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 In the current study, the quadrotor's nonlinear dynamic model is developed 

using the Newton-Euler approach. Following that, several nonlinear and 

linear control strategies for tracking the quadrotor's trajectory are applied. 

First, by employing distinct controllers for each output variable, direct 

application of the linear proportional integral derivative (PID) controller to 

the nonlinear system is realized. This system may also be linearized about an 

operational point to generate linear controllers, according to the linear 

quadratic regulator (LQR) demonstration. Nevertheless, in practice, the 

system dynamics may not always be accurately reflected by this linear 

approximation and may even be relatively wasteful. Nonlinear regulators, 

including the feedback linearization (FBL) controller, sliding mode 

controller (SMC), and modified sliding mode controller (MSMC), perform 

better in such situations. The trajectory tracking capabilities, dynamic 

performance, and potential disruption impact of both methods are evaluated 

and compared. The FBL with LQR was the best controller among them all. 

The SMC and the MSMC were also very good in tracking the trajectory. 
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1. INTRODUCTION 

During the previous several decades, quadrotors have been widely employed in numerous uses, and 

a variety of modeling and control strategies have been presented for them. Being a tightly coupled nonlinear 

multivariable system is one of the difficulties in designing controllers for a quadrotor. Because it employs 

four actuators to manage six degrees of freedom, it is commonly referred to as an under-actuated system. 

Considerable progress has been achieved by researchers in the area of quadrotor control by proposing various 

control techniques [1]–[6]. These techniques aim to improve the stability, maneuverability, and performance 

of quadrotor systems [7]–[10]. Several linear, nonlinear, and robust controllers have been examined for 

implementation and simulation [11]–[14]. 

Proportional integral derivative (PID) and linear quadratic regulator (LQR) controls are used for 

roll, pitch, and yaw angles as well as height, x, and y locations [13]–[17]. The feedback linearization (FBL) 

control approach was the focus of several studies and used for a variety of quadrotor control applications. 

Jiang et al. [18] proposed a new controller based on FBL technique. This approach was also employed to 

design controllers for quadrotors in [19], [20]. Additionally, Reinoso et al. [21] and Labbadi et al. [22] robust 

sliding mode control (SMC) was used for tracking trajectories.   

https://creativecommons.org/licenses/by-sa/4.0/
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In the paper, we explore and compare various linear and nonlinear control techniques for the 

quadrotor's trajectory tracking. The objective is to analyze the performance and effectiveness of these control 

techniques in accurately tracking desired trajectories. First, in order to stabilize the system, the controller that 

we defined was the commonly used linear PID controller. Next, various tests were carried in a closed loop 

simulation for PID controller starting by step input test then by defining a nonlinear trajectory that the 

quadcopter was able to track. The LQR was then invented; however, because it only uses an accurate 

representation of the nonlinear model at the hover point, it may not perform as well or be as robust at other 

operating points. So, we have to introduce another technique which is an input-output FBL of the system so 

we get a fully linearized model of the system and we applied on its linear methods like the LQR and pole 

placement. After that, a simulation was carried out by inserting a step input to the system then performing a 

trajectory tracking. Finally, the SMC and the modified sliding mode controller (MSMC) are introduced, 

defined, and explained; they demonstrated a good response to both step input and trajectory tracking. 

However, the first method had a chattering effect that was rectified by the second one. The proposed method 

is applied to control a quadrotor to evaluate its performance in terms of trajectory tracking, response time, 

robustness, and robust stability. Utilizing MATLAB/Simulink software, the simulation is carried out.  

The remaining portions of the paper are structured in this way. We present the quadrotor's 

mathematical model in section 2. In section 3, control techniques are developed and verified by simulations. 

In section 4, we provide a comparison of the designed controllers. Finally, a brief wrap-up and conclusion are 

provided. 

 

 

2. STATE SPACE MODEL 

2.1.  Mathematical model 

To make the control problem simpler, based on the acquired mathematical models, a state-space 

model will be developed [20]–[27]. The equations for the dynamic model are as (1): 

 

Ẋ = 𝑓(𝑋, 𝑈) (1) 

 

Where 𝑈 is the input vector 𝑈 = [𝑈1 𝑈2 𝑈3 𝑈4]
𝑇, 𝑋̇ is the state vector and X  

 

𝑋 = [𝜙 𝜙̇ 𝜃 𝜃̇ 𝜓 𝜓̇ 𝑧 𝑧̇ 𝑥 𝑥̇ 𝑦 𝑦̇]𝑇  

 

Following is another way to write (1): 

 

Ẋ = 𝑓(X) + ∑  4
𝑖=1 𝑔𝑖(X) 𝑢𝑖   (2) 

 

With: 

 

𝑓(𝑋) =  [𝑥2 𝑎1𝑥4𝑥6 𝑥4 𝑎2𝑥2𝑥6 𝑥6 𝑎3𝑥2𝑥4 𝑥8 −𝑔 𝑥10 0 𝑥12 0]𝑇 (3) 

 

and 𝑎1 =
𝐼𝑦−𝐼𝑧

𝐼𝑥
 , 𝑎2 =

𝐼𝑧−𝐼𝑥

𝐼𝑦
 , 𝑎3 =

𝐼𝑥−𝐼𝑦

𝐼𝑧
 ,

𝑔1 = [0 0 0 0 0 0 0 𝐺1 0 𝐺2 0 𝐺3]
𝑇 ∈ ℝ12

𝑔2 = [0 𝑏1 0 0 0 0 0 0 0 0 0 0]𝑇 ∈ ℝ12

𝑔3 = [0 0 0 𝑏2 0 0 0 0 0 0 0 0]𝑇 ∈ ℝ12

𝑔4 = [0 0 0 0 0 𝑏3 0 0 0 0 0 0]𝑇 ∈ ℝ12

  

with: 

 

𝐺1 =
1

𝑚
(cos 𝑥1 cos 𝑥3)

𝐺2 =
1

𝑚
(sin 𝑥1 sin 𝑥5 + cos𝑥1 cos𝑥5 sin 𝑥3)

𝐺3 =
1

𝑚
(cos 𝑥1 sin 𝑥5 sin 𝑥3 − cos𝑥5 sin 𝑥1)

  

 

2.2.  Linearized model 

The linear model is available in the following format: 

 

𝑋̇ = 𝐴𝑋 + 𝐵𝑈 (4) 

 

Such that: 
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𝐴 =
∂𝑓(𝑋,𝑈)

∂𝑋
|
𝑋=𝑋̅

𝑈=𝑈

=

[
 
 
 
 
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 𝑔 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
𝑔 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

 (5) 

 

𝐵 =
𝜕𝑓(𝑋,𝑈)

𝜕𝑈
|𝑋=𝑋𝑒
𝑈=𝑈𝑒

=

[
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0
0 𝑏1 0 0
0 0 0 0
0 0 𝑏2 0
0 0 0 0
0 0 0 𝑏3
0 0 0 0
−1

𝑚
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 

 (6) 

 

For (A,B) to be controlled, the following requirements must be met in full [20], [27]:  

 

𝑟𝑎𝑛𝑘(𝑤𝑐) = 𝑛  (7) 
 

In this case, 𝑤𝑐 also known as Kalman's controllability matrix of dimension 𝑛 × 𝑛𝑚 equals: 

 

𝑤𝑐 = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵 𝐴4𝐵 𝐴5𝐵 𝐴6𝐵 𝐴7𝐵 𝐴8𝐵 𝐴9𝐵 𝐴10𝐵 𝐴11𝐵] ∈ ℝ
12×48 

 

MATLAB was employed to verify the rank of the matrix 𝑤𝑐 and it was determined to have full rank. Thus, 

(4) describes a controlled system. 

 

 

3. CONTROL STRATEGIES 

3.1.  Proportional integral derivative controller 

The most common controller for quadrotors is the PID, because they are simple to develop and 

install, and due to how it is possible to optimize the gain parameters to get the required performance  

[16], [28]–[30]. 

 

3.1.1. Altitude control 

To control the quadrotor's altitude a PID controller is developed. It provides the control input 𝑈1, 

that regulates the quadrotor's altitude applying the equation. The following is the derived control law: 

 

𝑈1 = 𝑘𝑝(𝑧𝑑 − 𝑧) + 𝑘𝑑(𝑧̇𝑑 − 𝑧̇) + 𝑘𝑖∫ (𝑧𝑑 − 𝑧)𝑑𝑡 (8) 

 

The proportional gain, derivative gain, and integral gain are denoted by the terms 𝑘𝑝, 𝑘𝑑, and 𝑘𝑖 respectively. 

The desired altitude and the desired altitude rate of change are denoted by 𝑧𝑑 and 𝑧̇𝑑 respectively. 

 

3.1.2. Attitude and heading control 

− Roll controller 

To regulate the roll angle 𝜙 of the quadrotor, another PID controller is developed. The derived 

control law generates the input 𝑈2 that controls the roll angle as (9):  
 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Linear and nonlinear control design for a quadrotor (Samira Hadid) 

943 

𝑈2 = 𝑘𝑝(𝜙𝑑 − 𝜙) + 𝑘𝑑(𝜙̇𝑑 − 𝜙̇) + 𝑘𝑖∫ (𝜙𝑑 − 𝜙)𝑑𝑡  (9) 

 

The proportional, derivative and integral gains are denoted respectively by 𝑘𝑝, 𝑘𝑑, and 𝑘𝑖.  𝜙𝑑 and 𝜙̇𝑑 are 

respectively the desired roll angle and the desired roll angle rate of change. 

− Pitch controller 

A PID controller is designed for controlling the quadrotor's pitch angle θ. The resulting control law 

generates the input 𝑈3 as (10): 

 

𝑈3 = 𝑘𝑝(𝜃𝑑 − 𝜃) + 𝑘𝑑(𝜃̇𝑑 − 𝜃̇) + 𝑘𝑖∫ (𝜃𝑑 − 𝜃)𝑑𝑡 (10) 

 

The proportional, derivative, and integral gains are denoted respectively by 𝑘𝑝, 𝑘𝑑, and 𝑘𝑖. 𝜃𝑑 and 𝜃̇𝑑 are 

respectively the desired pitch angle and the desired pitch angle rate of change. 

− Yaw controller 

Similar to the two previous controllers, a yaw controller is designed to generate the control input 𝑈4 based on 

the following control law: 

 

𝑈4 = 𝑘𝑝(𝜓𝑑 −𝜓) + 𝑘𝑑(𝜓̇𝑑 − 𝜓̇) + 𝑘𝑖∫ (𝜓𝑑 − 𝜓)𝑑𝑡  (11) 

 

𝑘𝑝, 𝑘𝑑, and 𝑘𝑖 are respectively the proportional gain, the derivative gain and the integral gain. 𝜓𝑑  and 𝜓̇𝑑 are 

the desired yaw angle and the desired yaw angle rate of change respectively. 

− Position controller 

A position controller is developed after achieving reliable controllers for the quadrotor's altitude and 

attitude. The desired accelerations 𝑥̈𝑑 and 𝑦̈𝑑are then calculated using PID controllers. 

 

𝑥̈𝑑 = 𝑘𝑝(𝑥𝑑 − 𝑥) + 𝑘𝑑(𝑥̇𝑑 − 𝑥̇) + 𝑘𝑖∫ (𝑥𝑑 − 𝑥)𝑑𝑡

𝑦̈𝑑 = 𝑘𝑝(𝑦𝑑 − 𝑦) + 𝑘𝑑(𝑦̇𝑑 − 𝑦̇) + 𝑘𝑖∫ (𝑦𝑑 − 𝑦)𝑑𝑡
  (12) 

 

𝑘𝑝, 𝑘𝑑, and 𝑘𝑖 denote respectively the proportional, derivative and integral gains. 𝑥𝑑 ,  𝑥̇𝑑 , 𝑦𝑑, and 𝑦̇𝑑 are 

respectively the desired x position, the desired x position rate of change, the desired y position and the 

desired y position rate of change. 

 

3.1.3. Proportional integral derivative controller simulation 

The following figures display the PID controller simulation results. The PID controller's step input 

test is shown in Figure 1. Table 1 displays the rising time, the % overshoot, and settling time for positions x, 

y, and z, and orientations 𝜓(t) using the PID controller. These parameters provide crucial information on the 

PID controller's performance, accuracy, and stability when controlling the system. Figure 2 shows the 

trajectory tracking for PID control. 

  

 

 
 

Figure 1. Step input test for PID controller  
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Table 1. Characteristic performances to a step input when using a PID controller 
 x(t) y(t) z(t) 𝝍(t) 

Rise time (s) 0.78 0.87 0.64 0.28 

Overshoot (%) 0.50 0.50 0.50 0.32 

Settling time (s) 1.41 1.8 1.26 0.63 

 

 

 
 

Figure 2. Trajectory tracking for PID control 

 

 

3.2.  The linear quadratic regulator 

3.2.1. The linear quadratic method 

The LQR aims to minimize certain costs while guiding the state 𝑋 of the system to follow the 

desired path 𝑋𝑑 [31], [32]. Take into consideration the dynamic system: 

 

{
𝑥̇ = 𝐴 ⋅ 𝑥 + 𝐵 ⋅ 𝑢
𝑦 = 𝐶 ⋅ 𝑥

  (13)  

 

The cost function for this optimal problem is given by: 

 

𝐽 = ∫  
∞

𝑡0
[𝑈(𝑡)𝑇 ⋅ 𝑅 ⋅ 𝑈(𝑡) + (𝑋(𝑡) − 𝑋𝑑(𝑡))

𝑇 ⋅ 𝑄 ⋅ (𝑋(𝑡) − 𝑋𝑑(𝑡))]𝑑𝑡  (14) 

 

where Q represents the state's cost and R represents the actuator cost; the two are positive definite [12]. The 

control input 𝑈(𝑡)that minimizes the cost function generated as (15): 

 

𝑈(𝑡) = −𝐾. [𝑋(𝑡) − 𝑋−𝑑(𝑡)]  (15) 

 

where the process of computing the optimal gains is carried out by: 

 

𝐾 =  𝑅−1. 𝐵𝑇 . 𝑃  (16) 

 

The algebraic equation of Riccati can be resolved by the P matrix: 

 

P. A+𝐴𝑇 . P - P. B𝑅−1.𝐵𝑇 .P+ C. Q. C=0  (17) 

 

Considering the linear system (3). We select the matrices Q and R taking into account A (4) and B (5). Using 

the LQR function from MATLAB/Simulink, we apply the LQR control. 

 

3.2.2. Linear quadratic regulator controller simulation 

Results of the LQRs controller simulation are shown in Figures 3 and 4. The LQR position, altitude, 

and heading response to a step input is displayed in Figure 3. The Table 2 presents the step input’s 

characteristic performances using the LQR controller. Figure 4 displays Trajectory tracking for LQR control. 
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Figure 3. The LQR’s position, altitude and heading response to a step input 
 

 

 
 

Figure 4. Trajectory tracking for LQR control 
 

 

Table 2. Performance characteristics of a step input with the LQR controller 
 x(t) y(t) z(t) 𝝍(t) 

Rise time (s) 0.72 0.72 1.52 0.68 

Overshoot (%) 3.64 3.64 4.73 0.50 

Settling time (s) 1.22 1.21 2.25 1.04 

 

 

3.3.  Feedback linearization control 

3.3.1. Feedback linearization method 

FBL is a nonlinear control design method whose basic principle is to algebraically transform the 

dynamics of nonlinear systems into linear ones, allowing linear control design approaches to be employed 

[33]-[35]. In this study, the input-output linearization strategy was employed to avoid the complexity of the 

input-state linearization technique [36]-[38]. We choose an output function for the system to determine the 

control objective. We want to regulate both the quadrotor's absolute position [𝑥 𝑦 𝑧 ]T and the yaw angle 𝜓. 

Thus, the selected output function is: 
 

𝑦 = ℎ(𝑥) = [𝑥 𝑦 𝑧 𝜓]T  (18) 
 

Assuming that the state x of the system is completely measurable, we aim to develop a static state feedback 

control rule of the following form: 
 

𝑢 =  𝛼(𝑥) +  β(𝑥). 𝑣  (19) 
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where 𝑣 is the external reference input, 𝛼(𝑥)=[𝛼(𝑥)1 𝛼(𝑥)2 𝛼(𝑥)3 𝛼(𝑥)4]
𝑇 and β(𝑥) ϵ ℝ4×4. 

Our system in given as follows in the new coordinates: 
 

{
ż = A ⋅ z + B ⋅ v
y = C ⋅ z

  (20) 

 

with: 
 

𝐳 = [𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 𝑧8 𝑧9 𝑧10 𝑧11 𝑧12 𝑧13 𝑧14]𝑇 ∈ ℝ14  (21) 
 

v = [𝑣1 𝑣2 𝑣3 𝑣4]𝑇 ∈ ℝ4  (22) 
 

A = [

A1 0 0 0
0 A1 0 0
0 0 A1 0
0 0 0 A2

] ∈ ℝ14𝑥14, B = [

B1
B2
B3
B4

] , C =

[
 
 
 
 
c1
𝑇 0 0 0

0 c1
𝑇 0 0

0 0 c1
𝑇 0

0 0 0 c2
𝑇]
 
 
 
 

∈  ℝ14𝑥4  (23) 

 

A1 = [

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

] ∈ ℝ4𝑥4,   A2 = [
0 1
0 0

] ∈ ℝ2𝑥2  (24) 

 

B1 = [

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

] ∈ ℝ4𝑥4, B2 = [

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

] ∈ ℝ4𝑥4  (25) 

 

B3 = [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

] ∈ ℝ4𝑥4, B4 = [
0 0 0 0
0 0 0 0

] ∈ ℝ2𝑥4
  (26) 

 

c1 = [1 0 0 0]𝑇 ∈ ℝ4, c2 = [1 0]𝑇 ∈ ℝ2 (27) 
 

Since we were able to derive a linear system, it is feasible and simple to use additional feedback control 

methods, including LQRs and pole placement. 

 

3.3.2. Simulation results of feedback linearization with pole placement 

Results of the FBL controller simulation are shown on the following figures. Figure 5 displays how the 

FBL with pole placement responds to a step input in terms of position, altitude, and heading. Using the FBL 

controller with pole placement, Table 3 displays the rising time, settling time, and overshoot for coordinates x, 

y, and z, and orientations ψ(t). Figure 6 shows trajectory tracking for FBL control with pole placement. 
 

 

 
 

Figure 5. Position, altitude, and heading reaction of the FBL with pole placement to a step input 
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Table 3. Characteristic performances to a step input when using the FBL controller with pole placement 
 x(t) y(t) z(t) 𝝍(t) 

Rise time (s) 1.73 2.72 1.73 1.13 

Overshoot (%) 2.52 0 2.57 0.50 
Settling time (s) 2.78 4.94 2.9 2.1 

 

 

 
 

Figure 6. Trajectory tracking for FBL control with pole placement 

 

 

3.3.3. Simulation results of feedback linearization with linear quadratic regulator 

Results of the LQR controller simulation are shown on the following figures. Figure 7 illustrates 

how the FBL using LQR responds to a step input in terms of position, altitude, and heading. A step input's 

characteristic performances are shown in Table 4 using the FBL controller with LQR. Figure 8 shows 

trajectory tracking for FBL with LQR control. 

 

 

 
 

 

Figure 7. Position, altitude, and heading response to a step input using the FBL controller with LQR 

 

 

Table 4. Step input's characteristic performances using the FBL with LQR 
 x(t) y(t) z(t) 𝝍(t) 

Rise time (s) 0.60 0.60 0.60 0.13 
Overshoot (%) 8.15 8.15 8.15 0.50 

Settling time (s) 1.77 1.77 1.76 0.22 
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Figure 8. Trajectory tracking for FBL with LQR control 

 

 

3.4.  Sliding mode control 

3.4.1. Sliding mode control method 

A SMC is a robust control method that uses a high-speed switching control rule to retain the state 

trajectories on a user-defined surface in state space and push them in that trajectory. The core principle of the 

SMC technique is to guide the system states toward an appropriate sliding surface and then develop a 

stabilizing control rule to ensure that the system states remain on that surface [39]–[41]. Das et al. [8], the 

general form of (28) was proposed for choosing the shape of the sliding surface: 

 

𝑆 = (𝜆 +
𝑑

𝑑𝑡
)
𝑛−1

𝑒  (28) 

 

− Altitude control 

The tracking errors indicate the difference between the state's current and desired values, which are 

defined as (29): 

 

𝑒𝑧 = 𝑧 − 𝑧𝑑  (29) 

 

𝑆𝑧 defines the sliding surface: 

  

𝑆𝑧 = 𝜆𝑧𝑒𝑧 + 𝑒̇𝑧 (30) 

 

The following are the exponential reaching laws for altitude sliding surfaces: 

 

𝑆̇𝑧 = −𝜀𝑧 sgn (𝑆𝑧) − 𝑘𝑧𝑆𝑧  (31) 

 

Following that, the exponential reaching law is equivalent to the sliding surface's derivative as (32): 

 

𝑆̇𝑧 = −𝜀𝑧 sgn (𝑆𝑧) − 𝑘𝑧𝑆𝑧 = 𝜆𝑧(𝑧̇ − 𝑧̇𝑑) + (𝑧̈ − 𝑧̈𝑑)  (32) 

 

Control input for altitude 𝑈1 is calculated: 

 

𝑈1 = [−𝜆𝑧(𝑧̇ − 𝑧̇𝑑) + 𝑔 + 𝑧̈𝑑 − 𝜀𝑧 sgn(𝑆𝑧) − 𝑘𝑧𝑆𝑧]
𝑚

cos𝜙cos 𝜃
  (33) 

 

− Attitude control  

The same procedures used to develop the altitude controller are used to implement an attitude SMC, 

pitch 𝑈2, roll 𝑈3, and yaw 𝑈4 control inputs are calculated as (34):  
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{
 
 

 
 𝑈2 = [−𝜆𝜙(𝜙̇ − 𝜙̇𝑑) −

𝐼𝑟𝜃̇𝛺𝑟

𝐼𝑥
− 𝜃̇𝜓̇ (

𝐼𝑦−𝐼𝑧

𝐼𝑥
) + 𝜙̈𝑑 − 𝜀𝜙𝑠𝑔𝑛 (𝑆𝜙) − 𝑘𝜙𝑆𝜙]

𝐼𝑥

𝑙

𝑈3 = [−𝜆𝜃(𝜃̇ − 𝜃̇𝑑) +
𝐼𝑟𝜙̇𝛺𝑟

𝐼𝑦
− 𝜙̇𝜓̇ (

𝐼𝑧−𝐼𝑥

𝐼𝑦
) + 𝜃̈𝑑 − 𝜀𝜃𝑠𝑔𝑛 (𝑆𝜃) − 𝑘𝜃𝑆𝜃]

𝐼𝑦

𝑙

𝑈4 = [−𝜆𝜓(𝜓̇ − 𝜓̇𝑑) − 𝜙̇𝜃̇ (
𝐼𝑥−𝐼𝑦

𝐼𝑧
) + 𝜓̈𝑑 − 𝜀𝜓𝑠𝑔𝑛 (𝑆𝜓) − 𝑘𝜓𝑆𝜓]

𝐼𝑧

𝑙

  (34) 

 

− Position controller 

Position tracking of the quadcopter is achieved by calculating the desired rotational angles 𝜙𝑑 and 

𝜃𝑑 around the hover:  

 

[
𝜙𝑑
𝜃𝑑
] =

1

𝑔
[
𝑠𝑖𝑛 𝜓 −𝑐𝑜𝑠 𝜓
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓

] [
−𝜆𝑥(𝑥̇ − 𝑥̇𝑑) + 𝑥̈𝑑 − 𝜀𝑥𝑠𝑔𝑛 (𝑆𝑥) − 𝑘𝑥𝑆𝑥
−𝜆𝑦(𝑦̇ − 𝑦̇𝑑) + 𝑦̈𝑑 − 𝜀𝑦𝑠𝑔𝑛 (𝑆𝑦) − 𝑘𝑦𝑆𝑦

]  (35) 

 

3.4.2. Sliding mode controller simulation 

Results of the SMC controller simulation are shown on the Figures 9 and 10. Figure 9 shows the 

SMC's position, altitude, and heading responses. Figure 10 shows trajectory tracking for SMC control.  

Table 5 presents the characteristic performances to a step input using the SMC. 

 

 

 
 

Figure 9. The SMC's position, altitude, and heading responses 

 

 

 
 

Figure 10. Trajectory tracking for SMC control 
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Table 5. Step input's characteristic performances using the SMC 
 x(t) y(t) z(t) 𝛙(t) 

Rise time (s) 0.99 1.15 0.59 0.48 

Overshoot (%) 0.03 0.5 0.50 0.50 

Settling time (s) 1.99 2.11 1.1 0.85 

 

 

3.5.  Modified sliding mode control  

3.5.1. Modified sliding mode control method 

 The chattering phenomenon associated with SMC presents challenges that make it difficult to 

implement in real-world applications [24], [42]. To mitigate the chattering effect, utilizing a saturation 

function in place of the sign(s) function. This function is expressed as (36):  
 

𝑠𝑎𝑡(𝑠) = {
𝑠 𝑖𝑓 |𝑠| ≤  1

𝑠𝑔𝑛(𝑠) 𝑖𝑓 |𝑠| >  1 
  (36) 

 

Therefore, to apply this modification to our system's SMCs, the sign(s) function terms in (33)-(35) 

should be changed by the sat (s/ϵ) function. The constant ϵ represents the line's slope between 1 and -1, this 

region is the border region or boundary layer. 

 

3.5.2. Modified sliding mode controller simulation 

Results of the MSMC controller simulation are shown on the following figures. Figure 11 shows the 

Modified SMC position, altitude, and heading responses. Table 6 presents the characteristic performances to 

a step input. Figure 12 shows trajectory tracking for modified SMC control.  

 

 

 
 

Figure 11. The modified SMC position, altitude, and heading responses 

 

 

Table 6. Step input's characteristic performances using MSMC 
 x(t) y(t) z(t) 𝝍(t) 

Rise time (s) 0.70 1.15 0.60 0.48 
Overshoot (%) 0.50 0.50 0.50 0.50 

Settling time (s) 1.48 2.07 1.11 0.86 

 

  

The SMC and the MSMC were introduced, defined, and explained; they demonstrated a good 

response to both step input and trajectory tracking. However, the first method had a chattering effect that was 

rectified by the second one. 
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Figure 12. Trajectory tracking for MSMC control 

 

 

4. DISCUSSION AND RESULTS COMPARISON 

4.1.  Step response comparison 

The response graph for (x, y, z, 𝜓) of the system, influenced by each of the six controllers, were 

plotted on top of one another to facilitate a proper comparison among the six implemented control strategies. 

Figure 13 displays the output variable x's step response using different controllers. Table 7 illustrates step 

input's characteristic performances for the x(t) variable using the different controllers. Figure 14 displays the 

step response of the output variable y using different controllers. Table 8 illustrates step input's characteristic 

performances for the y(t) variable using the different controllers.  

 

 

 
 

Figure 13. x(t) response to a step input using the six different controllers 

 

 

Table 7. Step input's characteristic performances for the x(t) variable using the different controllers 
x(t) PID LQR FBL+PP FBL+LQR SMC MSMC 

Rise time (s) 0.78 0.72 1.73 0.60 0.99 0.70 
Overshoot (%) 0.50 3.64 2.57 8.15 0.03 0.50 

Settling time (s) 1.41 1.22 2.78 1.77 1.99 1.48 

 

 

Figure 15 displays the step response of the output variable z using different controllers. Table 9 

illustrates step input's characteristic performances for the z(t) variable using the different controllers. Figure 

16 shows the step response of the output variable ψ using the different controllers. Table 10 illustrates step 

input's characteristic performances for the ψ (t) variable using different controllers. 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 940-955 

952 

 
 

Figure 14. y(t) response to a step input using the six controllers 

 

 

Table 8. Step input's characteristic performances for the y(t) variable using the different controllers 
y(t) PID LQR FBL+PP FBL+LQR SMC MSMC 

Rise time (s) 0.87 0.72 2.72 0.60 1.15 1.15 
Overshoot (%) 0.50 3.64 0 8.15 0.5 0.50 

Settling time(s) 1.80 1.21 4.94 1.77 2.11 2.07 

 

 

 
 

Figure 15. z(t) response to a step input using the six controllers 

 

 

Table 9. Step input's characteristic performances for the z(t) variable with the different controllers 
z(t) PID LQR FBL+PP FBL+LQR SMC MSMC 

Rise time (s) 0.64 1.52 1.73 0.60 0.59 0.60 
Overshoot (%) 0.50 4.73 2.57 8.15 0.50 0.50 

Settling time(s) 1.26 2.25 2.9 1.76 1.10 1.11 

 
 

 
 

Figure 16. 𝜓(t) response to a step input using the six controllers 
 

 

Table 10. Step input's characteristic performances for the 𝜓(t) variable with the different controllers 
𝝍(t) PID LQR FBL+PP FBL+LQR SMC MSMC 

Rise time (s) 0.28 0.68 1.13 0.12 0.48 0.48 

Overshoot (%) 0.32 0.50 0.50 0.50 0.50 0.50 

Settling time(s) 0.63 1.04 2.1 0.22 0.85 0.86 
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Based on the Tables 7 to 10, the following deductions can be made:  

− The combination of FBL and LQR controller has the best overall performance for the four output 

variables regarding both rise and settling time. However, it has bad overshoot. 

− The PID, SMC, and MSMC has an acceptable rise time settling time and almost overshoot is neglected at 

all in all the cases. 

− The LQR controller also showed an acceptable rise and settling time but suffered from a small overshoot. 

− The FBL with pole placement had the worst performance concerning both the rise and settling time, yet it 

had almost no overshoot. 

 

4.2.  Trajectory tracking comparison 

The PID controller tracks the user-defined trajectory with good performance. However, there is 

some overshoot in the beginning for about 2 seconds as illustrated in (Figure 2). The performance of the LQR 

tracking was lower than that of the other controllers. As, we can see that the actual path is slightly above the 

desired one, and the actual path never reaches the desired one in the zigs and turns as illustrated (Figure 4).  

The FBL with pole placement was slightly better than the LQR, unlike the latter which never 

reached the zigs and turns, The FBL with pole placement reached but passed them as for the path the tracking 

was good (Figure 6). The FBL with LQR was the best controller among them all, it showed no overshoot at 

the beginning and the tracking was almost perfect that the desired and the actual trajectory was on top of each 

other (Figure 8). The SMC and the MSMC were also very good in tracking the trajectory except they both 

had a small overshoot at the beginning and the SMC suffered from the chattering effect (Figure 10 and 12). 

 

 

5. CONCLUSION 

This paper gives a comparison of linear and nonlinear control strategies used to operate quadcopters. 

To evaluate the performance of the suggested control algorithms, the Newton-Euler technique is used to 

generate the quadcopter's dynamic model. The step response of all six controllers is examined in terms of 

rising time, percentage overshoot, and settling time. The best results are obtained when employing the PID, 

LQR, and FBL control approach using LQR. The SMC achieved an acceptable result, however FBL with 

pole placement was insufficient. In the trajectory tracking section, when all six controllers are compared to 

each other, we observed that the best results are obtained when employing the FBL control approach with 

LQR, and the modified SMC. 

Because it is difficult to predict external disturbances such as wind velocities, the mathematical 

model offered does not take these into account. The controllers should be made robust so that they can 

effectively deal with external disturbances that were overlooked during modeling. Future research should 

take the disturbances into account. Another step is the development of a controller capable of dealing with 

the failure of one or more rotors. 
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