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 Low-density parity-check (LDPC) codes are widely recognized for their 

excellent forward error correction, near-Shannon-limit performance, and 

support for high data rates with effective hardware parallelization. Their 

convolutional counterpart, LDPC convolutional codes (LDPC-CCs), offer 

additional advantages such as variable codeword lengths, unlimited parity-

check matrices, and simpler encoding and decoding. These features make 

LDPC-CCs particularly suitable for practical implementations with varying 

channel conditions and data frame sizes. This paper investigates the 

performance of LDPC-CCs using the extrinsic information transfer (EXIT) 

chart, a graphical tool for analyzing iterative decoding. EXIT charts 

visualize mutual information exchange and help predict convergence 

behavior, estimate performance thresholds, and optimize code design. 

Starting with the EXIT chart principles for LDPC codes, we derived the 

mutual information functions for variable and check nodes in regular and 

irregular LDPC-CC tanner graphs. This involved adapting existing EXIT 

functions to the periodic parity-check matrix of LDPC-CCs. We compare 

regular and irregular LDPC-CC constructions, examining the impact of 

degree distributions and the number of periods in the parity-check matrix on 

convergence behavior. Our simulations show that irregular LDPC-CCs 

consistently outperform regular ones, and the EXIT chart analysis confirms 

that LDPC-CCs demonstrate superior bit error rate (BER) performance 

compared to equivalent LDPC block codes. 
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1. INTRODUCTION 

One of the most extensively used techniques for ensuring reliable data transmission in 

communication networks is error correction codes [1]. Due to their excellent error-correction performance 

close to the Shannon limit and low complexity decoding algorithms, an advanced class of channel encoding 

scheme, is the low-density parity-check (LDPC) code. These codes have gained widespread attention in the 

1990s after being overlooked for over 35 years, where the researchers community was attracted to analyze 

and design these codes [2] using message-passing (MP) decoding algorithm [3]. The improvement in the 

performance of LDPC codes was observed when irregular codes were derived from regular ones [4], defined 

in terms of the distribution of variable and check nodes degrees introduced by a graphical representation [5] 

known as the tanner graph. 

https://creativecommons.org/licenses/by-sa/4.0/
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LDPC convolutional codes are a type of error-correcting codes used in digital communications to 

improve the reliability of data transmission over noisy channels. They are a combination of two powerful 

coding techniques: convolutional coding and LDPC coding, which are designed to work with a continuous 

stream of data rather than discrete blocks. They are used in many communication systems and are 

particularly useful for applications with unbounded data sizes [6]. They were first introduced in the early 

2000s [7] as a means of achieving higher data rates in satellite and wireless communication systems, where 

high-speed data transfer was crucial. In addition to their use in communications systems, LDPC-CCs have 

also been applied in other areas, such as magnetic storage [8] and optical communications [9]. Despite having 

a shorter convolutional constraint length than the block length, LDPC-CCs have the ability to achieve better 

performance compared to LDPC codes [10]. This has led to a growing interest in both theoretical research 

and software development, making LDPC-CCs increasingly popular. 

The basic idea behind LDPC-CCs is to use the structure of convolutional codes, which allows for 

continuous transmission of information, and the error-correcting properties of LDPC codes, which provide 

strong error-correction capabilities. One of the key challenges in working with LDPC-CCs is finding efficient 

methods for encoding and decoding algorithms, as the convolutional structure of the code might cause this 

process more complicated than traditional LDPC codes [7]. Thus, numerous researchers have proposed 

various techniques for decoding and analyzing LDPC-CCs, including the convergence behavior of iterative 

belief propagation algorithms [11], [12] on both AWGN and the binary erasure channels (BEC) using the 

algorithm known as density evolution (DE). It is based on the calculation of the probability density function 

with different iterations for the threshold analysis of terminated LDPC-CCs in [11], where it has been shown 

that the use of the DE on the AWGN channel becomes increasingly difficult in terms of performance with large 

frame lengths. Mitchell et al. [12] discusses the construction of protograph-based spatially coupled LDPC  

(SC-LDPC) codes by coupling together into a single chain of multiple LDPC tanner graphs, resulting in 

optimized codes with best features in terms of fast convergence rates and close BP thresholds to Shannon limits. 

Extrinsic information transfer (EXIT) charts are a powerful tool for analyzing and designing error 

correction codes, which are first introduced in [13] for analyzing concatenated codes. The use of the EXIT 

chart was later extended to other types of codes, such as LDPC codes [14] on the additive white Gaussian 

noise (AWGN) channel, where a method of combination between irregular LDPC codes with coding and 

modulation was introduced for multiple-input multiple-output (MIMO) fading channels using the EXIT chart 

tool with different degree distributions. Since then, the EXIT chart has become a widely used tool for 

analyzing the performance of iterative decoding algorithms for various types of codes, including LDPCs and 

LDPC-CCs on the BEC [15], [16] respectively. The key benefits of using EXIT charts for error correction 

codes are: performance prediction, code optimization, computational efficiency by the significant reduction 

of the computational complexity of designing and optimizing codes, and iterative decoding convergence 

analysis. There have been some studies on using convergence analysis of LDPC-CCs on the BEC. The work 

proposed by Sridharan et al. [17] have analyzed terminated LDPC-CCs in terms of the iterative convergence 

of the belief propagation decoding, where they found that irregular LDPC-CCs leads to better thresholds 

compared to regular ones. 

The EXIT chart analysis of protograph (PEXIT) LDPC codes on both AWGN and BEC channels 

was presented in [18] with general EXIT functions according to those introduced in [14], where the results 

have shown the possibility of extension to other different types of channels. The PEXIT analysis has taking 

into consideration punctured variable nodes with different degree distributions and thresholds for protographs 

with different code rate regimes according to the spatially coupled structure. Based on these analysis 

techniques, the design of protograph-based LDPC convolutional codes in general [19] and the SC-LDPC 

convolutional codes in particular [20] have been conducted. Since LDPC-CCs are considered as a terminated 

type of protograph codes, we focused our goals in this work on the use of the EXIT chart for providing a 

detailed and intuitive analysis and design of LDPC-CCs iterative decoding on the AWGN channel, making 

this graphical tool essential for researchers and engineers to evaluate and optimize convergence behavior of 

such important error-correction codes.  

Before analyzing the EXIT technique of LDPC-CCs, the basics of these codes need to be known. 

Thus, section 2 presents a brief overview of the main parameters of LDPC codes and LDPC-CCs with the 

Tanner graph details. In addition to, the unwrapping method to obtain the periodically parity-check matrix for 

LDPC-CCs is explained. Section 3 presents derivations and demonstrations of the EXIT chart obtained from 

the EXIT functions of LDPC codes. Afterwards, section 4 presents simulation results for the EXIT chart of 

both LDPCs and LDPC-CCs and compares the threshold convergence of regular and irregular codes. Finally, 

we summarize and conclude the obtained results in section 5. 
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2. CONCEPT OF LOW-DENSITY PARITY-CHECK CONVOLUTIONAL CODES 

This section of the paper serves as an introduction to the fundamental concepts and notation that will 

be used in the rest of the paper. Firstly, a comprehensive definition of LDPC codes extended to LDPC-CCs 

and relevant parameters will be provided. The unwrapping technique will also be discussed as it plays a 

significant role when examining the EXIT functions of LDPC-CCs. The tanner graph of LDPC codes will be 

briefly reviewed, and then the tanner graph of LDPC-CCs, which can potentially be infinite, will be derived 

based on the period of the parity-check matrix. 

 

2.1.  Low-density parity-check codes 

Definition 1: an m×n binary matrix H over GF (2), describes a binary (𝑑𝑣 , 𝑑𝑐)-LDPC code of length 

n with column and row weight 𝑑𝑣 and 𝑑𝑐, respectively, and ′0𝑠′ elsewhere. The parameter 𝑅, such that  

𝑅 = 𝑏 𝑐⁄  (b<c) is an integer, called the code rate, where 𝑏 and 𝑐 are obtained by 𝑚/gcd⁡(𝑚, 𝑛) and  

𝑛/gcd⁡(𝑚, 𝑛) respectively. Let (1) be the 5×10 binary parity-check matrix of full-rank constructed from an 

1/2 code rate, with 3⁡′1𝑠′ in each column and 6⁡′1𝑠′ in each row. 

 

𝐻 =

[
 
 
 
 
0 1 1 0 1 0 1 1 1 0
0 1 1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 1 0 0
1 0 0 1 1 0 0 1 1 1
1 0 0 1 1 1 1 0 0 1]

 
 
 
 

 (1) 

 

Definition 2: the parity-check matrix in (1) can be represented by a tanner graph as seen in Figure 1. 

The graph consists of 𝑛 variable nodes represented by circles and 𝑚 check nodes represented by rectangles. 

Each variable node has three edges (𝑑𝑣 = 3) connected to the check nodes, while each check node has six 

edges (𝑑𝑐 = 6) connected to the variable nodes. 

 

 

 
 

Figure 1. Tanner graph representing the parity-check matrix of (5, 10) LDPC code with the column weight 

𝑑𝑣 = 3 and the row weight⁡𝑑𝑐 = 6 

 

 

2.2.  Low-density parity-check convolutional codes construction 

Similar to LDPC codes, parity bits are generated by parity check equations in LDPC-CCs. However, 

the generation process in LDPC-CCs only uses previous systematic bits and parity bits.  

Definition 3: let the (𝑚𝑠, 𝑑𝑣 , 𝑑𝑐) regular LDPC-CC be the set of sequences 𝑉 satisfying the 

equation 𝐻𝑐𝑜𝑛𝑣 × 𝑉𝑇 = 0. To describe an LDPC-CC, the period 𝑇 and the syndrome former memory  

𝑚𝑠 = 𝑇 − 1 are typically used. The syndrome former memory is determined by the largest width of the non-

zero area in the periodically parity-check matrix. 𝐻𝑐𝑜𝑛𝑣 which represents the periodically semi-infinite parity-

check matrix is defined as (2): 

 

𝐻𝑐𝑜𝑛𝑣 =

[
 
 
 
 
 
 
 

𝐻0(0)

𝐻1(1) 𝐻0(1)

⋮ ⋮ ⋱
𝐻𝑚𝑠

(𝑚𝑠) … 𝐻0(𝑚𝑠)

⋱ ⋱
𝐻𝑚𝑠

(𝑡) … 𝐻0(𝑡)

⋱ ⋱ ]
 
 
 
 
 
 
 

 (2) 

 

where 𝐻𝑡(0)⁡must be of full rank for all possible 𝑡′𝑠. 
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Starting from the 𝑚𝑠 × (𝑐 − 𝑏) column and from the (𝑚𝑠 + 1) × (𝑐 − 𝑏) row, 𝐻𝑐𝑜𝑛𝑣 in (2) has 𝑑𝑣 

non-zero elements in each column, which is referred to as column weight, and 𝑑𝑐 non-zero elements in each 

row, referred to as row weight. These non-zero elements determine the connections between the 

corresponding variable and check nodes in the Tanner graph, as each column and row in 𝐻𝑐𝑜𝑛𝑣  represent a 

variable and check node respectivel as shown in Figure 2. The constraint length of 𝐻𝑐𝑜𝑛𝑣 is defined as  

𝑣𝑠 = (𝑚𝑠 + 1) × 𝑐 which measures the maximum width of the non-zero bits in 𝐻𝑐𝑜𝑛𝑣 . 

 

 

 
 

Figure 2. An example of 𝐻𝑐𝑜𝑛𝑣(3,6) in rate-1/2 LDPC-CC 

 

 

The elements 𝐻𝑖(𝑡) of 𝐻𝑐𝑜𝑛𝑣 defined in (3) are binary (𝑐 − 𝑏) × 𝑐 submatrices, where⁡(𝑖 = 0,1, … ,𝑚𝑠), 

(𝑡 = 0,1, … , 𝑇 − 1): 

 

𝐻𝑖(𝑡) = [

ℎ𝑖
(1,1)

(𝑡) ⋯ ℎ𝑖
(1,𝑐)

(𝑡)

⋮ ⋮

ℎ𝑖
(𝑐−𝑏,1)

(𝑡) ⋯ ℎ𝑖
(𝑐−𝑏,𝑐)

(𝑡)

] (3) 

 

2.2.1. Unwrapping technique 

The process of construction LDPC-CCs from LDPC codes using the unwrapping approach is 

discussed in this subsection. In this approach, the parity-check matrix of the LDPC code is cut along its 

diagonal, and the lower-left and upper-right parts are swapped. This resulting matrix is then repeated 

infinitely, with corresponding vertical and horizontal shifts [7], to form the periodically parity-check matrix 

for the LDPC-CC.  

Pusane et al. [6] has discussed different techniques for constructing families of LDPC-CCs, both 

time-invariant and time-varying, from LDPC codes. They also presented a modification of the method 

introduced in [7], which involved cutting, exchanging parts of the parity-check matrix and replicating it to 

form the 𝐻𝑐𝑜𝑛𝑣 matrix that defines the LDPC-CC. This modification aims to simplify the matrix construction 

process and limit the number of codeword bits used in calculating each check sum. This paper will use the 

same unwrapping method as described in [6], where an ½ code rate LDPC-CC is derived from a block code 

of the same rate.  

For a parity-check matrix with dimensions 𝑚 × 𝑛 of a rate-1/2 block code, as indicated: 

 

𝐻 = [
𝐻1(1) 𝐻1(2) 𝐻1(3) 𝐻1(4) ⋯ 𝐻1(𝑛)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐻𝑚(1) 𝐻𝑚(2) 𝐻𝑚(3) 𝐻𝑚(4) ⋯ 𝐻𝑚(𝑛)

] (4) 

 

We cut the parity-check matrix moving 2 units to the right, 1 unit down and setting to zero the entire upper 

part of the matrix: 

 

𝐻1 = [
𝐻1(1) 𝐻1(2) 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝐻𝑚(1) 𝐻𝑚(2) 𝐻𝑚(3) 𝐻𝑚(4) ⋯ 𝐻𝑚(𝑛)

] (5) 

 

In the same way, and by setting to zero all the lower part of the matrix, we result: 
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𝐻2 = [
0 0 𝐻1(3) 𝐻1(4) ⋯ 𝐻1(𝑛)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0

] (6) 

 

Associating vertically the two matrices 𝐻1 and 𝐻2 obtained in (5) and (6), the generalization of this 

described method is straightforward as presented in Figure 3, by which we can construct large ensembles 

(𝑚𝑠, 𝑑𝑣 , 𝑑𝑐) of LDPC-CCs as seen in Figure 3(a). The finite 𝐻𝑐𝑜𝑛𝑣  shown in Figure 3(b) is obtained by using 

the diagonal cut to split the parity-check matrix presented by (1) into two parts (red and black) following the 

steps above. This matrix exhibits a pattern where the variable nodes remain constant at 𝑑𝑣 over the repeated 

periods, similar to the original parity-check matrix of the LDPC code as depicted in Figure 2. On the other 

hand, the check nodes in 𝐻𝑐𝑜𝑛𝑣 change from 1 to 𝑑𝑐 as opposed to the fixed row weight in the original  

parity-check matrix. 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Periodically parity-check matrix of LDPC-CCs derived from block code of rate-1/2; (a) general 

unwrapping method and (b) example on unwrapping method 

 

 

2.2.2. Tanner graph 

The Tanner graph of an LDPC-CC based on its periodically parity-check matrix is infinite due to the 

semi-infinite nature of the matrix, as depicted in Figure 4. Thus, the distance between two variable nodes that 

correspond to (c-b) connected to the same check node corresponding to c (as depicted in (3) at each time 

instant t in the tanner graph) is constrained by the former memory of the code, and short cycles can exist at 

any point of the graph. As a result, determining the girth of a semi-infinite graph or matrix is impractical. 

To determine the girth of an LDPC-CC, it is sufficient to examine one period of 𝐻𝑐𝑜𝑛𝑣 , which is 

possible due to the periodicity of the matrix. Short cycles in the Tanner graph can be avoided through the use 

of randomly constructed LDPC and LDPC-CCs that are primarily dependent on the sparsity of the parity-

check matrix [21], in which, a specific construction for a family of parity-check matrices satisfying the 

absence of 4-cycles is presented. While the presence of a termination constraint results in a structural 

irregularity in the tanner graph, better threshold performance can be obtained compared to the corresponding 

LDPC codes, and we can therefore associate the concept of time with the tanner graph of terminated  

LDPC-CCs. 
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Figure 4. Semi-infinite tanner graph representing an LDPC-CC derived from (5, 10) LDPC code with 

(𝑑𝑣 , 𝑑𝑐) = (3,6) 

 

 

3. EXIT CHART GENERATION 

Traditionally, the performance evaluation of iterative decoding algorithms for recent forward error 

correction (FEC) codes was mainly based on the analysis of BER curves, which are obtained by Monte-Carlo 

simulations. Recently, the convergence behavior of iterative decoding schemes is visuliazed using the EXIT 

chart’s graphical tool. The decoder’s EXIT chart includes two curves, one for the variable node (VND) and 

the other for the check node (CND). Each curve compares the output extrinsic information of a node with the 

input a priori information to that node. 

In the following subsections, we derive the EXIT functions of regular and irregular LDPC-CCs from 

those of LDPC codes, and we gave examples with different periods of the LDPC-CC parity-check matrix. In 

addition to, analysis principle of all possible cases of the EXIT curves are detailed to explain the convergence 

behavior of the iterative decoding in LDPC-CCs. 

 

3.1.  EXIT function of regular LDPCs and LDPC-CCs 

The regular LDPC parity-check matrix 𝐻 of a rate 𝑅 = 1 − 𝑑𝑣 𝑑𝑐⁄  gives a Tanner graph with m 

check nodes (CNDs) and n variable nodes (VNDs), whereas the regular LDPC-CC parity-check matrix 𝐻𝑐𝑜𝑛𝑣 

with T periods give m×T CNDs with 𝑑𝑐 degrees, and n×T VNDs with 𝑑𝑣 degrees. Considering now the 

calculation of EXIT functions for both VNDs and CNDs, which are the two update rules for describing the 

decoding trajectory and visualizing the convergence of the iterative decoding procedure as following. 

 

3.1.1. Variable node’s EXIT functions 

The average extrinsic information at the variable node decoder’s output for LDPC codes that can be 

written in the form of 𝐼𝐸,𝑉 under the symmetric-Gaussian assumption for VND inputs, and parameterized by 

𝐸𝑏 𝑁0⁄  for a given code rate R can be demonstrated from [22] as: 
 

𝐼𝐸,𝑉 = 𝐽(√(𝑑𝑣 − 1)𝜎𝐴
2 + 𝜎𝑐ℎ

2 ) (7) 
 

Since 𝜎𝑐ℎ
2  is the variance of the channel AWGN given by: 

 

𝜎𝑐ℎ
2 = 8𝑅 𝐸𝑏 𝑁0⁄  (8) 

 

And 𝜎𝐴
2 is the variance of the a priori information. The log-likelihood ratio (LLR) in this case is Gaussian 

with variance: 
 

𝜎2 = 𝜎𝑐ℎ
2 + (𝑑𝑣 − 1)𝜎𝐴

2 (9) 
 

That results: 
 

(𝑑𝑣 − 1)𝜎𝐴
2 = 𝜎2 − 𝜎𝑐ℎ

2  (10) 
 

Replacing (10) in 𝐼𝐸,𝑉 given by (7): 
 

𝐼𝐸,𝑉 = 𝐽(√𝜎2 − 𝜎𝑐ℎ
2 + 𝜎𝑐ℎ

2 )  

= 𝐽(√𝜎2)  

= 𝐽(𝜎) (11) 
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From (7) and (11), 𝐼𝐸,𝑉 can be written as: 

 

𝐼𝐸,𝑉 = 𝐽(𝜎) = 𝐽(√(𝑑𝑣 − 1)𝜎𝐴
2 + 𝜎𝑐ℎ

2 ) (12) 

 

In the general case, 𝐽(𝑥) is the mutual information density function of the standard Gaussian 

distribution given in [22] by: 

 

𝐽(𝑥) = 1 − ∫
1

√2𝜋𝑥

+∞

−∞
𝑒−(𝑙−

𝑥2

2
)2/2𝑥2

log⁡(1 + 𝑒−𝑙)𝑑𝑙 (13) 

 

Where 𝑥 = 𝜎 in this case, and 𝐽(𝜎) is the mutual information of the message with a symmetric Gaussian 

density probability density function (PDF). 

For LDPC-CCs, the average extrinsic information at the variable node decoder’s output can be 

written as 𝐼𝐸,𝑉𝑇
, and can be obtained using the similar equation as that of LDPC codes as shown in (12), 

because VND degrees (𝑑𝑣) are the same in 𝐻𝑐𝑜𝑛𝑣 ∀𝑇 as seen in Figure 2, and are equal to those of LDPC 

codes. Then: 

 

𝐼𝐸,𝑉𝑇
= 𝐽(𝜎) = 𝐽(√(𝑑𝑣 − 1)𝜎𝐴

2 + 𝜎𝑐ℎ
2  (14) 

 

where: 

 

𝜎 = √(𝑑𝑣 − 1)𝜎𝐴
2 + 𝜎𝑐ℎ

2  (15) 

 

The mutual information 𝐼𝐴,𝑉 between the VND inputs (a priori) and the associate bit code with this 

𝑉𝑁𝐷 can be demonstrated applying the symmetric-Gaussian assumption as follows. 

Starting from (10) we can write: 

 

𝜎𝐴 = √
𝜎2−𝜎𝑐ℎ

2

(𝑑𝑣−1)
  (16) 

 

In this case, the a priori information is 𝑥 = 𝜎𝐴 in (13). Thus, 𝐼𝐴,𝑉 can be written from (16) as: 

 

𝐼𝐴,𝑉 = 𝐽 (√
𝜎2−𝜎𝑐ℎ

2

(𝑑𝑣−1)
)  

 

By replacing 𝜎2 with (9) we obtain: 

 

𝐼𝐴,𝑉 = 𝐽 (√
[𝜎𝑐ℎ

2 +(𝑑𝑣−1)𝜎𝐴
2]−𝜎𝑐ℎ

2

(𝑑𝑣−1)
)  

= 𝐽(𝜎𝐴) (17) 

 

Since 𝐽(𝜎𝐴) is monotonic in⁡𝜎𝐴, the inverse function 𝐽−1(∙) exists, and the approximation of the 

inverse function 𝐽−1(∙) is updated from (17) (see also [14]) and expressed by:  

 

𝜎𝐴 = 𝐽−1(𝐼𝐴,𝑉)  (18) 

 

By correspondence between (16) and (18): 

 

𝜎𝐴
2 = [𝐽−1(𝐼𝐴,𝑉)]2 

⁡⁡⁡⁡⁡⁡=
𝜎2−𝜎𝑐ℎ

2

(𝑑𝑣−1)
  (19) 

 

In (12) and (14) can also be written for LDPC and LDPC-CCs respectively as: 

 

𝐼𝐸,𝑉 = 𝐽(𝜎) = 𝐽(√(𝑑𝑣 − 1)[𝐽−1(𝐼𝐴,𝑉)]2 + 𝜎𝑐ℎ
2 ) (20) 
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𝐼𝐸,𝑉𝑇
= 𝐽(𝜎) = 𝐽(√(𝑑𝑣 − 1)[𝐽−1(𝐼𝐴,𝑉𝑇

)]2 + 𝜎𝑐ℎ
2  (21) 

 

where 𝐼𝐴,𝑉𝑇
 is the mutual information between the VND inputs (a priori) and the associate bit code is:  

 

𝐼𝐴,𝑉𝑇
= 𝐽(𝜎𝐴) (22) 

 

3.1.2.  Check node’s EXIT functions 

The average extrinsic information at the check node decoder’s output 𝐼𝐸,𝐶 for LDPC codes can be 

computed starting with the symmetric-Gaussian assumption. However, the mean and variance of an CND 

output are not straightforward for determination [14], [22]. For convenience, and according to: 
 

{

𝜎𝑐ℎ = 0
𝑑𝑣 ← 𝑑𝑐

𝐼𝐴,𝑉 ← 1 − 𝐼𝐴,𝐶

  

 

we can write: 
 

𝐼𝐸,𝐶 = 1 − 𝐼𝐸,𝑉(𝜎𝑐ℎ = 0, 𝑑𝑣 ← 𝑑𝑐 , 𝐼𝐴,𝑉 = 1 − 𝐼𝐴,𝐶)⁡⁡ (23) 
 

Replacing the given conditions above in (20), 𝐼𝐸,𝐶 for LDPC codes can be demonstrated as: 
 

𝐼𝐸,𝐶 = 1 − 𝐽 (√(𝑑𝑐 − 1)[𝐽−1(1 − 𝐼𝐴,𝐶)]
2
)  (24) 

 

From (19) and following the conditions (25): 
 

𝜎𝐴
2 =

𝜎2

(𝑑𝑐−1)
(𝜎𝑐ℎ = 0, 𝑑𝑣 ← 𝑑𝑐) (25) 

 

In additional to: 
 

𝐼𝐴,𝑉 = 1 − 𝐼𝐴,𝐶   (26) 
 

Combining (18) with (26), we obtain: 
 

[𝐽−1(1 − 𝐼𝐴,𝐶)]
2

=
𝜎2

(𝑑𝑐−1)
  (27) 

 

We replace then (27) in (24): 
 

𝐼𝐸,𝐶 = 1 − 𝐽 (√(𝑑𝑐 − 1)
𝜎2

(𝑑𝑐−1)
⁡)  

       = 1 − 𝐽(𝜎)(𝜎𝑐ℎ = 0, 𝑑𝑣 ← 𝑑𝑐 , 𝐼𝐴,𝑉 = 1 − 𝐼𝐴,𝐶)  
 

We have obtained previously in (11) that 𝐽(𝜎) = 𝐼𝐸,𝑉 which confirms the validity of (23). 

For LDPC-CCs, 𝐶𝑁𝐷 degrees (𝑑𝑐) differ in 𝐻𝑐𝑜𝑛𝑣 from those in 𝐻 for LDPC codes with each 

period 𝑇 as seen in Figure 3(a) in the general case and in Figure 3(b) as an example. Thus, a polynomial that 

defines the degree distributions for the check nodes must be generated as (28):  
 

𝜌(𝑥) = ∑ 𝜌𝑖
𝑑𝑐
𝑖=1 𝑥𝑖−1 = 𝜌1 + 𝜌2𝑥 + 𝜌3𝑥

2 + ⋯+ 𝜌𝑑𝑐
𝑥𝑑𝑐−1  (28) 

 

Then, according to (24), the average extrinsic information at the check node decoder’s output 𝐼𝐸,𝐶𝑇
 

for LDPC-CCs can be expressed using the polynomial expressed by (28) as: 

 

𝐼𝐸,𝐶𝑇
= 1 − ∑ 𝜌𝑖

𝑑𝑐
𝑖=1 𝐼𝐸,𝑉𝑇

(𝜎𝑐ℎ = 0, 𝑑𝑣 ← 𝑑𝑐 , 𝐼𝐴,𝑉𝑇
= 1 − 𝐼𝐴,𝐶𝑇

) (29) 
 

Following now the same conditions from (25), the average a priori information 𝐼𝐴,𝐶 for LDPC codes at the 

check node decoder’s input is further usefully expressed from (26) as: 
 

𝐼𝐴,𝐶 = 1 − 𝐼𝐴,𝑉(𝜎𝑐ℎ = 0, 𝑑𝑣 ← 𝑑𝑐) (30) 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 338-356 

346 

Obtaining then from (27): 
 

𝐼𝐴,𝐶 = 1 − 𝐽(
𝜎

√𝑑𝑐−1
) (31) 

 

Where 𝜎 from (11) can be expressed in terms of the inverse function so that: 

 

𝜎 = 𝐽−1(𝐼𝐸,𝑉) (32) 

 

Thus: 

 

𝐼𝐴,𝐶 = 1 − 𝐽(
𝐽−1(𝐼𝐸,𝑉)

√𝑑𝑐−1
)  (33) 

 

To express the average a priori information in terms of the average extrinsic information at the 

check node decoder’s, (23) can be written as: 

 

𝐼𝐸,𝑉 = 1 − 𝐼𝐸,𝐶  (34) 

 

By substituting (34) in (33), we obtain:  

 

𝐼𝐴,𝐶 = 1 − 𝐽(
𝐽−1(1−𝐼𝐸,𝐶)

√𝑑𝑐−1
) (35) 

 

The average a priori information 𝐼𝐴,𝐶𝑇
 for LDPC-CCs can be obtained using the same approach as 

for LDPC codes, taking into account the polynomial of the CND degree distributions given by (28) as (36): 
 

𝐼𝐴,𝐶𝑇
= 1 − ∑ 𝜌𝑖

𝑑𝑐
𝑖=1 𝐽(

𝐽−1(1−𝐼𝐸,𝐶𝑇
)

√𝑑𝑐−1
) (36) 

 

To summarize, the EXIT functions of regular LDPC and LDPC-CCs are illustrated in Table 1. 

 

 

Table 1. EXIT functions of regular LDPC and LDPC-CCs 
 LDPC LDPC-CCs 

𝑰𝑬,𝑽, 𝑰𝑬,𝑽𝑻
 

𝐽(√(𝑑𝑣 − 1)𝜎𝐴
2 + 𝜎𝑐ℎ

2  

𝑰𝑬,𝑪, 𝑰𝑬,𝑪𝑻
 1 − 𝐼𝐸,𝑉 

1 − ∑𝜌𝑖

𝑑𝑐

𝑖=1

𝐼𝐸,𝑉𝑇
 

𝑰𝑨,𝑽,𝑰𝑨,𝑽𝑻
 

𝐽 (√
𝜎2 − 𝜎𝑐ℎ

2

(𝑑𝑣 − 1)
) 

𝑰𝑨,𝑪,𝑰𝑨,𝑪𝑻
 

1 − 𝐽(
𝐽−1(1 − 𝐼𝐸,𝐶)

√𝑑𝑐 − 1
) 

1 − ∑𝜌𝑖

𝑑𝑐

𝑖=1

𝐽(
𝐽−1(1 − 𝐼𝐸,𝐶𝑇

)

√𝑑𝑐 − 1
) 

 

 

3.2.  EXIT function of irregular LDPCs and LDPC-CCs 

An irregular LDPC code can be depicted as an irregular tanner graph with different degrees of VNDs 

and CNDs. This graph defines one period of a corresponding LDPC-CC. Variable and check node’s EXIT 

functions for irregular LDPC codes are calculated as weighted averages using two polynomials 𝜆(𝑥) and 𝜌(𝑥) 

that define the degree distributions of the variable and check nodes respectively [4] as (37) and (38): 
 

𝜆(𝑥) = ∑ 𝜆𝑖
𝑑𝑣
𝑖=2 𝑥𝑖−1 = 𝜆2𝑥 + 𝜆3𝑥

2 + ⋯+ 𝜆𝑑𝑣
𝑥𝑑𝑣−1  (37) 

 

𝜌(𝑥) = ∑ 𝜌𝑖
𝑑𝑐
𝑖=2 𝑥𝑖−1 = 𝜌2𝑥 + 𝜌3𝑥

2 + ⋯+ 𝜌𝑑𝑐
𝑥𝑑𝑐−1   (38) 

 

The polynomial 𝜆(𝑥) is computed by adding up the fraction of edges 𝜆𝑖 that are connected to 

variable nodes of degree 𝑖, from degree 2 to 𝑑𝑣. Similarly, the polynomial 𝜌(𝑥) is calculated by adding up 

the fraction of edges 𝜌𝑖 that are connected to check nodes of degree 𝑖, from degree 2 to 𝑑𝑐. The fraction of 
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edges 𝜆𝑖 and 𝜌𝑖 are obtained by dividing the number of ones in each column and row, respectively, by the 

total number of ones (𝑄) in the parity-check matrix 𝐻 for LDPC codes and in 𝐻𝑐𝑜𝑛𝑣 for LDPC-CCs. 

In Figure 5, the parity-check matrix at a rate-1/2 for irregular LDPC (Figure 5(a)) and LDPC-CC 

(Figure 5(b)) with 𝑇 = 1 is illustrated with the different fraction of edges 𝜆𝑖 and 𝜌𝑖. 

 

 
(a) 

 

 
(b) 

 

Figure 5. Irregular parity-check matrix at a rate-1/2 for; (a) LDPC code and (b) LDPC-CC with 𝑇 = 1 

 

 

For the irregular LDPC code, the fraction of edges 𝜆2 and 𝜆3 connected to variable nodes of degree 

2 and 3 respectively are: 

 

𝜆2 =
8

26
= 0.3077 and 𝜆3 =

18

26
= 0.6923 

 

The fraction of edges 𝜌5 and 𝜌6 connected to check nodes of degree 5 and 6 respectively are: 

 

𝜌5 =
20

26
= 0.7692 and 𝜌6 =

6

26
= 0.2308  

 

The irregular LDPC code is then of degree distribution: 

 

𝜆(𝑥) = 0.3077𝑥 + 0.6923𝑥2 

 

𝜌(𝑥) = 0.7692𝑥4 + 0.2308𝑥5 

 

𝜆𝑖 and 𝜌𝑖 must respectively satisfy⁡⁡∑ 𝜆𝑖
𝑑𝑣
𝑖=2 = 1 and ∑ 𝜌𝑖

𝑑𝑐
𝑖=2 = 1. The designed rate of the code in 

this case is given by⁡𝑅 = 1 −
∫ 𝜌(𝑥)𝑑𝑥
1
0

∫ 𝜆(𝑥)𝑑𝑥
1
0

.  

From Figure 5, one period (𝑇 = 1) of an LDPC-CC is considered, and the total number of ones (𝑄) 

in the parity-check matrix 𝐻𝑐𝑜𝑛𝑣  is identical to that of the corresponding LDPC code’s parity check matrix 𝐻 

as shown in Figure 5(b). Additionally, the fraction of edges 𝜆2 and 𝜆3 connected to variable nodes for LDPC-

CC (𝑇 = 1) is equivalent to that of the LDPC code: 

 

𝜆2 =
8

26
= 0.3077 and 𝜆3 =

18

26
= 0.6923 

 

Nevertheless, the ratio of connections to check nodes in LDPC-CC is distinct from that of LDPC code: 
 

𝜌1 =
1

26
= 0.0385, 𝜌2 =

4

26
= 0.1538, 𝜌3 =

12

26
= 0.4615, 𝜌4 =

4

26
= 0.1538, 𝜌5 =

5

26
= 0.1923  

 

The irregular LDPC-CC for 𝑇 = 1 is then of degree distribution: 
 

𝜆(𝑥) = 0.3077𝑥 + 0.6923𝑥2 

 

𝜌(𝑥) = 0.0385 + 0.1538𝑥 + 0.4615𝑥2 + 0.1538𝑥3 + 0.1923𝑥4 
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For 𝑇 = 3, the degree distributions of the irregular 𝐻𝑐𝑜𝑛𝑣 for the same LDPC-CC are obtained as: 

 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 𝟏 𝟏 𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝟏 0 0 𝟏 𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 𝟏 0 0 0 𝟏 𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝟏 0 𝟏 𝟏 0 0 𝟏 0 𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 𝟏 0 0 𝟏 0 𝟏 𝟏 0 𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝟏 𝟏 0 𝟏 0 0 0 𝟏 𝟏 𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝟏 0 𝟏 𝟏 0 0 𝟏 𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 𝟏 𝟏 0 𝟏 0 0 0 𝟏 𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 𝟏 0 𝟏 𝟏 0 0 𝟏 0 𝟏 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 𝟏 0 0 𝟏 0 𝟏 𝟏 0 𝟏 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝟏 𝟏 0 𝟏 0 0 0 𝟏 𝟏 𝟏 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝟏 0 𝟏 𝟏 0 0 𝟏 𝟏 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝟏 𝟏 0 𝟏 0 0 0 𝟏 𝟏 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝟏 0 𝟏 𝟏 0 0 𝟏 0 𝟏 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝟏 0 0 𝟏 0 𝟏 𝟏 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝟏 𝟏 0 𝟏 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝟏 0 𝟏
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝟏 𝟏]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Even though the total number of ones (𝑄) in 𝐻𝑐𝑜𝑛𝑣  for a period 𝑇 = 3 is three times greater than 𝑄 

in 𝐻𝑐𝑜𝑛𝑣  for 𝑇 = 1 (𝑄(𝑇 = 3) = 3 × 𝑄(𝑇 = 1)), the fraction of edges connected to variable nodes for the 

LDPC-CC with 𝑇 = 3 is the same as that for (𝑇 = 1): 
 

𝜆2 =
24

78
= 0.3077 and 𝜆3 =

54

78
= 0.6923 

 

However, CNDs degree distributions for LDPC-CC with 𝑇 = 3 are not the same as those of LDPC-CC with 

𝑇 = 1: 
 

𝜌1 =
1

78
= 0.0128, 𝜌2 =

4

78
= 0.0513, 𝜌3 =

12

78
= 0.1538, 𝜌4 =

4

78
= 0.0513, 𝜌5 =

45

78
= 0.5770, 

𝜌6 =
12

78
= 0.1538 

 

The degree distributions of the irregular LDPC-CC for 𝑇 = 3 are then given as follows: 
 

𝜆(𝑥) = 0.3077𝑥 + 0.6923𝑥2 
 

𝜌(𝑥) = 0.0128 + 0.0513𝑥 + 0.1538𝑥2 + 0.0513𝑥3 + 0.5770𝑥4 + 0.1538𝑥5 
 

It can be noticed that for an LDPC-CC ∀𝑇, the 𝐶𝑁𝐷𝑠 degree distributions vary from 𝑖 = 1 to max(𝑑𝑐). 

Degree distributions for irregular LDPC-CCs can be summarized in Table 2. 
 

 

Table 2. Degree distribution properties of irregular LDPC-CCs 
Period (𝑇) Total number of ones (𝑄) VNDs degree distributions (λ) CNDs degree distributions (𝜌) 

1 𝑄 [2,max(𝑑𝑣)] [1,max(𝑑𝑐)] 

≥ 2 𝑇 × 𝑄 

 

 

Then, EXIT functions for irregular codes are also decomposed into variable and check nodes as follows. 

 

3.2.1. Variable Node’s EXIT Functions 

For an irregular LDPC code’s EXIT curve, the variable node function 𝐼𝐸,𝑉 can be calculated using 

𝐽(𝜎) as (39): 
 

𝐼𝐸,𝑉 = ∑ 𝜆𝑖
𝑑𝑣
𝑖=2 𝐽(√(𝑖 − 1)[𝐽−1(𝐼𝐴,𝑉)]

2
+ 𝜎𝑐ℎ

2 )  (39) 

 

Replacing (11) and (19) in (39) for⁡(𝑑𝑣 ← 𝑖): 
 

𝐼𝐸,𝑉 = ∑ 𝜆𝑖
𝑑𝑣
𝑖=2 𝐽(√(𝑖 − 1) [

𝜎2−𝜎𝑐ℎ
2

(𝑖−1)
] + 𝜎𝑐ℎ

2 )  

=∑ 𝜆𝑖
𝑑𝑣
𝑖=2 𝐽(𝜎) (40) 

 

where 𝐽(𝜎) = 𝐼𝐸,𝑉(𝑟𝑒𝑔𝑢𝑙𝑎𝑟). Thus: 

 

𝐼𝐸,𝑉(𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟) = ∑ 𝜆𝑖𝐼𝐸,𝑉(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)
𝑑𝑣
𝑖=2    (41) 

 

  𝜆3  ⁡𝜆2   𝜆3  𝜆3  𝜆2  𝜆3   𝜆2  ⁡𝜆3⁡⁡ 𝜆3   𝜆2  ⁡𝜆3  ⁡𝜆2  ⁡𝜆3 ⁡⁡𝜆3  ⁡𝜆2   𝜆3   𝜆2  𝜆3⁡  𝜆3  𝜆2  ⁡𝜆3  𝜆2   𝜆3  𝜆3   𝜆2  ⁡𝜆3  ⁡𝜆2  ⁡𝜆3  𝜆3⁡  𝜆2 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 
 

 

𝜌1 
𝜌3 
𝜌3 
𝜌3 
𝜌5 
𝜌5 
𝜌6 
𝜌5 
𝜌5 
𝜌5 
𝜌5 
𝜌6 
𝜌5 
𝜌5 
𝜌5 
𝜌4 
𝜌3 
𝜌2 
𝜌2 
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For irregular LDPC-CCs, since the 𝑉𝑁𝐷𝑠 degree distributions are equal to those as for irregular 

LDPC codes, the irregular variable node function 𝐼𝐸,𝑉𝑇
 can be calculated according to (14) and (37) 

for⁡(𝑑𝑣 ← 𝑖) as (42): 

 

𝐼𝐸,𝑉𝑇
(𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟) = ∑ 𝜆𝑖𝐼𝐸,𝑉𝑇

(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)
𝑑𝑣
𝑖=2  (42) 

 

Under the consistent-Gaussian assumption, the mutual information 𝐼𝐴,𝑉 between the VND inputs and the 

channel bits can be computed as [14]: 

The following notation given by (43) is introduced for notational precision [23], and to 

emphasize⁡𝐼𝐴,𝑉’s explicit dependence on⁡𝜎𝐴: 
 

𝐽(𝜎) = 𝐼𝐴,𝑉(⁡𝜎𝐴 = 𝜎) (43) 
 

𝐼𝐴,𝑉 = 𝐽(𝜎)  (44) 

       = {

−𝛼𝜎3 + 𝛽𝜎2 − 𝜃𝜎⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝜎 < 1.6363⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

1 − exp(𝛼𝜎3 − 𝛽𝜎2 − 𝜃𝜎 + 𝛿)⁡⁡⁡⁡⁡1.6363 ≤ 𝜎 < 10⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜎 ≥ 10⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 

 

3.2.2. Check node’s EXIT functions 

The EXIT function 𝐼𝐸,𝐶  of an irregular LDPC code defining the check node function is computed by: 
 

𝐼𝐸,𝐶 = ∑ 𝜌𝑖
𝑑𝑐
𝑖=2 [1 − 𝐽 (√(𝑖 − 1)[𝐽−1(𝐼𝐴,𝑉)]

2
)] (45) 

 

By substituting the parameters of (23) in (45), we obtain: 
 

𝐼𝐸,𝐶 = ∑ 𝜌𝑖
𝑑𝑐
𝑖=2 [1 − 𝐼𝐸,𝑉(𝜎𝑐ℎ = 0, 𝑑𝑐 ← 𝑖, 𝐼𝐴,𝑉 = 1 − 𝐼𝐴,𝐶)]  

       = ∑ 𝜌𝑖
𝑑𝑐
𝑖=2 𝐼𝐸,𝐶(𝑟𝑒𝑔𝑢𝑙𝑎𝑟) (46) 

 

Following the results shown in Table 2, for LDPC-CCs the 𝐶𝑁𝐷 function ∀𝑇 is calculated as: 
 

𝐼𝐸,𝐶𝑇
= ∑ 𝜌𝑖

𝑑𝑐
𝑖=1 [1 − 𝐽 (√(𝑖 − 1)[𝐽−1(𝐼𝐴,𝑉𝑇

)]
2
)] = ∑ 𝜌𝑖

𝑑𝑐
𝑖=1 𝐼𝐸,𝐶𝑇

(𝑟𝑒𝑔𝑢𝑙𝑎𝑟) (47) 

 

In (32) can be used to calculate the mutual information 𝐼𝐴,𝐶 for LDPC codes between the transmitted 

codeword and the message upon entering the check node. Replacing 𝐼𝐴,𝑉 of (30) with 𝐽(𝜎) from (44): 
 

𝐼𝐴,𝐶 = 1 − 𝐽(𝜎) (48) 

       = {

𝛼𝜎3 + 𝛽𝜎2 − 𝜃𝜎⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝜎 < 1.3636⁡⁡

1 + exp(𝛼𝜎3 − 𝛽𝜎2 − 𝜃𝜎 + 𝛿)⁡⁡⁡⁡⁡⁡1.3636 ≤ 𝜎 < 10⁡
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜎 ≥ 10⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 

 

Table 3 summarizes the overall metrics of EXIT functions for irregular LDPCs and LDPC-CCs. 

Tables 4 and 5 define respectively the parameters of the function’s approximations expressed by (44) and 

(48) with their conditions. Since the VNDs degree distributions in irregular LDPC-CCs are the same as those 

of LDPC codes, then the mutual information 𝐼𝐴,𝑉𝑇
 can be expressed by (44), where the parameters 𝛼, 𝛽 and 

𝜃, as well as their conditions take the same values as those in Table 4 for each period 𝑇. In addition to, these 

parameters and conditions in the case CNDs degree distributions of irregular LDPC-CCs can be expressed by 

(48) with the same values as those in Table 5 for each period 𝑇.  
 

 

Table 3. EXIT function of irregular LDPCs and LDPC-CCs 
Code 𝑰𝑬,𝑪, 𝐼𝐸,𝐶𝑇

 𝑰𝑨,𝑪, 𝐼𝐴,𝐶𝑇
 𝑰𝑬,𝑽, 𝐼𝐸,𝑉𝑇

 𝑰𝑨,𝑽, 𝐼𝐴,𝑉𝑇
 

LDPC 

∑𝜌𝑖𝐼𝐸,𝐶(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

𝑑𝑐

𝑖=2

 ∑𝜌𝑖𝐼𝐴,𝐶(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

𝑑𝑐

𝑖=2

 ∑𝜆𝑖𝐼𝐸,𝑉(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

𝑑𝑣

𝑖=2

 ∑𝜆𝑖𝐼𝐴,𝑉(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

𝑑𝑣

𝑖=2

 

LDPC-CC 

∑𝜌𝑖𝐼𝐸,𝐶𝑇
(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

𝑑𝑐

𝑖=1

 ∑𝜌𝑖𝐼𝐴,𝐶𝑇
(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

𝑑𝑐

𝑖=1

 ∑𝜆𝑖𝐼𝐸,𝑉𝑇
(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

𝑑𝑣

𝑖=2

 ∑𝜆𝑖𝐼𝐴,𝑉𝑇
(𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

𝑑𝑣

𝑖=2
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Table 4. Function approximation⁡𝐼𝐴,𝑉,⁡𝐼𝐴,𝑉𝑇
 parameters and its conditions 

Condition 
Parameters 

𝛼 𝛽 𝜃 𝛿 

0 ≤ 𝜎 < 1.6363 0.0421061 0.209252 0.00640081 0 

1.6363 ≤ 𝜎 < 10 0.00181491 0.142675 0.0822054 0.0549608 

𝜎 ≥ 10 1 

 

 

Table 5. Function approximation⁡𝐼𝐴,𝐶 , 𝐼𝐴,𝐶𝑇
 parameters and its conditions 

Condition 
Parameters 

𝛼 𝛽 𝜃 𝛿 

0 ≤ 𝜎 < 1.3636 1.0421061 0.790748 0.99359919 0 

1.3636 ≤ 𝜎 < 10 0.00181491 0.142675 0.0822054 0.0822054 

𝜎 ≥ 10 0 

 

 

3.3.  EXIT regions 

Once the EXIT chart of a code is obtained, it is important to analyze the EXIT curves and the 

simulated bit error rate (BER) [24] using various regions to assess the convergence of the iterative decoding 

process. To achieve the convergence in the iterative decoding process, it is necessary for the transfer 

characteristics ⁡𝐼𝐸,𝐶𝑇
,⁡𝐼𝐴,𝑉𝑇

 for LDPC-CCs to be positioned below the combined transfer 

characteristics⁡𝐼𝐸,𝑉𝑇
,⁡𝐼𝐴,𝐶𝑇

. The ideal case of convergence in the EXIT chart occurs at the point (1.0;1.0). 𝐼𝐸,𝐶𝑇
 

and 𝐼𝐴,𝑉𝑇
 are equal to 0 at the beginning of the iterative decoding process as shown in Figure 6. Then the 

decoding trajectory begins at a point (0; 𝐼𝐸,𝑉𝑇
, 𝐼𝐴,𝐶𝑇

(0)) called the start point. The interpretation regions of the 

EXIT chart are classified into. 

 

 

  

 
 

Figure 6. EXIT regions 

 

 

3.3.1. Pinch-off region 

It is the undesired region in the EXIT chart, so the Pinch-off Point occurs at a low signal-to-noise 

ratio (SNR), where the EXIT curves for the variable and check nodes touch or become extremely close to 
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each other. Once the curves touch, the decoder gets “stuck” because the exchange of information between 

variable and check nodes becomes ineffective, and the decoding process can no longer progress toward a 

successful decoding. It is also called as “cliff region” that means low 𝐸𝑏 𝑁0⁄  region which results in bad 

performance and more iterations in this case have no effect. The two decoders’ transfer curves cross in this 

region with low mutual information values, which leads to the absence of convergence. 

 

3.3.2. Bottleneck region 

As the iterative decoding progresses, the mutual information increases, and the decoder’s state 

follows a trajectory on the EXIT chart. This trajectory starts near the origin and ideally moves toward the top 

right corner, where mutual information approaches ‘1’ (indicating successful decoding). The bottleneck 

region is identified as a narrow gap between the EXIT curves of the variable and check nodes. It occurs when 

the trajectory of the decoding process passes through an area where the gap between the two curves is small. 

In this region, the mutual information increases very slowly across iterations, meaning that the decoder 

struggles to make significant progress in improving the estimate of the transmitted codeword. 

 

3.3.3. Wide-open region 

Described also as the waterfall region, which is a region where the iterative decoding process can 

progress smoothly and efficiently, with a large gap between the EXIT curves of the variable and check nodes. 

This region is the opposite of the bottleneck or pinch-off regions, as it allows for rapid mutual information 

exchange and fast convergence during decoding. Due to a high SNR, a wide-open tunnel between the two 

curves of the transfer characteristics is resulted. This gives a rapid reach to the point (1.0;1.0) in EXIT chart. 

The larger the gap, the easier it is for the decoding process to converge, as there is plenty of space 

for the mutual information to increase from one iteration to the next. This region is critical for ensuring that 

the decoder can successfully converge on the correct codeword, especially in the early stages of decoding. 

Maximizing this region through careful code design can lead to better overall performance and error 

correction capabilities. 

 

 

4. SIMULATION RESULTS 

This section provides simulation results for LDPC and LDPC-CCs with EXIT charts in order to 

assess and compare their performance. Firstly, the various (𝑑𝑣 , 𝑑𝑐) values for the different matrices to be 

used in simulations for a rate-1/2 are defined. Next, a comparison of 𝐼𝐸,𝑉𝑇
 versus 𝐼𝐴,𝑉𝑇

 and 𝐼𝐸,𝐶𝑇
 versus 𝐼𝐴,𝐶𝑇

 is 

presented for LDPC-CCs. This subsection will address the impact of the (𝑑𝑣 , 𝑑𝑐) degree distributions as well 

as the period 𝑇 on the EXIT curves of LDPC-CCs, as the code’s characteristics are affected by this 

parameter. The second subsection will display a comparison of the performance based on the EXIT charts of 

regular and irregular LDPCs and LDPC-CCs. Lastly, the third subsection will showcase a comparison of 

BER with varying iterations and periods for regular and irregular LDPC-CCs. 

 

4.1.  Choice of initial parameters by VND/CND EXIT curves 

Prior to presenting any outcomes, it is important to establish the chosen degrees, 𝑑𝑣 and 𝑑𝑐. In the 

following simulations, we chose 𝐸𝑏 𝑁0⁄ = 1.1⁡𝑑𝐵 for comparison and convenience purpose with the results 

given in [22], [23]. This choice is motivated such that for lower values we don’t reach a convergence of the 

EXIT chart, and for higher values the convergence is rapidly attained. Figure 7 presents various node degrees 

at a rate-1/2 for the given number of nodes, which are used in the next simulation analyses. 

 

 

 
 

Figure 7. Different (𝑑𝑣 , 𝑑𝑐) degrees for several regular parity-check matrices used in simulations 
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The EXIT chart of the regular LDPC-CC with different variable/check nodes degrees and periods is 

depicted in Figure 8. According to Figure 8(a) which represents the EXIT curves for regular LDPC-CCs with 

𝑇 = 3, the degrees of VND are varied from 2 to 8 and CND from 4 to 16. These curves are generated using 

(14), (22) for VNDs and (29), (36) for CNDs. We can clearly observe a decrease in the gap between the VND 

and CND curves as the values of (𝑑𝑣 , 𝑑𝑐) increase. In Figure 8(b), we study the evolution of EXIT curves as 

a function of the parameter 𝑇 with a fixed 𝑉𝑁𝐷 and 𝐶𝑁𝐷 degrees. 

 

 

  
(a) (b) 

 

Figure 8. EXIT curves of LDPC-CC with 𝐸𝑏 𝑁0⁄ = 1.1⁡𝑑𝐵 for; (a) different (𝑑𝑣 , 𝑑𝑐) degrees with 𝑇 = 3 and 

(b) different periods with (𝑑𝑣 , 𝑑𝑐) = (3,6) 

 

 

Despite of the growing gap size of EXIT curves with (𝑑𝑣 , 𝑑𝑐) = (2,4) in comparison with 

(𝑑𝑣 , 𝑑𝑐) = (3,6), we chose (3,6) in our simulations. This choice is motivated by the lower probability of 

girth occurrences than the choice of (𝑑𝑣 , 𝑑𝑐) = (2,4), such that girth free parity-check matrices exhibit better 

performances. It is evident that as the number of periods increase, the size of the gap between VND and CND 

EXIT curves increases, which gives better convergence rate. Also, the VND curves contribute in the 

enhancement of the gap better than the CND curves, where for 𝑇 ≥ 2 these later curves don’t exhibit any 

enhancement and stay stable. 

 

4.2.  EXIT Chart analysis of regular and irregular LDPC codes 

In this subsection, the focus is on the EXIT chart performance analysis of regular and irregular 

LDPC codes using the parity-check matrix 𝐻. The simulations presented in Figure 9 illustrate the EXIT chart 

for the regular (432,3,6) and its corresponding irregular LDPC code, with a decoding trajectory shown on 

the EXIT charts. The convergence of the EXIT chart at the point (1.0;1.0) is observed in Figures 9(a) and (b), 

indicating the formation of a narrow tunnel for both regular and irregular LDPC codes. The bottleneck region 

is characterized by a lower BER that may be attainable. However, the region’s improvement is more 

pronounced in the case of irregular LDPC codes as depicted in Figure 9(b). 

 

 

  
(a) (b) 

 

Figure 9. EXIT chart with 𝐸𝑏 𝑁0⁄ = 1.1𝑑𝐵 for; (a) regular (3,6) LDPC code and (b) irregular LDPC code 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

EXIT chart analysis of regular and irregular LDPC convolutional codes on AWGN channel (Oulfa Laouar) 

353 

4.3.  EXIT chart analysis of regular and irregular LDPC-CCs 

In this subsection, we present the EXIT chart performance analysis of regular and irregular  

LDPC-CCs with different periods. Table 6 presents the parameters of LDPC-CC used in IEEE 1901 [25] that 

we used in our simulations. 
 

 

Table 6. Main parameters of a rate-1/2 LDPC-CC in IEEE 1901 
𝑅 𝑑𝑣 𝑑𝑐 𝑚𝑠 𝑇 𝑣𝑠 

1 2⁄  3 6 215 3 432 

 

 

The EXIT charts of the regular LDPC-CC (215,3,6) with 𝑇 = 1 and 𝑇 = 3 are shown in Figure 10, 

using the same initial parameters given in Table 6. We can see that the convergence to the point (1.0;1.0) is 

reached in for both 𝑇 = 1 and 𝑇 = 3 in Figures 10(a) and (b), respectively. In addition, the convergence 

speed for 𝑇 = 3 is faster than for 𝑇 = 1. More precisely, the EXIT chart with 𝑇 = 1 spend 11 iterations to 

intersect at the point (1.0;1.0). However, the EXIT chart with 𝑇 = 3 spend only 3 iterations to intersect at the 

point (1.0;1.0) explained by a wider gap than the one for 𝑇 = 1.  

For irregular LDPC-CCs, the EXIT chart performance analysis with periods 𝑇 = 1 and 𝑇 = 3 is 

presented in Figures 10(c) and (d), respectively. We notice the same observations as in the case of regular 

LDPC-CCs with a faster convergence speed. So, the irregular LDPC-CC with 𝑇 = 1 and 𝑇 = 3 needs only 8 

and 2.5 iterations rather than 11 and 3 iterations needed in the regular LDPC-CC. Table 7 provides a 

summary of the results obtained from the EXIT charts for regular and irregular LDPCs and LDPC-CCs. 
 
 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 10. EXIT chart with 𝐸𝑏 𝑁0⁄ = 1.1⁡𝑑𝐵 for; (a) regular (3,6) LDPC-CC with 𝑇 = 1, (b) regular (3,6) 

LDPC-CC with 𝑇 = 3, (c) irregular LDPC-CC with 𝑇 = 1, and (d) irregular LDPC-CC with 𝑇 = 3 

 

 

4.4.  BER performance evaluation with the number of iterations and periods 

To confirm the properties obtained with the EXIT chart analysis in the previous subsection, we 

simulated the performance of regular and irregular LDPC-CCs in Monte-Carlo simulations in terms of the 

BER, and the obtained results are illustrated in Figure 11. 
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Table 7. EXIT chart characteristics of regular and irregular LDPCs and LDPC-CCs 
𝑅 𝑛 𝑑𝑣 𝑑𝑐 𝐸𝑏/𝑁0⁡(𝑑𝐵) Code Matrix Start point Region Converging point 

1/2 432 3 6 1.1 LDPC Regular (0;0.5765) Bottleneck (1.0;1.0) 

Irregular (0;0.6032) 

LDPC-CC Regular 𝑇 = 1 (0;0.5712) Open 

𝑇 = 3 (0;0.8917) Wide-open 

Irregular 𝑇 = 1 (0;0.6030) Open 

𝑇 = 3 (0;0.9077) Wide-open 

 

 

In terms of the number of iterations as shown in Figure 11(a), it can be observed that with an 

increased number of iterations from 20 to 100, the BER performance improves for both regular and irregular 

LDPC-CC. particularly, the irregular LDPC-CC achieves a BER of 8 × 10−8 at 2.5 𝐸𝑏 𝑁0⁄  after 100 

iterations, which is better than the BER of 6 × 10−7 achieved by the regular LDPC-CC at the same 𝐸𝑏 𝑁0⁄  

and with the same number of iterations. This indicates that the irregular LDPC-CCs performs better than 

regular codes under the same conditions. Moreover, increasing the number of iterations leads to more error-

correction performance for both regular and irregular LDPC-CCs. 

Since irregular LDPC-CCs have shown better performance in terms of iterations, the impact of 

increasing the number of periods from 𝑇 = 1 to 𝑇 = 10 is analyzed for irregular codes in Figure 11(b). When 

comparing the BER for a target value of 10−4, for 𝑇 = 3 we obtain a positive gain of +1.04⁡𝑑𝐵 compared to 

𝑇 = 1. However, when the target BER is set to 10−6, although when increasing the period from 𝑇 = 3 to 

𝑇 = 10, the achieved positive gain exhibit a small improvement (+0.15⁡𝑑𝐵). This suggests that as the 

number of periods increases, the improvement in BER performance decreases. 

 

 

 
 

(a) (b) 

 

Figure 11. Performance of LDPC convolutional’s BER codes with; (a) different iterations for 𝑇 = 3, and 

(b) different periods for iterations = 50 

 

 

5. CONCLUSION 

This paper focuses on the performance of LDPC-CCs using the EXIT chart, where we studied the 

regular and irregular conception and compared the results. We started our study from the case of LDPC codes 

EXIT chart, then we derived the mutual information functions between variable nodes and check nodes of the 

LDPC-CCs Tanner graph. This involves applying the EXIT functions used for LDPC codes to the parity-check 

matrix of LDPC-CCs with the desired number of periods. After that, we simulated the convergence behavior 

using the obtained EXIT chart functions of the regular and irregular LDPC-CCs.  

Firstly, the influence of the parity-check matrix degree distributions on the convergence behavior of 

the LDPC-CCs was simulated, where the results showed an inverse relation between the gap width of the 

EXIT chart and the degree distribution parameters. It is obvious that a wider EXIT chart gap means a faster 

convergence of the iterative decoding, but a lower degree distribution parameters induce highly likely 

occurrence of short cycles (girth) in the parity-check matrix. Secondly, the influence of the number of periods 

of the LDPC-CC parity-check matrix on the convergence behavior of the EXIT chart was also simulated. The 

results showed a faster iterative decoding convergence for a higher number of periods. Next, we compared 
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the iterative decoding convergence of the regular and irregular cases in LDPC and LDPC-CC codes. As a 

general results in this simulation, the irregular parity-check matrix gives a better performance than the regular 

one despite it was an LDPC or LDPC-CC code due to their random nature. In addition to, under the same 

conditions, LDPC-CCs show a faster iterative decoding convergence than the LDPC codes, as it was proved 

with other methods for iterative decoding analysis in the literature. Finally, the iterative decoding process 

evaluation for LDPC-CCs was analyzed using the EXIT chart and the BER curves for comparison purposes. 

We found that these two charts reflect very closely the iterative decoding process of LDPC-CCs. Mutual 

information between variable and check nodes for LDPC-CCs, namely the EXIT chart, was found to be a 

useful tool for studying the convergence behaviour of iterative decoding with low computational complexity 

and time efficient simulation. 
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