2.
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Figure 2. Obstacle detection system flowchart diagram

2.2. System design

Overall, as explained in the general description, this research has two workflow stages, where the
first stage is machine learning modeling, and the second stage is the obstacle detection stage. Based on this, a
system design was designed, which started by taking the obstacle dataset; for the dataset used, there were 150
datasets; after taking the dataset from the obstacles, it was continued by building a machine learning model
using the KNN algorithm, after being trained it was continued with taking images of the challenges which
would be detected, after that the final stage is sending the character to the KRSRI robot. The flow is arranged
in a flowchart, as seen in Figure 3.

&
1 |

Retrieve the Obstacle Datasst

Take the Image of Ihe Obstacle

l l

Building a Machine Learning Mode! Sending Charactars to KRSR| Rabots

Using the KNN Algerithm
€

Figure 3. System design flowchart

Based on the flow diagram in Figure 3, the first stage begins with taking the obstacle dataset, which
is taken so that the system can classify obstacle detection. This is because machine learning requires data to
build models regarding machine learning later. The dataset is in the form of images of obstacles, inclines, and
debris steps. Fifty photos were taken for each block, so the dataset had 150 images.

Based on the previous background, the researchers decided to build a machine learning model
according to the design, and this research would use the KNN algorithm to classify obstacles. KNN cannot
detect obstacles alone, so feature extraction is required. The feature extraction used is GLCM for the KNN
algorithm, and this feature extraction is carried out on the researcher's computer. This feature extraction
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involves a library from Python, namely open computer vision (OpenCV), where this library functions to
simplify digital image processing [18]-[20].

The following is the GLCM feature extraction programming, which will later be used in the KNN
algorithm. GLCM feature extraction is performed to help provide accuracy in the subsequent process in the
learning machine. First, convert the initial image to grayscale, as shown in the following program code
snippet.

gray = cv.cvtColor (im, cv.COLOR BGR2GRAY) gray = cv.resize(gray, (128,128))

The following program is to extract GLCM features from angles 0, 45, 90, and 135, along with a
snippet of the program code. In this programming, there is a table name variable where this variable holds the
label from the file where the brand contains the location of the dataset, then the zero degree extraction label
which has the extracted value of energy 0, homogeneity 0, entrophy_ 0, and contrast 0, as well as the
extraction result label of degrees 45, 90, and 135.

namatabel=['file', 'energy 0', 'homogenity 0',
'entrophy 0','contrast 0' ,'energy 45', 'homogenity 45',
'entrophy 45', 'contrast 45' ,'energy 90', 'homogenity 90°',

'entrophy 90', 'contrast 90' ,'energy 135', 'homogenity 135',
'entrophy 135', 'contrast 135']
df = pd.DataFrame (hasilnya, columns=namatabel)

After getting the extraction results from several features, the results are converted into a comma
separated values (CSV) extension file, as shown in the following program code snippet. The CSV file
conversion uses the Pandas library; this library is a Python library that has functions for carrying out data
processing and statistical calculations aimed at data preprocessing [13], [21], [22].

df.to_csv(r'dataku.csv', index=False)

The next stage is to build a machine learning model using the KNN algorithm; after saving the
extraction results, the next step is to create a machine learning model, which starts by making calls to the
feature extraction results in CSV form using the Pandas library, then assigning a label to each feature
extraction result where from data 0-50 has a rising brand, data 51-100 has a debris label, and the rest have a
step label, then these labels are converted into an array which the model will later recognize, here is a snippet
of the program code.

label = rintangan(['label'].to numpy ()

The program code uses the numpy library, which is a library that Python has for carrying out
scientific and mathematical needs [23], [9]. The next stage of building the model is dividing the training data
and testing data using the Scikit-learn library, which is used for making machine learning models, from
preprocessing to creating the model [7], [8].

from sklearn.model selection import train test split xtrain, xtest, ytrain,
ytest = train test split(data,label, test size = 0.20, random state=42)

The program code snippet above shows that the data is divided with a weight of 20% for test data
and 80% for training data. After splitting the training and test data, the next step is to build a KNN model
using the Scikit-learn library in Python, as in the following program code snippet.

model=KNeighborsClassifier (n_neighbors=3) model.fit (xtrain,ytrain)

In the program code snhippet above, you can see a variable that contains a syntax for making
classifications using KNN; in this syntax, there is a parameter, namely n_neighbors or the number of n
neighbors; this is the KNN way of determining an object based on its nearest neighbors, where the
n_neighbors parameter is used is 3. The next step is the process of taking pictures of obstacles. Obstacle
image-taking is carried out by the ESP32-CAM, which acts as a camera module and a microcontroller. The
role of the ESP32-CAM is as a container for capturing images in real time. In taking real-time photos using
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the esp32cam. The library is available on the Arduino IDE, which is used to access the ESP32CAM device
via the Arduino IDE, making it possible to take videos or pictures [24], [25]. The following is a snippet of
program code for image capture by ESP32-CAM.

void serverdpg() {
auto frame = esp32cam::capture();

if (frame == nullptr) {

Serial.println ("CAPTURE FAIL"); server.send (503, "", ""); return;}
Serial.printf ("CAPTURE OK %dx%d %db\n", frame- >getWidth(), frame-
>getHeight (), static cast(frame->size()));

server.setContentLength (frame->size()); server.send (200, "image/jpeg");
WiFiClient client = server.client(); frame->writeTo(client);}

The program code snippet above is the program code for taking an image, where if the capture is
successful, the function will print information about the photo taken, such as the image resolution and image
size in bytes. This image information will be used in the following process. The captured image will be
processed by machine learning so that the system can decide on detected obstacles by sending characters to
the ESP32-CAM. The communication used between the ESP32-CAM and the KNN algorithm is Wi-Fi
communication. We are sending feelings to robots. This character sending is carried out between the ESP32-
CAM and the OpenCM 9.04 microcontroller with serial communication using the serial library in Python,
which allows parallel communication between Python and Arduino for sending characters [9]. The following
is a snippet of program code from the process.

void loop () {
server.handleClient () ;
WiFiClient kirim = ser.available();
if (kirim) {
Serial.print ("koneksidone"); while (kirim.connected())}
if (kirim.available()) {
char terima = kirim.read(); Serial.print("terima ini");

The program code snippet above shows the process for making client requests to the web server
using the WebServer.h library. Which has the function of running the web server on the ESP32-CAM and
checking the Wi-Fi connection that reads data from the link, if any, after taking images on the ESP32CAM
then proceed with classification for obstacle detection. The program will display a message when the
connection is successful, and the message is received.

3. RESULTS AND DISCUSSION
3.1. Preparation phase

The first stage is preparing the obstacles that the robot will detect. The obstacles that the robot will
detect are debris obstacles, obstacles rising and falling with holes, and pyramid steps obstacles. Images of
these obstacles are shown in Figure 4. Figure 4 shows the different levels of difficulty for each obstacle.
Figure 4(a) shows a debris obstacle where debris is scattered on the floor. The next obstacle is a challenge to
pass through an up-and-down field, as seen in Figure 4(b). Finally, in Figure 4(c), there is a pyramid obstacle
where the obstacle is shaped like a pyramid the robot will pass.

(©)

Figure 4. Obstacles that will be detected are; (a) debris obstacles (puing), (b) up and down obstacles (naik),
and (c) pyramid step obstacles (undakan)
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The second stage is determining the light intensity in the room where the test will occur. The power
given must be sufficient so that when image processing is carried out, obstacles can be appropriately detected
so the robot can pass through them. The test was carried out indoors because the light intensity from outside
was not constant. Inconstant light can affect GLCM feature extraction values. The next step is preparing
testing requirements. First, upload the ESP32CAM live streaming program, set up Wi-Fi for ESP32 CAM
communication with Python, and upload the movement code for Opencm9.04. Figure 5 shows the
configuration process to determine the light intensity. Figure 5(a) shows the position of Esp32 CAM on
OpenCM 9.05. Figure 5(b) shows the laptop used to configure and monitor the configuration results.

-

(b)

Figure 5. Test preparation configuration; (a) position of Esp32 CAM on OpenCM 9.05 robot and
microcontroller and (b) position of laptop with Python programming

3.2. Testing of the K-nearest neighbor algorithm

The test carried out on the KNN algorithm is to find out how much accuracy is obtained when the
model makes predictions on test data. Before this test, the data received from the GLCM feature extraction
results are shown in Table 1.

Table 1. Results of GLCM feature extraction on the obstacle dataset

Feature extraction Up and down obstacles Debris obstacles  Pyramid step obstacles
energy_0 14.136 5.373 6.718
homogenity 0 16.825 635.932 4.100
entrophy_0 72.872 8.480 814.311
energy_0 16.725. 6.349 4.090
energy_45 12.235. 5.192 6.418
homogenity 45 34.737 9.448 3.945
entrophy_45 7.452 8.578 819.00
energy_45 3.463 94.389 39.354
energy_90 13.508 6.677 10.204
homogenity 90 2.836 6.445 13.645
entrophy_90 7.326 8.371 7.698
energy_90 2.826 6.435 13.545
energy_135 12.538 4.957 6.245
homogenity 135 3.565 10.283 48.244
entrophy_135 73.935 8.596 819.420
energy 135 3.555 10.273 4.814

The dataset is 150, divided into 80% for training data and 20% for testing data. The features used
are contrast, entropy, homogeneity, and energy obtained from the results of GLCM matrix extraction in
degrees 0, 45, 90, and 135. Then, the model was tested on the test data and the results were obtained, as
shown in Table 2.

Number of Obstacles Detected

Accuracy = X 100% 1)

Number of Obstacles in Test Data

Based on (1), the accuracy of the rising barrier is 80%, the debris barrier is 100%, and the step
barrier is 90%. Then, after looking for the accuracy value, look for the error value of the detection results for
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each obstacle. The error results for the obstacle rise are 20%, the debris obstacle is 0%, and the step obstacle
is 10%.

Table 2. Model classification test results on test data

Obstacles Number of obstacles in test data Number of obstacles detected
Up and down obstacles 10 8
Debris obstacles 9 9
Pyramid step obstacles 11 10

Apart from analyzing the accuracy and error values in Table 2, obstacles that were not detected
according to the test data were also examined. For example, with rising barriers, the number of blocks in the
test data is 10. Still, when the detection results are obtained, the number is eight growing obstacles, so two
growing obstacles are incorrectly detected. Likewise, with step obstacles, there are 11-step obstacles in the
test data, but only 10-step obstacles are detected, so there is a 1-step obstacle that is incorrectly detected.
Because there are detection errors in rising barriers and steps in the test data, an analysis is carried out to see
what type of obstacle the system predicts for the wrong block. The following are the analysis steps.

The first step in this analysis is to compare the results of the test data output and the detection data
from the obstacle objects shown in Figures 6 and 7. Figures 6 and 7 show the output of the test data and the
prediction results for obstacle detection. The two works are in an array whose data length is 0 to 29. The test
data output shown in Figure 6 has the Oth data, namely in the form of debris obstacles, the 1st data, namely
rising barriers, and the 29th data, namely rising data. Likewise, the prediction output shown in Figure 7 has
the Oth data, namely debris obstacles, the 1st data, climbing obstacles, and finally, the 29th data, namely steps
data. In the two images, there are differences in the output; in the test data, the 20th data array shows a rising
obstacle, but in the detection data, the 20th data from the variety shows a step obstacle. This can be seen from
the test data output in the 24th array data, where the data shows a step obstacle, but the prediction data shows
a debris obstacle. Finally, the 29th test data shows rising impediments, but the detection results show a step
obstacle. Based on the detection error. Researchers try to analyze how the system makes errors in detecting
these obstacles.

ytest

array([‘puing', ‘naik’, ‘undakan®', ‘puing', 'puing', ‘'naik’, ’puing’,

‘undakan’, 'puing', 'puing’, 'undakan', 'naik’, 'naik’, 'naik’,
‘naik’, ‘puing', ‘undakan’, ‘puing‘, ‘puing‘, ‘undakan®, ‘naik’,
‘undakan', 'naik’', ‘undakan', ‘undakan', "undakan', ‘undakan’,
‘undakan’, 'naik’', 'naik'], dtype=cbject)

Figure 6. Test data output results

model.predict(xtest)

array(['puing’, ‘naik’, ‘undakan’, ‘puing’', ‘puing’', 'naik’', ‘'puing’,
‘undakan’, ‘puing’, ‘puing’, ‘undakan', ‘naik’, ‘naik’, ‘naik’,

‘naik’, ‘puing’', 'undakan', ‘puing’', ‘puing’', 'undakan®', ‘undakan®,
‘undakan’, ‘naik', ‘undakan’, ‘puing', ‘undakan', ‘undakan’,
‘undakan’, 'naik', ‘undakan'], dtype-=object)

Figure 7. Test data detection prediction results

The second step is to carry out feature extraction. The feature extraction results will be stored in a
variable in the form of an array. The results of feature extraction from the 20th array data output are shown in
Figure 8.

From the data feature extraction results, the system will then make predictions to find the type of
obstacle from the feature extraction. After getting the feature extraction results, the next step is to carry out
calculations using the KNN algorithm, where in this algorithm, there is a distance measurement metric,
namely Euclidean distance. Later, this measurement will carry out a decision obtained from voting the closest
distance based on the nearest neighbors, as shown in Table 3.
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o xtest[20]

[» array([1.46703479e-03,

1.42596441e-03,
2.04848463e-03,
1.42022337e-03,

3.007141366+02,
3.437569600+02,
1.62433871e402,
3.575804456+02,

7.228223320400,
7.24803239¢100,
6.96448180e+00,
7.25685392e+00,

.997141360462,
.42756960¢+02,
.61433871e402,
.56580445e+021)

Figure 8. 20th test data output results

Table 3. Euclidean distance calculation preparation data

Feature extraction  Pyramid step obstacles  The 20th test data
Energ_0 0.0005.712 0.00146703479
homogenity_0 338.570.374 300.714.136
Entrophy_0 822.300.312 722.822.332
Contras_0 337.570.374 299.714.136
energy_45 0.0005.3532 0.00142596441
homogenity_45 401.247.504 343.756.960
entrophy_45 831.356.067 724.803.239
Contras_45 400.247.504 342756960
energy_90 0.0007.67416147 0.00204848463
homogenity_90 214.285.433 162.433.871
entrophy_90 794.648.228 696.448.180
Contras_90 213.285.433 161.433.871
energy_135 0.0005264 0.00142022337
homogenity 135 459.182.528 357.580.445
entrophy_135 830.466.252 725.685.392
Contras_135 458.182.528 356.580.445

In Table 3, the last date for the training data is a step obstacle, while the 20th test data obstacle is
made as a question mark. This is done to see what obstacles the system will detect later. The following is a
calculation of the last training data with the 20th test data. In this calculation, the last training data, namely
the 119th training data, is represented by P, and the 20th test data is represented by Q:

dppg) = \/(energyOP - energyOQ)2 .t (contra5135p - contrasl35Q)2

dep0) = /(—0.000895)2 + (37.8562377)2 + - + (101.1602083)?

d(p,g) = V0.0000008024 + 1433.09473 + --- + 1032.29833 2

where P is final training data, Q is 20th test data. So, we get the Euclidean distance from the 120th training
data and the 20th test data.

dpg) = V33503.837848968906

After getting the Euclidean distance from a piece of data, sorting is done from the smallest distance
to the most significant distance, then poll or vote based on the smallest space; the poll is done using the
neighbor value approach; the neighbor value in this system is three so the poll selects the three closest
neighbors and looks at what types of obstacles appear most often in the three neighbors? The following is an
Euclidean distance table sorted from the smallest distance, shown in Table 4.

Table 4 represents the Euclidean distance calculation table for the entire training data against the
20th test data, where the table has been sorted based on the smallest Euclidean distance. After sorting, polling
starts based on the three closest Euclidean distances. This is based on using the nearest neighbor in this
algorithm, namely 3. A step obstacle is detected for the first most relative distance, and a step obstacle is
detected for the second closest distance. At the third closest distance, a rising obstacle is detected. Then, a
poll is carried out at that distance on the number of blocks that appear. In this case, the obstacle that occurs
most frequently is the step obstacle. Therefore, the 20th test data is detected as a step by the system.
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Table 4. Data result of Euclidean distance calculation
Pyramid step  Pyramid step  Up and down  Pyramid step Pyramid step

Feature extraction

obstacles obstacles obstacles obstacles obstacles
Energ 0 0.000574 0.000362 0.001942 0.000770 0.000687
homogenity 0 314.448.019 293.388.226 274.136.257 308.078.371 324.365.157
Entrophy 0 8.209.360 8.545.028 7.053.243 7.991.112 8.079.789
Contras_0 313.448.019 292.388.226 273.136.257 307.078.371 323.365.157
energy_45 0.000554 0.000344 0.001885 0.000719 0.000645
homogenity 45 348.416.703 381.997.458 334.023.064 317.058.218 333.723.541
entrophy_45 8.258.206 8.639.878 7.086.753 8.058.085 8.142.195
Contras_45 347.416.703 380.997.458 333.023.064 316.058.218 332.723.541
energy_90 0.000883 0.000533 0.002733 0.001045 0.000927
homogenity 90 118.747.109 133.485.482 149.680.795 120.708.477 132.745.509
entrophy_90 7.772.838 8.143.454 6.777.181 7.653.675 7.768.198
Contras_90 117.747.109 132.485.482 148.680.795 119.708.477 131.745.509
energy_135 0.000540 0.000322 0.001931 0.000704 0.000641
homogenity 135 350.236.034 371.556.265 317.621.923 375.553.103 396.446.463
entrophy_135 8.269.659 8.658.497 7.069.122 8.063.625 8.136.208
Contras_135 349.236.034 370.556.265 316.621.923 374.553.103 395.446.463
Euclidean distance 65.949.032 71.454.186 71.561.446 75.263.028 78.147.020

3.3. Obstacle detection testing of robot position

In the experiment, the robot will detect debris obstacles, up-and-down obstacles with holes, and
pyramid steps obstacles. The robot's detection of obstacles can be influenced by the distance at which the
obstacles are taken. The space for taking obstacles is divided into three, namely at a distance of 5 cm, 10 cm,
and 15 cm. The results of obstacle detection tests at distances of 5 cm, 10 cm, and 15 cm are shown in
Figures 9 to 11. Figures 9(a), 10(a), and 11(a) are test result images for up-down obstacles. Then,
Figures 9(b), 10(b), and 11(b) are test result images for debris obstacles. Finally,
Figures 9(c), 10(c), and 11(c) show test result images for pyramid obstacles. The results of the obstacle
detection test based on robot distance can be shown in Table 5.

Figures 9. Obstacle detection experiment at a distance of 5 cm; (a) up and down obstacles, (b) debris
obstacles, and (c) pyramid step obstacles

Figures 10. Obstacle detection experiment at a distance of 10 cm; (a) up and down obstacles, (b) debris
obstacles, and (c) pyramid step obstacles

Table 6 shows that the rising obstacle is detected as an increasing obstacle for debris obstacles at a
distance of 5 cm. The debris obstacle is seen as a debris obstacle. Still, for the step obstacle, a debris obstacle is
detected; at a distance of 10 cm, all obstacles are detected well, and at a distance of 15 cm, they are seen well.

There was a detection error at a distance of 5 cm, namely at the step obstacle, as in the previous
experiment, there was an error in detecting the obstacle. Therefore, the researcher carried out an analysis of
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the obstacle that was incorrectly identified. In the first step, GLCM feature extraction is done for the detected
obstacles, as shown in Table 6.

Figures 11. Obstacle detection experiment at a distance of 15 cm; (a) up and down obstacles, (b) debris
obstacles, and (c) pyramid step obstacles

Table 5. Obstacle detection test results based on robot distance

Distances (cm)

Obstacles

Obstacle detected

5 Up and down obstacles Up and down obstacles
Debris obstacles Debris obstacles
Pyramid step obstacles Debris obstacles

10 Up and down obstacles Up and down obstacles
Debris obstacles Debris obstacles
Pyramid step obstacles Pyramid step obstacles

15 Up and down obstacles Up and down obstacles

Debris obstacles
Pyramid step obstacles

Debris obstacles
Pyramid step obstacles

Table 6. GLCM feature extraction results for detected obstacles

Distances 5cm 10cm 15cm
Obstacles Up and Debris Pyramid Up and Debris Pyramid Up and Debris Pyramid
down step down step down step
Energ_0 0.001273  0.00035 0.000311 0.001563 0.00025 0.000362 0.001224  0.0003  0.000311
3 5 7
homogenity 0 201.710.0 616.769  510.382. 128.211. 65.970. 812.479.26  188.893. 650.36  539.681.
76 377 259 245 577 9 639 0.359 841
Entrophy_0 7.493.996 8.5745 8.597.93 734.307 8.706.7 8.693.339 7.425.95 85188 8.578.89
29 7 31 8 53 9
Contras_0 200.710.0 615.769  509.382. 127.211. 65.870. 811.479.26  187.893. 649.36  538.681.
76 377 259 245 577 9 639 0.359 841
energy_45 0.001119  0.00030  0.000276  0.001342  0.00020 0.000304 0.001035  0.0003  0.000267
4 7 43
homogenity_4 317.513.1 987.410  523.036. 218.788.  100.272  103.420.48 248.451.  980.40  543.695.
5 13 .689 084 518 .069 5 485 9.077 269
entrophy_45 7.604.155  8.766.1 8.686.06 7.478.76  8.926.5 8.823.258 757713 8.668.0 8.695.61
02 9 1 88 4 45 4
Contras_45 316.513.1  986.410  522.036. 217.788.  100.172  103.320.48 247.451.  979.40  542.695.
13 .689 084 518 .069 5 485 9.077 269
Contras _90 0.001255  0.00034  0.000393  0.001439  0.00024 0.000413 0.001141  0.0003  0.000361
2 2 86
homogenity_9 200.926.9  689.547  320.002. 176.376.  670.882 651.503.69  16.273.6  621.25  323.706.
0 19 921 707 907 .136 1 59 6.582 508
entrophy_90 7.485.536  8.670.1 8.385.82 743143  8.793.1 8.564.934 7.485.44 85489  8.423.70
58 8 3 22 5 39 5
Contras_90 199.926.9  688.547  319.002. 175.376.  669.882  650.503.69  16.173.6  620.25  322.706.
19 921 707 907 .136 1 59 6.582 508
Contras _135 0.00111 0.00028  0.000298 0.00136  0.00020 0.000322 0.001018 0.0002  0.000289
5 5 93
homogenity_1 319.826.6  10.436. 656.622. 237.777. 106.766  107.698.38  264.046. 104.67  688.887.
35 48 479 171 172 .836 8 004 5.386 842
entrophy_135 7.660.904  8.810.9 8.649.63 7.528.47  8.932.9 8.790.166 7.62341 8.7455  864.189
71 7 3 18 8 58
Contras_135 318.826.6  10.426. 655.622. 236.777.  106.666  107.598.38  263.046. 104.57  687.887.
48 479 171 172 .836 8 004 5.386 842
Detected Yes Yes No Yes Yes Yes Yes Yes Yes
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Table 6 shows GLCM feature extraction results for detected obstacles. It can be seen that the feature
extraction from the step obstacle at a distance of 5 cm had an error in its detection, whereas if you refer to
Table 5, the obstacle was detected as debris. After extracting GLCM features for these obstacles, the next
step is to look for the Euclidean distance metric based on GLCM feature extraction from training data and
data on incorrectly detected obstacles. Following are the calculations. In this calculation, X represents the
final training data, and Y defines the obstacle data so that:

dixy) = \/(energyox — energy0y)® ...+ (contras135y — contras135y)* (4)

from (4), there is an Euclidean distance from the training and obstacle data; a poll will be conducted to
determine the type of obstacle detected. Before completing the vote, the following table of the Euclidean
distance calculation results is shown in Table 7.

After getting the results of the Euclidean distance calculation, a poll is carried out on the data where
the data to be polled is 3 Euclidean distance data, which has the shortest distance; this is based on the
selection of neighbor values in the previous KNN algorithm which is 3. So, we get the obstacle with the
shortest distance, namely the debris obstacle, step obstacles, and debris obstacles because most polls are
debris obstacles; therefore, the system detects these obstacles as debris obstacles. The analysis concluded that
a distance of 10 cm and a distance of 15 cm are ideal distances for detection using the KNN algorithm.

Table 7. Data result of calculating the Euclidean distance between training data and obstacle data

Feature extraction Debris Pyramid step Debris Up and down Pyramid step
obstacles obstacles obstacles obstacles obstacles
Energ 0 0.000677 0.000627 0.000514 0.000808 0.000453
homogenity 0 496.537.340 407.669.291 597.492.987 372.860.544 334.278.728
Entrophy 0 8.091.818 8.237.896 8.264.116 7.782.769 8.351.820
Contras_0 495.537.340 406.669.291 596.492.987 371.860.544 333.278.728
energy_45 0.000606 0.000599 0.000468 0.000765 0.000400
homogenity 45 626.802.406 516.395.375 704.223.634 521.310.993 582.935.024
entrophy_45 8.203.666 8.303.369 8.358.180 7.849.869 8.532.961
Contras_45 625.802.406 515.395.375 703.223.634 520.310.993 581.935.024
energy_90 0.000971 0.000903 0.000722 0.000979 0.000470
homogenity 90 280.741.326 217.858.083 314.421.506 284.704.909 429.642.163
entrophy_90 7.804.565 7.866.032 7.984.941 7.631.175 8.401.191
Contras_90 279.741.326 216.858.083 313.421.506 283.704.909 428.642.163
energy_135 0.000617 0.000598 0.000473 0.000779 0.000382
homogenity 135 626.803.150 520.120.590 722.124.558 480.067.332 573.162.254
entrophy_135 8.222.099 8.298.807 8.369.625 7.836.752 8.588.029
Contras_135 625.803.150 519.120.590 721.124.558 479.067.332 572.162.254

Euclidean distance 163.647.585 281.640.172 299.129.233 320.418.604 327.373.636

4. CONCLUSION

Several conclusions are drawn based on the results of the experimental test and analysis. First, from
testing using the test dataset, it can be concluded that the system achieved the highest accuracy level in
detecting debris obstacles, reaching 80% for rising obstacles, 100% for debris obstacles, and 90% for step
obstacles. These results indicate that the system is more effective in recognizing debris obstacles than others.

Furthermore, analysis of the test error values shows that the debris barrier has the lowest error value,
only around 20%. This is obtained based on calculations from test data that has been carried out. Meanwhile,
debris obstacles have no error value, and step obstacles have an error value of 10%. This indicates that the
system achieves the highest level of accuracy when detecting debris obstacles. In addition, the analysis also
reveals that distance greatly influences obstacle detection. Test results show that the ideal space to detect all
obstacles is around 10 cm and 15 cm. It is essential to understand the operational limitations of robots in
recognizing obstacles well.

Finally, the KNN method was proven to classify obstacles for debris, pyramid steps, and up-down
obstacles. However, the accuracy of the results depends on the data collection and the distance from the data
collection to the obstacle to be detected. This could also potentially impact feature extraction from the
GLCM used in the analysis. Therefore, dataset selection and data collection distance are critical factors in
improving the performance of obstacle detection systems. This research has limited data collection time and
uses a low-resolution camera. Future research will be carried out using cameras that have higher resolution
and collect more data.
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