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1. INTRODUCTION

A valuable spice with several culinary and therapeutic applications, cinnamon is vital to the world
economy. The Food and Agriculture Organization of the United Nations (FAO) reports that 2.23 million tons
of cinnamon were produced globally in 2021 and 2022, underscoring the significance of this crop for
agriculture. Asia's top producers are Vietnam, Indonesia, China, and Sri Lanka. Maintaining regular, high-
quality harvests is dependent on plant health, especially for economically significant commaodities like
cinnamon. In order to improve output and quality, we examined two prevalent diseases that harm cinnamon's
stems and branches: rough bark and stripe canker. Rough bark disease causes uneven, rough patches to form
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on cinnamon plants, disrupting the bark's smooth texture and detracting from its overall appeal. Fungi in
humid environments are the main cause of the illness, which results in structural damage, decreased
production, and lower-quality spices. Bacterial infections called stripe canker develop longitudinal sores on
the bark that harm tissue, slow growth, and reduce the amount of cinnamon produced. These illnesses can
negatively affect agriculture, and diagnostic diagnosis by hand is a long process. Thus, it is essential to
integrate cutting-edge technology such as deep learning (DL) and machine learning (ML) for rapid,
automated illness identification.

Indeed, feature and texture extraction play a vital role in image processing, particularly within a
machine vision system [1]. Machine and DL might be superior in handling images and feature extraction
because of its automatic learning characteristics [2], [3]. However, memory requirement, computation
complexity, and power are still challenges [4]. While training the model, algorithms may take millions of
features from the image as input. Some of the features are relevant and some of the features are not relevant.
It leads to inaccurate results. It also increases computation complexity [5]. To address the above issues, we
needed robust preprocessing, segmentation, and feature extraction techniques [6]. Many researchers are given
numerous solutions for efficient feature extraction/image representation. Some of the works are discussed as
follows. In general, color, slope, size, intensity, and slope are utilized for representing images [7]. Texture
information are low level features which are normally used to identify the objects in an image. We may have
diverse textures in an image, it could be identified and categorized because of its unique features. In general
descriptors are used for image representation. It is majorly classified into two namely, global, and local
descriptors [8]. Global descriptors take the whole image as an input for its representation. Local descriptors
mainly concentrate on extracting relevant information from the image. Numerous descriptors are proposed
for effective feature extraction/pattern recognition like local binary pattern (LBP) [9], scale invariant feature
transform (SIFT) [10], speeded-up robust features (SURF) [11], and histogram of gradients (HOG) [12].

Local binary descriptor is one of the well-known techniques for image representation [13]. It uses
neighborhood details of the pixels for its representation. Research by Pietikdinen [14] the authors proposed
the very first binary descriptor called LBP. It works based on the local contrast of an image. It takes every
pixel intensity for its representation. It results in increased computational complexity. To address the above,
local directional positional pattern (LDPP) and local triangular coded pattern (LTCP) [15], [16] are proposed
by taking computation complexity as a major consideration. In the proposed approach, we used two levels of
feature extraction for extracting best possible global and local features. LDPP is used for extracting global
features of an image. LTCP is used for extracting local features from the level 1 extracted. It gives improved
object recognition rate. Finally, we trained the model using extracted features. This contributes to an
enhanced level of accuracy while simultaneously mitigating computational complexity.

2. RELATED WORK

Plant disease detection from photos has showed potential for DL, and wide residual networks
(WRN) in particular. According to Li et al. [17] although this approach has shown efficacy on generic plant
leaf datasets, it has not yet been applied to diseases of the cinnamon bark, which is an important subject for
future research. More sophisticated DL models for agricultural disease identification have been created in
recent studies. A hybrid AlexNet-inception-V4 model improved disease detection by achieving high accuracy
across a range of crops [18]. Furthermore, Guo et al. [19] convolutional swim transformer (CST) showed
remarkable resilience under many circumstances. Nevertheless, more optimization is necessary because to
the CST's massive size and processing requirements.

According to Chhetri et al. [20] DL algorithms that use domain knowledge can greatly improve the
categorization of plant diseases. DL and structured knowledge representation were integrated in a recent
study to increase simplicity and accuracy, particularly with noisy data. This strategy presents a viable route
for artificial intelligence (Al)-powered agricultural solutions. Ahmad et al. [21] a simplified CNN model has
been created for effective plant disease identification on devices with limited resources. Through class
imbalance correction and memory optimization, this method allows for quick model setup and training. The
model shows good accuracy on difficult datasets, which qualifies it for real-world use.

Research by Rajeena et al. [22] outperforming current methods, a novel model utilizing efficient net
diagnoses corn illnesses with 98.85% accuracy. This demonstrates how DL has the potential to improve
sustainability and lower crop losses in contemporary agriculture. The coffee industry faces challenges from
leaf diseases, as discussed by [23]. With potential applications for other crops and illnesses, the research
provides an EfficientNetBO model for reliable detection of Arabica coffee plant diseases. This model offers a
compromise between accuracy and computing economy. Research by Rao et al. [24] addresses the need for
accurate and fast disease detection in apple crops. The proposed scheme combines intelligent segmentation
and classification models, leveraging optimization techniques and feature extraction methods. By achieving
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an accuracy of 84%, this work offers a promising solution to improve the apple industry’s health while
highlighting the potential for future expansion and development in plant disease classification.

The main objective of this paper is to increase classification accuracy with reduced computational
complexity by improving the object recognition rate using lightweight algorithms instead of DL
architectures. LDPP is used for global feature extraction, taking the whole image as input, and LTCP is used
for local feature extraction, taking extracted features as input. Some of the techniques and algorithms we
have used for improving object recognition rate in the paper are discussed as follows.

2.1. Local directional position pattern

Vasudha and Kakkar [15] proposed a descriptor LDPP for image representation. In LDPP, 8 bits
binary code is used to represent every pixels. At the outset, 3*3 image matrix is categorized into south, south
west, south east, north, north east, and north west. For code generation, it uses strength positions and its
directions. Krish mask is used for calculating strength of the pixels. To generate the 8-bit code for a pixel,
highest and second highest strength values are considered. Binary values are generated from their positions
based on the equation [1]. It generates different patterns for different edges.

LDPP(x) = Y7o ;X2
GL=AORK 1)

Where A = B(G)OR binary (argD(G))
K = B(G)OR binary (argD(E))
G € (Ro) Ryy oo oo e Ry)
E € Ry Ry s e e e o Ry)

2.2. Local triangular coded pattern

Arya and Vimina [16] proposed a descriptor LTCP for image representation. LTCP is one of the low
computational descriptors. They used 8-bit code for representing pixels. In general, intensities of pairs of
pixels are utilized for pixel representation. It results in increased computational complexity. To address the
above, the authors proposed LTCP [12].

2.3. Steps involved in local triangular coded pattern

At the outset, the 3*3 image matrix is divided into four regions namely east, west, north, and south.
For representing each pixel, triangular pattern is generated in all the directions with respect to center pixel
located in (0,0). Various codes are generated by rotating the pixels by 90° and 180°.

For generating the code, pixel intensities are compared with the threshold level. Intensity level of
the centre pixel is taken as threshold value. If the intensity level of the neighborhood pixel in the tri angular
region is greater than the threshold then the code is 1, else it is 0. It is represented as (2):

CP, =3y b(P,—C) = (n+1)/2
LTCP(xc,yc) = %7 _oT (CP, — C)2" 2

_(Lifv=0
where, T(v) = {0, otherwise
where C is the center pixel, Pi is pixel chosen for triangular pattern. V is the difference level in intensities.
We used LTCP for extracting the local features from the image which extracted at level 1.

Once the features are extracted, it is fed into the data analysis module for its classification. We have
chosen support vector machines (SVM), k-nearest neighbors (KNN), and random forest (RF) as bag of
algorithms. We trained the model using extracted features it results in better accuracy with less computational
complexity.

3. PROPOSED SYSTEM

To reduce the computational complexity associated with the use of higher end algorithms, we
proposed a low complexity classification system. The proposed system majorly focused on data acquisition,
pre-processing, dimensionality reduction, and classification as illustrated in Figure 1. In this paper, we
reduced computational complexity through effective feature extraction and achieved improved accuracy
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using weak classifiers such as SVM, KNN, and RF instead of employing strong classifiers or deep neural
network architectures. For experimentation, we used cinnamon plant disease dataset. The modules involved
in the proposed system are discussed as follows.

Data Acquisition
Cinnamon Plant Images (Rough Bark + Stripe Canker)

L &
Global Feature Extraction
Feature Extraction Local Feature Extraction
‘ Dimensionality Reduction (PCA &GDA)

v

Extracted Features

|
IR |
— T

Stripe Canker Rough Bank

Figure 1. Architecture of the proposed system

3.1. Data acquisition

For experimentation, we used cinnamon dataset collected from Kaggle. It encompasses two image
categories: one depicting a cinnamon plant with a rough bark as shown in Figure 2 and the other featuring
stripe canker as shown in Figure 3. The dataset comprises a total of 528 images, with 228 images featuring
rough bark and 300 images depicting stripe canker.

Figure 2. Cinnamon plant with rough bark Figure 3. Cinnamon plant with stripe canker

3.2. Pre-processing module

The focus is on feature/texture extraction and dimensionality reduction. Initially, images are
converted from RGB to grey scale. After grey scale conversion, we applied feature extraction techniques to
get the best possible features. In this paper, we implemented two levels of feature extraction integrating the
features of LDPP [15], LTCP [16] for enhanced and detailed feature extraction. At the first level, LDPP is
used for extracting global features of an image, At the second level of feature extraction, the extracted
features are fed into LTCP. It provides detailed and minute information about the extracted features,
exemplified in Figures 4 and 5.

Figure 4. Extracted features using LDPP and LTCP  Figure 5. Extracted features using LDPP and LTCP
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Once the features are extracted, principal component analysis (PCA) and gaussian discriminant
analysis (GDA) [25], [26] are applied over the features to reduce dimensionality and to get enhanced view of
the texture. PCA stands out as a widely recognized statistical method for reducing the dimensionality of
images. This is accomplished by efficiently mapping from a higher-dimensional space to a lower-
dimensional space. GDA helps to control non-linear features for getting more accurate/ correlated features. It
results in an increased object recognition rate [14].

3.3. Data analysis

The extracted features are utilized as input for the data analysis module. In this paper, we aimed to
achieve strong classifier results by leveraging weak classifiers and improving the object recognition rate. We
employed SVM, RF, and KNN as a set of algorithms for classification. The results indicate that the
combination of feature extraction with RF yields better results than the other models experimented with. In
this approach, we used binary classification; outputs are labeled as rough bark and stripe canker.

4. EXPERIMENTAL RESULTS

The main objective of this paper is to attain better classification accuracy with reduced
computational complexity through effective pre-processing techniques. As part of pre-processing, we used
LDPP and LTCP for improved object detection. For detailed analysis, we applied various combinations of
binary descriptors with varying number of images as 100, 200, 300, 400, and 500 for better object
recognition, as shown in Figure 6. The results indicate that the object detection rate improved when we
applied the combination of LDPP and LTCP.

Object Recognition %

(Vo]

0

LTCP LDPP LT \F'LTfP LOPP L T(‘F’ LTCP LDPP L IfPLT -’LEF’PLT(PL CP LDPP LTC

o
o
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Different descrlptors

Figure 6. Object detection % of different descriptors by varying number of images as 100, 200, 300, 400, and
500

Detailed experimentation was conducted over various models and their combinations, as shown in
Table 1. Initially, we trained the models using the original dataset without feature extraction. After that, we
trained the models with the feature-extracted dataset using LDPP, LTCP, and LDPP with LTCP. In the first
case, raw datasets without feature extraction are used. In the second case, features are extracted using LDPP.
In the third case, features are extracted using LTCP. In the final case, we used two levels of feature
extraction: LDPP for extracting global features and LTCP for local feature extraction. The experimental
results indicate that RF with LDPP and LTCP achieved higher accuracy compared to other models, as shown
in Figure 7. We also measured the computational complexity for all the cases. The experimental results show
that the combination of LDPP and LTCP with RF provided good accuracy with reduced computational
complexity. Computational complexity is measured by varying the number of pixels, as shown in the
Figures 8(a)-(f).

Table 1. Classification accuracy of the proposed system
Classification accuracy in %

Feature extraction SVM  KNN RF
Without feature extraction 78.21 8256 81.26
With LDPP 79.12 83.13 85.17
With LTCP 80.78 85.7 87.2
With LDPP and LTCP 81.78 89.7 93.5
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Figure 7. Experimental results of the proposed system
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Figure 8. Computational complexity analysis over; (a) 50,000 pixels, (b) 100,000 pixels, (c) 150,000 pixels,
(d) 200,000 pixels, (e) 250,000 pixels, and (f) 300,000 pixels

5. CONCLUSION

In this paper, we proposed a low complexity classification system to reduce computation complexity
demands while using higher end algorithms. By focusing on feature extraction and dimentionality reduction,
we achieved increased classification accuracy using weak classifiers such as SVM, KNN, and RF instead of
resource intensive deep neural network architectures. Our approach involved converting images to grayscale,
followed by two levels of feature extraction using LDPP and LTCP. This method allowed us to capture both
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global and detailed features effectively. PCA and GDA were then applied to further reduce dimensionality
and enhance the extracted features. The experimental results proven that combining LDPP and LTCP with
the RF classifier attained increased accuracy, achieving a significant improvement over other models
experimented. Through rigorous experimentation, we demonstrated that our proposed system also reduced
computational complexity. The combination of LDPP and LTCP with RF achieved an accuracy of 93.5%,
outperforming other test cases. Furthermore, our analysis proven that this approach maintained lower
computational complexity, making it a practical solution for real-world applications where resources are
limited. In conclusion, our proposed low-complexity classification system offers an effective and efficient
method for image classification tasks, particularly in applications such as plant disease detection. Future
work could explore the application of this system to other datasets and domains, as well as the integration of
additional pre-processing and feature extraction techniques to further enhance performance.
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