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 The Indonesian SAR robot contest (KRSRI) is a development of the fire 

extinguisher robot contest (KRPAI); initially, the robot at KRPAI only put 

out fires. Still, at KRSRI, the robot was asked to prioritize the SAR function. 

The robot had to overcome obstacles in this contest to complete it. Based on 

this, an obstacle detection system for the robot was designed using machine 

learning with the K-nearest neighbor algorithm and gray level co-occurrence 

matrix feature extraction. Later, the robot is expected to be able to carry out 

accurate obstacle detection to prioritize efficiency so that no more time is 

consumed due to the robot incorrectly detecting an obstacle. The results of 

the tests that have been carried out show that the detection accuracy based 

on the test dataset is 80% for rising barriers, 100% for debris obstacles, and 

90% for step obstacles, and an error value of 20% for increasing obstacles is 

obtained, 0% for debris obstacles, and 10% for stair obstacles. 
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1. INTRODUCTION 

Nowadays, the development of research on robots continues to increase [1]-[4] including in 

Indonesia. The development of robotics in Indonesia is said to have been rapid, as indicated by the large 

number of participants participating in the Indonesian robot competition (KRI). The National Achievement 

Center and the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia 

organized the KRI. This contest is a forum for student creativity in robotics design and engineering. One of 

the Indonesian robot contest branches is the Indonesian SAR robot contest (KRSRI). This robot contest is a 

development of the fire extinguisher robot contest (KRPAI). The difference between the KRSRI and KRPAI 

competitions only lies in the task, but the robot's shape is still the same: a legged robot [5]. 

This Indonesian robot contest will continue the international robot competition, namely the 

RoboCup robot league RoboCup rescue division, if there is a winner in the KRI competition. The robot's task 

in the competition is to search for simulated victims showing signs of life in a maze with various rugged 

terrain. Apart from that, the robot must also be able to mark the victim's location and landmarks detected 

automatically on a map created by the robot online. These signs of life can include the victim's visual 

appearance and movements, simulated body heat, CO2 levels, and audio signals [6]. 

The KRSRI robot was built by utilizing several distance sensors placed on the robot's body as a 

guide. However, the weakness of this system lies in the robot's limited ability to avoid obstacles, such as 

walls or corners. In the latest development of the KRSRI robot, the focus is more on the search and rescue 

https://creativecommons.org/licenses/by-sa/4.0/


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

The implementation of the K-nearest neighbor algorithm to detect … (Tigor Hamonangan Nasution) 

1331 

(SAR) function, so we decided to add obstacle elements such as debris, hollow up-and-down terrain, and 

pyramid-shaped steps. So, it is necessary to detect obstacles to prioritize the efficiency of the robot's ability to 

overcome these obstacles. This research uses machine learning with the K-nearest neighbor (KNN) 

classification algorithm, which is assisted by an image processing algorithm, namely, the gray-level co-

occurrence matrix (GLCM) feature extraction, to recognize obstacle images. In this research, we use Python 

programming to process machine learning using the Scikit-learn Package library [7], [8]. Python 

programming is also used to program Arduino [9]. 

Several studies used the KNN algorithm to recognize images, such as prior research conducted by 

Islama et al. [10] entitled "HOG feature extraction and KNN classification for detecting vehicles on the 

highway," where this research used KNN and extraction image processing the histogram of oriented 

gradients (HOG) feature, this research aims to recognize car using the KNN algorithm, this research  

produces a detection accuracy of 84% in detecting cars. In the following previous study conducted by 

Mulyono et al. [11] entitled "Parijoto fruits classification using K-nearest neighbor based on gray level co-

occurance matrix texture extraction," in this research the KNN classification was used on parity fruit, this 

research used GLCM in obtaining the extraction features, the results of this research got an accuracy of 80% 

in detecting the parity fruit. In Akila and Pavithra [12] study entitled "Optimized scale invariant HOG 

descriptors for object and human detection," research using KNN and HOG feature extraction as human and 

object detectors in this research resulted in a positive detection rate of 86%. These studies show that using the 

KNN and GLCM algorithms is very good in designing systems for recognizing particular objects [13]. 

 

 

2. METHOD 

2.1.  System overview 

In this research, the system for recognizing types of coffee bean roasting levels uses a computer to 

run the KNN classification algorithm for obstacle detection. This algorithm performs classification based on 

GLCM feature extraction of an image [14]. When the photo is taken, the system will immediately extract 

GLCM features based on degrees 0, 45, 90, and 135 to obtain energy, homogeneity, entropy, and contrast 

from each degree [15]-[17]. Figure 1 shows the design of the system. 

 

 

 
 

Figure 1. System block diagram 

 

 

The system works in the block diagram through the integration and communication process carried 

out in this research, which begins with carrying out an obstacle recognition/detection program on the 

researcher's computer using the Python programming language. After that, communication is carried out 

between Python and ESP32-CAM using Wi-Fi; this is done to capture images in real time and receive 

characters for detected obstacles. After that, the characters will be sent to the OpenCM 9.04 microcontroller, 

and then the symbols received by OpenCM will influence the robot's movement. The workflow for the 

second stage of the system to be designed can be shown in Figure 2. 
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Figure 2. Obstacle detection system flowchart diagram 

 

 

2.2.  System design 

Overall, as explained in the general description, this research has two workflow stages, where the 

first stage is machine learning modeling, and the second stage is the obstacle detection stage. Based on this, a 

system design was designed, which started by taking the obstacle dataset; for the dataset used, there were 150 

datasets; after taking the dataset from the obstacles, it was continued by building a machine learning model 

using the KNN algorithm, after being trained it was continued with taking images of the challenges which 

would be detected, after that the final stage is sending the character to the KRSRI robot. The flow is arranged 

in a flowchart, as seen in Figure 3. 

 

 

 
 

Figure 3. System design flowchart 

 

 

Based on the flow diagram in Figure 3, the first stage begins with taking the obstacle dataset, which 

is taken so that the system can classify obstacle detection. This is because machine learning requires data to 

build models regarding machine learning later. The dataset is in the form of images of obstacles, inclines, and 

debris steps. Fifty photos were taken for each block, so the dataset had 150 images. 

Based on the previous background, the researchers decided to build a machine learning model 

according to the design, and this research would use the KNN algorithm to classify obstacles. KNN cannot 

detect obstacles alone, so feature extraction is required. The feature extraction used is GLCM for the KNN 

algorithm, and this feature extraction is carried out on the researcher's computer. This feature extraction 
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involves a library from Python, namely open computer vision (OpenCV), where this library functions to 

simplify digital image processing [18]-[20]. 

The following is the GLCM feature extraction programming, which will later be used in the KNN 

algorithm. GLCM feature extraction is performed to help provide accuracy in the subsequent process in the 

learning machine. First, convert the initial image to grayscale, as shown in the following program code 

snippet. 

 

 
 

The following program is to extract GLCM features from angles 0, 45, 90, and 135, along with a 

snippet of the program code. In this programming, there is a table name variable where this variable holds the 

label from the file where the brand contains the location of the dataset, then the zero degree extraction label 

which has the extracted value of energy_0, homogeneity_0, entrophy_0, and contrast_0, as well as the 

extraction result label of degrees 45, 90, and 135. 

 

 
 

After getting the extraction results from several features, the results are converted into a comma 

separated values (CSV) extension file, as shown in the following program code snippet. The CSV file 

conversion uses the Pandas library; this library is a Python library that has functions for carrying out data 

processing and statistical calculations aimed at data preprocessing [13], [21], [22]. 

 

 
 

The next stage is to build a machine learning model using the KNN algorithm; after saving the 

extraction results, the next step is to create a machine learning model, which starts by making calls to the 

feature extraction results in CSV form using the Pandas library, then assigning a label to each feature 

extraction result where from data 0-50 has a rising brand, data 51-100 has a debris label, and the rest have a 

step label, then these labels are converted into an array which the model will later recognize, here is a snippet 

of the program code. 

 

 
 

The program code uses the numpy library, which is a library that Python has for carrying out 

scientific and mathematical needs [23], [9]. The next stage of building the model is dividing the training data 

and testing data using the Scikit-learn library, which is used for making machine learning models, from 

preprocessing to creating the model [7], [8]. 

 

 
 

The program code snippet above shows that the data is divided with a weight of 20% for test data 

and 80% for training data. After splitting the training and test data, the next step is to build a KNN model 

using the Scikit-learn library in Python, as in the following program code snippet. 

 

 
 

In the program code snippet above, you can see a variable that contains a syntax for making 

classifications using KNN; in this syntax, there is a parameter, namely n_neighbors or the number of n 

neighbors; this is the KNN way of determining an object based on its nearest neighbors, where the 

n_neighbors parameter is used is 3. The next step is the process of taking pictures of obstacles. Obstacle 

image-taking is carried out by the ESP32-CAM, which acts as a camera module and a microcontroller. The 

role of the ESP32-CAM is as a container for capturing images in real time. In taking real-time photos using 

gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY) gray = cv.resize(gray,(128,128)) 

 

namatabel=['file','energy_0','homogenity_0', 

'entrophy_0','contrast_0' ,'energy_45','homogenity_45', 

'entrophy_45','contrast_45' ,'energy_90','homogenity_90', 

'entrophy_90','contrast_90' ,'energy_135','homogenity_135', 

'entrophy_135','contrast_135']  

df = pd.DataFrame(hasilnya, columns=namatabel) 

df.to_csv(r'dataku.csv',index=False) 

label = rintangan['label'].to_numpy() 

from sklearn.model_selection import train_test_split xtrain, xtest, ytrain, 

ytest = train_test_split(data,label, test_size = 0.20, random_state=42) 

model=KNeighborsClassifier(n_neighbors=3) model.fit(xtrain,ytrain) 
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the esp32cam. The library is available on the Arduino IDE, which is used to access the ESP32CAM device 

via the Arduino IDE, making it possible to take videos or pictures [24], [25]. The following is a snippet of 

program code for image capture by ESP32-CAM. 

 

 
 

The program code snippet above is the program code for taking an image, where if the capture is 

successful, the function will print information about the photo taken, such as the image resolution and image 

size in bytes. This image information will be used in the following process. The captured image will be 

processed by machine learning so that the system can decide on detected obstacles by sending characters to 

the ESP32-CAM. The communication used between the ESP32-CAM and the KNN algorithm is Wi-Fi 

communication. We are sending feelings to robots. This character sending is carried out between the ESP32-

CAM and the OpenCM 9.04 microcontroller with serial communication using the serial library in Python, 

which allows parallel communication between Python and Arduino for sending characters [9]. The following 

is a snippet of program code from the process. 

 

 
 

The program code snippet above shows the process for making client requests to the web server 

using the WebServer.h library. Which has the function of running the web server on the ESP32-CAM and 

checking the Wi-Fi connection that reads data from the link, if any, after taking images on the ESP32CAM 

then proceed with classification for obstacle detection. The program will display a message when the 

connection is successful, and the message is received. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Preparation phase 

The first stage is preparing the obstacles that the robot will detect. The obstacles that the robot will 

detect are debris obstacles, obstacles rising and falling with holes, and pyramid steps obstacles. Images of 

these obstacles are shown in Figure 4. Figure 4 shows the different levels of difficulty for each obstacle. 

Figure 4(a) shows a debris obstacle where debris is scattered on the floor. The next obstacle is a challenge to 

pass through an up-and-down field, as seen in Figure 4(b). Finally, in Figure 4(c), there is a pyramid obstacle 

where the obstacle is shaped like a pyramid the robot will pass. 

 

 

   
(a) (b) (c) 

 

Figure 4. Obstacles that will be detected are; (a) debris obstacles (puing), (b) up and down obstacles (naik), 

and (c) pyramid step obstacles (undakan) 

void serverJpg() {  

auto frame = esp32cam::capture();  

if (frame == nullptr) {  

Serial.println("CAPTURE FAIL"); server.send(503, "", ""); return;}  

Serial.printf("CAPTURE OK %dx%d %db\n", frame- >getWidth(), frame-

>getHeight(), static_cast(frame->size()));  

server.setContentLength(frame->size()); server.send(200, "image/jpeg");  

WiFiClient client = server.client(); frame->writeTo(client);} 

void loop() { 

 server.handleClient();  

WiFiClient kirim = ser.available();  

if (kirim){  

Serial.print("koneksidone"); while(kirim.connected())} 

if(kirim.available()){  

char terima = kirim.read(); Serial.print("terima ini");  

Serial.println(terima);}} 
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The second stage is determining the light intensity in the room where the test will occur. The power 

given must be sufficient so that when image processing is carried out, obstacles can be appropriately detected 

so the robot can pass through them. The test was carried out indoors because the light intensity from outside 

was not constant. Inconstant light can affect GLCM feature extraction values. The next step is preparing 

testing requirements. First, upload the ESP32CAM live streaming program, set up Wi-Fi for ESP32 CAM 

communication with Python, and upload the movement code for Opencm9.04. Figure 5 shows the 

configuration process to determine the light intensity. Figure 5(a) shows the position of Esp32 CAM on 

OpenCM 9.05. Figure 5(b) shows the laptop used to configure and monitor the configuration results. 

 

 

  

(a) (b) 

 

Figure 5. Test preparation configuration; (a) position of Esp32 CAM on OpenCM 9.05 robot and 

microcontroller and (b) position of laptop with Python programming 

 

 

3.2.  Testing of the K-nearest neighbor algorithm 

The test carried out on the KNN algorithm is to find out how much accuracy is obtained when the 

model makes predictions on test data. Before this test, the data received from the GLCM feature extraction 

results are shown in Table 1. 

 

 

Table 1. Results of GLCM feature extraction on the obstacle dataset 
Feature extraction Up and down obstacles Debris obstacles Pyramid step obstacles 

energy_0 14.136 5.373 6.718 
homogenity_0 16.825 635.932 4.100 

entrophy_0 72.872 8.480 814.311 

energy_0 16.725. 6.349 4.090 
energy_45 12.235. 5.192 6.418 

homogenity_45 34.737 9.448 3.945 

entrophy_45 7.452 8.578 819.00 
energy_45 3.463 94.389 39.354 

energy_90 13.508 6.677 10.204 

homogenity_90 2.836 6.445 13.645 
entrophy_90 7.326 8.371 7.698 

energy_90 2.826 6.435 13.545 

energy_135 12.538 4.957 6.245 
homogenity_135 3.565 10.283 48.244 

entrophy_135 73.935 8.596 819.420 

energy_135 3.555 10.273 4.814 

 

 

The dataset is 150, divided into 80% for training data and 20% for testing data. The features used 

are contrast, entropy, homogeneity, and energy obtained from the results of GLCM matrix extraction in 

degrees 0, 45, 90, and 135. Then, the model was tested on the test data and the results were obtained, as 

shown in Table 2. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝑖𝑛 𝑇𝑒𝑠𝑡 𝐷𝑎𝑡𝑎
× 100% (1) 

 

Based on (1), the accuracy of the rising barrier is 80%, the debris barrier is 100%, and the step 

barrier is 90%. Then, after looking for the accuracy value, look for the error value of the detection results for 
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each obstacle. The error results for the obstacle rise are 20%, the debris obstacle is 0%, and the step obstacle 

is 10%. 

 

 

Table 2. Model classification test results on test data 
Obstacles Number of obstacles in test data Number of obstacles detected 

Up and down obstacles 10 8 

Debris obstacles 9 9 
Pyramid step obstacles 11 10 

 

 

Apart from analyzing the accuracy and error values in Table 2, obstacles that were not detected 

according to the test data were also examined. For example, with rising barriers, the number of blocks in the 

test data is 10. Still, when the detection results are obtained, the number is eight growing obstacles, so two 

growing obstacles are incorrectly detected. Likewise, with step obstacles, there are 11-step obstacles in the 

test data, but only 10-step obstacles are detected, so there is a 1-step obstacle that is incorrectly detected. 

Because there are detection errors in rising barriers and steps in the test data, an analysis is carried out to see 

what type of obstacle the system predicts for the wrong block. The following are the analysis steps. 

The first step in this analysis is to compare the results of the test data output and the detection data 

from the obstacle objects shown in Figures 6 and 7. Figures 6 and 7 show the output of the test data and the 

prediction results for obstacle detection. The two works are in an array whose data length is 0 to 29. The test 

data output shown in Figure 6 has the 0th data, namely in the form of debris obstacles, the 1st data, namely 

rising barriers, and the 29th data, namely rising data. Likewise, the prediction output shown in Figure 7 has 

the 0th data, namely debris obstacles, the 1st data, climbing obstacles, and finally, the 29th data, namely steps 

data. In the two images, there are differences in the output; in the test data, the 20th data array shows a rising 

obstacle, but in the detection data, the 20th data from the variety shows a step obstacle. This can be seen from 

the test data output in the 24th array data, where the data shows a step obstacle, but the prediction data shows 

a debris obstacle. Finally, the 29th test data shows rising impediments, but the detection results show a step 

obstacle. Based on the detection error. Researchers try to analyze how the system makes errors in detecting 

these obstacles. 

 

 

 
 

Figure 6. Test data output results 

 

 

 
 

Figure 7. Test data detection prediction results 

 

 

The second step is to carry out feature extraction. The feature extraction results will be stored in a 

variable in the form of an array. The results of feature extraction from the 20th array data output are shown in 

Figure 8. 

From the data feature extraction results, the system will then make predictions to find the type of 

obstacle from the feature extraction. After getting the feature extraction results, the next step is to carry out 

calculations using the KNN algorithm, where in this algorithm, there is a distance measurement metric, 

namely Euclidean distance. Later, this measurement will carry out a decision obtained from voting the closest 

distance based on the nearest neighbors, as shown in Table 3. 
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Figure 8. 20th test data output results 

 

 

Table 3. Euclidean distance calculation preparation data 
Feature extraction Pyramid step obstacles The 20th test data 

Energ_0 0.0005.712 0.00146703479 

homogenity_0 338.570.374 300.714.136 

Entrophy_0 822.300.312 722.822.332 
Contras_0 337.570.374 299.714.136 

energy_45 0.0005.3532 0.00142596441 

homogenity_45 401.247.504 343.756.960 
entrophy_45 831.356.067 724.803.239 

Contras_45 400.247.504 342756960 

energy_90 0.0007.67416147 0.00204848463 
homogenity_90 214.285.433 162.433.871 

entrophy_90 794.648.228 696.448.180 

Contras_90 213.285.433 161.433.871 
energy_135 0.0005264 0.00142022337 

homogenity_135 459.182.528 357.580.445 

entrophy_135 830.466.252 725.685.392 
Contras_135 458.182.528 356.580.445 

 

 

In Table 3, the last date for the training data is a step obstacle, while the 20th test data obstacle is 

made as a question mark. This is done to see what obstacles the system will detect later. The following is a 

calculation of the last training data with the 20th test data. In this calculation, the last training data, namely 

the 119th training data, is represented by P, and the 20th test data is represented by Q: 

 

𝑑(𝑃,𝑄) =  √(𝑒𝑛𝑒𝑟𝑔𝑦0𝑃 − 𝑒𝑛𝑒𝑟𝑔𝑦0𝑄)
2

… + (𝑐𝑜𝑛𝑡𝑟𝑎𝑠135𝑃 − 𝑐𝑜𝑛𝑡𝑟𝑎𝑠135𝑄)
2
  

 

𝑑(𝑃,𝑄) =  √(−0.000895)2 + (37.8562377)2 + ⋯ + (101.1602083)2  

 

𝑑(𝑃,𝑄) =  √0.0000008024 + 1433.09473 + ⋯ + 1032.29833 (2) 

 

where P is final training data, Q is 20th test data. So, we get the Euclidean distance from the 120th training 

data and the 20th test data. 

 

𝑑(𝑃,𝑄) =  √33503.837848968906  

 

𝑑(𝑃,𝑄) =  118.424 (3) 

 

After getting the Euclidean distance from a piece of data, sorting is done from the smallest distance 

to the most significant distance, then poll or vote based on the smallest space; the poll is done using the 

neighbor value approach; the neighbor value in this system is three so the poll selects the three closest 

neighbors and looks at what types of obstacles appear most often in the three neighbors? The following is an 

Euclidean distance table sorted from the smallest distance, shown in Table 4. 

Table 4 represents the Euclidean distance calculation table for the entire training data against the 

20th test data, where the table has been sorted based on the smallest Euclidean distance. After sorting, polling 

starts based on the three closest Euclidean distances. This is based on using the nearest neighbor in this 

algorithm, namely 3. A step obstacle is detected for the first most relative distance, and a step obstacle is 

detected for the second closest distance. At the third closest distance, a rising obstacle is detected. Then, a 

poll is carried out at that distance on the number of blocks that appear. In this case, the obstacle that occurs 

most frequently is the step obstacle. Therefore, the 20th test data is detected as a step by the system. 
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Table 4. Data result of Euclidean distance calculation 

Feature extraction 
Pyramid step 

obstacles 

Pyramid step 

obstacles 

Up and down 

obstacles 

Pyramid step 

obstacles 

Pyramid step 

obstacles 

Energ_0 0.000574 0.000362 0.001942 0.000770 0.000687 

homogenity_0 314.448.019 293.388.226 274.136.257 308.078.371 324.365.157 

Entrophy_0 8.209.360 8.545.028 7.053.243 7.991.112 8.079.789 
Contras_0 313.448.019 292.388.226 273.136.257 307.078.371 323.365.157 

energy_45 0.000554 0.000344 0.001885 0.000719 0.000645 

homogenity_45 348.416.703 381.997.458 334.023.064 317.058.218 333.723.541 
entrophy_45 8.258.206 8.639.878 7.086.753 8.058.085 8.142.195 

Contras_45 347.416.703 380.997.458 333.023.064 316.058.218 332.723.541 

energy_90 0.000883 0.000533 0.002733 0.001045 0.000927 
homogenity_90 118.747.109 133.485.482 149.680.795 120.708.477 132.745.509 

entrophy_90 7.772.838 8.143.454 6.777.181 7.653.675 7.768.198 

Contras_90 117.747.109 132.485.482 148.680.795 119.708.477 131.745.509 
energy_135 0.000540 0.000322 0.001931 0.000704 0.000641 

homogenity_135 350.236.034 371.556.265 317.621.923 375.553.103 396.446.463 

entrophy_135 8.269.659 8.658.497 7.069.122 8.063.625 8.136.208 
Contras_135 349.236.034 370.556.265 316.621.923 374.553.103 395.446.463 

Euclidean distance 65.949.032 71.454.186 71.561.446 75.263.028 78.147.020 

 

 

3.3.  Obstacle detection testing of robot position 

In the experiment, the robot will detect debris obstacles, up-and-down obstacles with holes, and 

pyramid steps obstacles. The robot's detection of obstacles can be influenced by the distance at which the 

obstacles are taken. The space for taking obstacles is divided into three, namely at a distance of 5 cm, 10 cm, 

and 15 cm. The results of obstacle detection tests at distances of 5 cm, 10 cm, and 15 cm are shown in 

Figures 9 to 11. Figures 9(a), 10(a), and 11(a) are test result images for up-down obstacles. Then,  

Figures 9(b), 10(b), and 11(b) are test result images for debris obstacles. Finally,  

Figures 9(c), 10(c), and 11(c) show test result images for pyramid obstacles. The results of the obstacle 

detection test based on robot distance can be shown in Table 5. 

 

 

   

(a) (b) (c) 

   

 

Figures 9. Obstacle detection experiment at a distance of 5 cm; (a) up and down obstacles, (b) debris 

obstacles, and (c) pyramid step obstacles 

 

 

   
(a) (b) (c) 

 

Figures 10. Obstacle detection experiment at a distance of 10 cm; (a) up and down obstacles, (b) debris 

obstacles, and (c) pyramid step obstacles 

 

 

Table 6 shows that the rising obstacle is detected as an increasing obstacle for debris obstacles at a 

distance of 5 cm. The debris obstacle is seen as a debris obstacle. Still, for the step obstacle, a debris obstacle is 

detected; at a distance of 10 cm, all obstacles are detected well, and at a distance of 15 cm, they are seen well. 

There was a detection error at a distance of 5 cm, namely at the step obstacle, as in the previous 

experiment, there was an error in detecting the obstacle. Therefore, the researcher carried out an analysis of 
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the obstacle that was incorrectly identified. In the first step, GLCM feature extraction is done for the detected 

obstacles, as shown in Table 6. 

 

 

   
(a) (b) (c) 

 

Figures 11. Obstacle detection experiment at a distance of 15 cm; (a) up and down obstacles, (b) debris 

obstacles, and (c) pyramid step obstacles 

 

 

Table 5. Obstacle detection test results based on robot distance 
Distances (cm) Obstacles Obstacle detected 

5 Up and down obstacles Up and down obstacles 

Debris obstacles Debris obstacles 

Pyramid step obstacles Debris obstacles 
10 Up and down obstacles Up and down obstacles 

Debris obstacles Debris obstacles 

Pyramid step obstacles Pyramid step obstacles 
15 Up and down obstacles Up and down obstacles 

Debris obstacles Debris obstacles 

Pyramid step obstacles Pyramid step obstacles 

 

 

Table 6. GLCM feature extraction results for detected obstacles 
Distances 5 cm 10 cm 15 cm 

Obstacles Up and 

down 
Debris 

Pyramid 

step 

Up and 

down 
Debris 

Pyramid 

step 

Up and 

down 
Debris 

Pyramid 

step 
Energ_0 0.001273 0.00035

3 

0.000311 0.001563 0.00025

5 

0.000362 0.001224 0.0003

7 

0.000311 

homogenity_0 201.710.0
76 

616.769
.377 

510.382.
259 

128.211.
245 

65.970.
577 

812.479.26
9 

188.893.
639 

650.36
0.359 

539.681.
841 

Entrophy_0 7.493.996 8.574.5

29 

8.597.93

7 

734.307 8.706.7

31 

8.693.339 7.425.95

8 

8.518.8

53 

8.578.89

9 
Contras_0 200.710.0

76 

615.769

.377 

509.382.

259 

127.211.

245 

65.870.

577 

811.479.26

9 

187.893.

639 

649.36

0.359 

538.681.

841 

energy_45 0.001119 0.00030
4 

0.000276 0.001342 0.00020
7 

0.000304 0.001035 0.0003
43 

0.000267 

homogenity_4

5 

317.513.1

13 

987.410

.689 

523.036.

084 

218.788.

518 

100.272

.069 

103.420.48

5 

248.451.

485 

980.40

9.077 

543.695.

269 
entrophy_45 7.604.155 8.766.1

02 

8.686.06

9 

7.478.76

1 

8.926.5

88 

8.823.258 7.577.13

4 

8.668.0

45 

8.695.61

4 

Contras_45 316.513.1
13 

986.410
.689 

522.036.
084 

217.788.
518 

100.172
.069 

103.320.48
5 

247.451.
485 

979.40
9.077 

542.695.
269 

Contras _90 0.001255 0.00034

2 

0.000393 0.001439 0.00024

2 

0.000413 0.001141 0.0003

86 

0.000361 

homogenity_9

0 

200.926.9

19 

689.547

.921 

320.002.

707 

176.376.

907 

670.882

.136 

651.503.69

1 

16.273.6

59 

621.25

6.582 

323.706.

508 
entrophy_90 7.485.536 8.670.1

58 

8.385.82

8 

7.431.43

3 

8.793.1

22 

8.564.934 7.485.44

5 

8.548.9

39 

8.423.70

5 

Contras_90 199.926.9
19 

688.547
.921 

319.002.
707 

175.376.
907 

669.882
.136 

650.503.69
1 

16.173.6
59 

620.25
6.582 

322.706.
508 

Contras _135 0.00111 0.00028

5 

0.000298 0.00136 0.00020

5 

0.000322 0.001018 0.0002

93 

0.000289 

homogenity_1

35 

319.826.6

48 

10.436.

479 

656.622.

171 

237.777.

172 

106.766

.836 

107.698.38

8 

264.046.

004 

104.67

5.386 

688.887.

842 

entrophy_135 7.660.904 8.810.9
71 

8.649.63
7 

7.528.47
3 

8.932.9
18 

8.790.166 7.623.41
8 

8.745.5
58 

864.189 

Contras_135 318.826.6

48 

10.426.

479 

655.622.

171 

236.777.

172 

106.666

.836 

107.598.38

8 

263.046.

004 

104.57

5.386 

687.887.

842 
Detected Yes Yes No Yes Yes Yes Yes Yes Yes 
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Table 6 shows GLCM feature extraction results for detected obstacles. It can be seen that the feature 

extraction from the step obstacle at a distance of 5 cm had an error in its detection, whereas if you refer to 

Table 5, the obstacle was detected as debris. After extracting GLCM features for these obstacles, the next 

step is to look for the Euclidean distance metric based on GLCM feature extraction from training data and 

data on incorrectly detected obstacles. Following are the calculations. In this calculation, X represents the 

final training data, and Y defines the obstacle data so that: 

 

𝑑(𝑋,𝑌) =  √(𝑒𝑛𝑒𝑟𝑔𝑦0𝑋 − 𝑒𝑛𝑒𝑟𝑔𝑦0𝑌)2
… + (𝑐𝑜𝑛𝑡𝑟𝑎𝑠135𝑋 − 𝑐𝑜𝑛𝑡𝑟𝑎𝑠135𝑌)2

 (4) 

 

from (4), there is an Euclidean distance from the training and obstacle data; a poll will be conducted to 

determine the type of obstacle detected. Before completing the vote, the following table of the Euclidean 

distance calculation results is shown in Table 7. 

After getting the results of the Euclidean distance calculation, a poll is carried out on the data where 

the data to be polled is 3 Euclidean distance data, which has the shortest distance; this is based on the 

selection of neighbor values in the previous KNN algorithm which is 3. So, we get the obstacle with the 

shortest distance, namely the debris obstacle, step obstacles, and debris obstacles because most polls are 

debris obstacles; therefore, the system detects these obstacles as debris obstacles. The analysis concluded that 

a distance of 10 cm and a distance of 15 cm are ideal distances for detection using the KNN algorithm. 

 

 

Table 7. Data result of calculating the Euclidean distance between training data and obstacle data 

Feature extraction 
Debris 

obstacles 
Pyramid step 

obstacles 
Debris 

obstacles 
Up and down 

obstacles 
Pyramid step 

obstacles 

Energ_0 0.000677 0.000627 0.000514 0.000808 0.000453 

homogenity_0 496.537.340 407.669.291 597.492.987 372.860.544 334.278.728 

Entrophy_0 8.091.818 8.237.896 8.264.116 7.782.769 8.351.820 
Contras_0 495.537.340 406.669.291 596.492.987 371.860.544 333.278.728 

energy_45 0.000606 0.000599 0.000468 0.000765 0.000400 

homogenity_45 626.802.406 516.395.375 704.223.634 521.310.993 582.935.024 
entrophy_45 8.203.666 8.303.369 8.358.180 7.849.869 8.532.961 

Contras_45 625.802.406 515.395.375 703.223.634 520.310.993 581.935.024 

energy_90 0.000971 0.000903 0.000722 0.000979 0.000470 
homogenity_90 280.741.326 217.858.083 314.421.506 284.704.909 429.642.163 

entrophy_90 7.804.565 7.866.032 7.984.941 7.631.175 8.401.191 

Contras_90 279.741.326 216.858.083 313.421.506 283.704.909 428.642.163 
energy_135 0.000617 0.000598 0.000473 0.000779 0.000382 

homogenity_135 626.803.150 520.120.590 722.124.558 480.067.332 573.162.254 

entrophy_135 8.222.099 8.298.807 8.369.625 7.836.752 8.588.029 
Contras_135 625.803.150 519.120.590 721.124.558 479.067.332 572.162.254 

Euclidean distance 163.647.585 281.640.172 299.129.233 320.418.604 327.373.636 

 

 

4. CONCLUSION 

Several conclusions are drawn based on the results of the experimental test and analysis. First, from 

testing using the test dataset, it can be concluded that the system achieved the highest accuracy level in 

detecting debris obstacles, reaching 80% for rising obstacles, 100% for debris obstacles, and 90% for step 

obstacles. These results indicate that the system is more effective in recognizing debris obstacles than others. 

Furthermore, analysis of the test error values shows that the debris barrier has the lowest error value, 

only around 20%. This is obtained based on calculations from test data that has been carried out. Meanwhile, 

debris obstacles have no error value, and step obstacles have an error value of 10%. This indicates that the 

system achieves the highest level of accuracy when detecting debris obstacles. In addition, the analysis also 

reveals that distance greatly influences obstacle detection. Test results show that the ideal space to detect all 

obstacles is around 10 cm and 15 cm. It is essential to understand the operational limitations of robots in 

recognizing obstacles well. 

Finally, the KNN method was proven to classify obstacles for debris, pyramid steps, and up-down 

obstacles. However, the accuracy of the results depends on the data collection and the distance from the data 

collection to the obstacle to be detected. This could also potentially impact feature extraction from the 

GLCM used in the analysis. Therefore, dataset selection and data collection distance are critical factors in 

improving the performance of obstacle detection systems. This research has limited data collection time and 

uses a low-resolution camera. Future research will be carried out using cameras that have higher resolution 

and collect more data. 
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