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 This article is dedicated to the development of an innovative approach to 

optimizing membrane separation processes. The paper introduces the 

integration of a genetic algorithm (GA) and mesoscopic modeling to 

enhance the efficiency and accuracy of process parameter optimization. The 

GA is employed for evolutionary search of optimal parameters, such as 

pressure, temperature, and membrane material characteristics. The use of 

evolutionary principles allows for efficient exploration of parameter space, 

identifying optimal solutions. Mesoscopic modeling serves as a tool for 

detailed analysis and visualization of membrane separation processes. It 

involves modeling the interaction of molecules with the membrane surface, 

enabling a more accurate consideration of the physicochemical aspects of the 

process. The integration of the GA and mesoscopic modeling creates a 

unique tool for membrane separation process optimization. The developed 

approach contributes not only to improving component separation efficiency 

but also to minimizing energy consumption. The method presented in the 

article has been successfully tested on model membrane process systems and 

demonstrated significant improvements compared to traditional optimization 

methods. The research results confirm the potential of the proposed 

approach for application in membrane technology industries, opening new 

perspectives in the field of separation process optimization. 
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1. INTRODUCTION  

Membrane technologies play a key role in the modern world in the separation and filtration 

processes of liquids and gases, ensuring high efficiency and stability of processes. Despite significant 

advancements in membrane systems, there is a constant need for their improvement and optimization to 

achieve higher performance, energy efficiency, and reduced environmental impact. The main problem 

addressed in this work is the optimization of the parameters of membrane separation processes to increase 

their efficiency and reduce energy consumption. Traditional optimization methods are often insufficient for 

complex systems such as membrane processes, which require considering numerous parameters and their 

interactions [1]. In this context, the presented scientific paper is dedicated to exploring an integrated 

approach that combines genetic algorithms (GA) and mesoscopic modeling to optimize membrane separation 

processes. This innovative method aims to address current challenges in membrane technologies and offers 

https://creativecommons.org/licenses/by-sa/4.0/
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new possibilities to enhance the efficiency and accuracy of separation processes [2]. The GA, as an 

evolutionary optimization method, provides a powerful tool for searching optimal process parameters. Its 

ability to efficiently explore multidimensional parameter spaces makes it an attractive instrument for dealing 

with complex systems like membrane processes. Mesoscopic modeling, in turn, offers a detailed 

representation of molecule-surface interactions, enabling the consideration of intricate physicochemical 

aspects of separation processes. The combination of these two approaches allows the creation of a 

comprehensive tool capable of more precisely and efficiently optimizing membrane process parameters. The 

proposed method not only seeks to improve component separation but also to minimize energy consumption, 

which is crucial in the context of modern energy-efficient technologies. The research results may find 

practical applications in various industries where membrane technologies are key elements of production 

processes. 

Research on the integration of GA-s and mesoscopic modeling for membrane separation process 

optimization is actively evolving. Let's consider some key sources in this field. In the study [3] a GA was 

applied to optimize gas membrane separation systems, focusing on air separation for enriched oxygen 

production. Tan et al. [4] utilized hybrid models based on backpropagation neural networks and GA for 

optimizing the fabrication process of ultrafiltration membranes from polyetherimide through dry/wet phase 

inversion. Resrach by Kang et al. [5] presents the latest progress in mesoscopic modeling of 

multiphysicochemical transport phenomena in porous media using the lattice Boltzmann method. It 

represents a potentially powerful numerical tool for analyzing multiphysicochemical processes in various 

energy, geological, and environmental systems. In recent years, hybrid GA have garnered significant interest 

and become increasingly sought after for solving real-world problems. A review [6] explores various aspects 

of integrating GA-s with other search and optimization methods, emphasizing their potential for effectively 

combining the advantages of different approaches. Special attention is given to studying the challenges 

researchers face when developing hybrid GA that use other search methods as a local search tool. Among 

these challenges, various strategies for using information from local search methods and mechanisms to 

strike a balance between the global GA and the local search method are discussed. 

Despite significant advancements in the application of GA and mesoscopic modeling individually, 

their integration for the optimization of membrane separation processes remains insufficiently explored. The 

main unresolved issues include the need for a more precise consideration of the structural parameters of 

membranes and the improvement of their performance characteristics. To date, several approaches to the 

optimization of membrane processes have been described in the literature, namely GA that used for the 

evolutionary search for optimal parameters such as pressure, temperature, and membrane material 

characteristics. However, GAs can be limited in their ability to accurately account for all the complex 

interactions of parameters. In addition, with GA the Mesoscopic Modeling could be found such the method 

allows for a detailed analysis of the interaction between molecules and the membrane surface, providing a 

more accurate consideration of the physicochemical aspects of the process. However, mesoscopic-level 

modeling requires significant computational resources and can be difficult to integrate with other 

optimization methods. At the same time: 

− GA may face challenges in accurately accounting for all the complex parameter interactions. 

− Mesoscopic modeling demands significant computational resources and is challenging to integrate with 

other methods. 

− Traditional optimization methods do not always ensure sufficient performance and energy efficiency. 

This study is dedicated to the integration of GA and mesoscopic modeling for the optimization of 

membrane separation processes. This approach not only improves the efficiency of component separation but 

also minimizes energy consumption. For the first time, a method is proposed that combines these two 

approaches for the comprehensive optimization of membrane system parameters. The integration of these 

two approaches will allow for enhancing efficiency in component separation, minimizing energy 

consumption and more accurate consideration of structural and performance parameters of membrane 

systems. The literature discussion reveals that GA and mesoscopic modeling individually have notable 

achievements in optimizing membrane systems. The integration of these methods offers new perspectives for 

creating more accurate and efficient membrane materials, considering both structural and production 

parameters. The rationale for choosing the approach that combines a GA with a mesoscopic modeling 

approach for membrane separation lies in several factors considered in the context of optimizing membrane 

separation processes [7]. The mesoscopic modeling approach to molecular transport in molecular sieves 

serves as an intermediate between the molecular and macroscopic scales. It enables the description of 

molecule transport within the sieve using statistical methods and averaged quantities, taking into account 

molecule interactions and the sieve's structure. In molecular sieves, such as porous materials or separation 

membranes, molecules move through a pore system that may have complex geometry and surface properties. 

On the molecular scale, detailed modeling of the movement of each molecule can be computationally 
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expensive and require significant computational resources. On the other hand, on the macroscopic scale, 

phenomenological models may be insufficiently accurate in describing complex transport processes within 

sieves [8], [9]. 

 

 

2. METHOD 

The GA provides global exploration across parameter spaces, particularly beneficial in cases where 

the search space is complex and multidimensional. This capability enables coping with nonlinearity and the 

multitude of possible parameter combinations in membrane systems. The mesoscopic approach takes into 

account the structural details of membrane systems at the microfraction level, significantly improving 

modeling accuracy. This approach allows for a more realistic assessment of the influence of membrane 

material structure on its characteristics. The GA adaptability to dynamic changes in conditions is crucial for 

processes subject to parameter fluctuations over time, facilitating a compromise between various 

optimization goals, such as maximizing permeability and minimizing costs. The mesoscopic approach 

considers component interactions at the micro-level, providing a more detailed representation of physical 

processes in the membrane, making the model more flexible and capable of capturing the impact of structural 

changes on separation processes [10]. 

To optimize membrane separation parameters in our study, a GA was employed. The algorithm is 

implemented as follows: an initial population is created, consisting of numerous individuals, each 

representing a set of membrane parameters such as thickness and pore size. Each individual's fitness value is 

then calculated based on an objective function that considers parameters affecting separation efficiency and 

energy consumption. The roulette wheel method is used for parent selection, where the probability of 

selecting an individual is proportional to its fitness value. Single-point crossover is applied to create 

offspring, followed by random mutation of genes in the chromosomes of the offspring. The old individuals 

are replaced with new ones if the latter have better fitness values. 

For detailed analysis and visualization of membrane separation processes, mesoscopic modeling was 

applied. This method includes modeling the interaction of molecules with the membrane surface using 

statistical methods, which allows for the consideration of physicochemical interactions at the microscopic 

level. Microstructural parameters such as membrane thickness and porosity are also analyzed. Based on 

microstructural data and objective functions such as maximizing permeability and minimizing costs, the 

performance of membrane systems is assessed [11]. 

The integration of the GA and mesoscopic modeling is carried out as follows: individuals with 

variable membrane parameters are created. The GA is applied to search for optimal parameters, which are 

then used for mesoscopic modeling. The results of mesoscopic modeling are used to evaluate the fitness of 

individuals. This cycle continues until the stopping criterion is met. 

Next, the method of the integrated approach with a GA and mesoscopic modeling for membrane 

system optimization will be described [12]. To begin, the initial population must be formed. The initial 

population is comprised of a set of individuals with variable chromosome lengths (1): 

 

𝑆1 = 𝑝1, 𝑝2, . . 𝑝𝑛 (1) 

 

Here pi is the i-th parameter. Each individual describes membrane parameters, such as thickness, pore  

size (2): 
 

𝑆𝑘(0) = {𝑆𝑘1, 𝑆𝑘2, … 𝑆𝑘𝑁} (2) 
 

Here N is the length of the chain. Next, optimization is performed using a GA. Parent selection is carried out 

using the roulette wheel method, where the probability of selecting an individual is made proportional to its 

fitness. Crossover is executed using single-point crossover, creating new offspring. Mutation is applied, 

changing a random gene in each chromosome (3) and (4): 
 

𝑆𝑘
′ = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑆𝑘1, 𝑆𝑘2) (3) 

 

𝑆𝑘
′′ = 𝑀𝑢𝑡𝑎𝑡𝑒(𝑆𝑘

′ ) (4) 
 

In the context of mesoscopic modeling, the following actions need to be taken. The results of individuals 

undergo mesoscopic modeling to assess their microstructure. The microstructure includes parameters related 

to pores, thickness, and other characteristics of the membrane (5): 

 

𝑀𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑆𝑘
′′) (5) 
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The next step is performance evaluation. Performance is assessed using mesoscopic data and objective 

functions. Objective functions include maximizing permeability and minimizing costs (6): 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑆𝑘
′′) = 𝐹(𝑀𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑆𝑘

′′)) (6) 

 

After performance evaluation, population updating takes place. Fitness assessment of the new offspring is 

conducted. If the new individual is better than the current best, it becomes the new best (7): 

 

𝐵𝑒𝑠𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒((𝑆𝑘
′′))) (7) 

 

This process is repeated until a stopping criterion is reached, such as a specific number of generations or 

achieving a certain level of performance. This integrated approach allows for the consideration of multiple 

parameters, including membrane structure, leading to the optimization of membrane system performance [12]. 

Let's incorporate this into our approach of combining GA and mesoscopic modeling to optimize the 

parameters of separation membranes. Based on the Arrhenius theory of diffusion dynamics, the probability of 

the transition (migration) of adsorbate molecules across the lattice of the adsorbent from a position near the 

active center i to a position in the vicinity of another active center j can be estimated [13] (8): 

 

 𝑝𝑖
𝑚𝑖𝑔

= 𝛤𝑚𝑖𝑔𝑠𝑖 𝑒𝑥𝑝(−𝛽 ∑ 𝑠𝑘𝐽𝑘𝑘,𝑘≠𝑖 ) ∑ (1 − 𝑠𝑗)𝑍
𝑗=1  (8) 

 

The connection to the mesoscopic model of a continuous medium in a one-dimensional approximation is 

given by the expression for the effective diffusion coefficient in the form (9): 

 

𝐷 =
𝛤𝑚𝑖𝑔

𝑎2  (9) 

 

Here 𝛤𝑚𝑖𝑔 is migration frequency, 𝑠𝑖 is discrete node density in the vicinity of 𝑖, 𝑎 is lattice constant. The 

probability of adsorption in the vicinity of surface nodes (10): 

 

𝑝𝑖
𝑎 = 𝛤𝑎(1 − 𝑠𝑖) (10) 

 

The probability of desorption in the vicinity of surface nodes (11): 

 

𝑝𝑖
𝑑 = 𝛤𝑑𝑠𝑖 𝑒𝑥𝑝(−𝛽 ∑ 𝑠𝑘𝐽𝑘𝑘,𝑘≠𝑖 ) (11) 

 

The corresponding expressions for the frequencies are obtained (12) and (13): 

 

𝛤𝑎 =
𝑘𝑎𝑃

𝜌𝑠
 (12) 

 

𝛤𝑑 = 𝑘𝑑
0 𝑒𝑥𝑝(−𝛽𝛥𝐻𝑎

0) (13) 

 

The system of (8)-(13) is generalized and simplified according to the exponential form of the 

transport relaxation kernels obtained above, and the diffusion coefficient can be represented in Arrhenius 

form. Further considering the findings of the study [14], the following fundamental equation for the 

concentration of the adsorbate in microporous membranes is arrived at. The approach is modified by 

introducing the concept of migration probability. In the GA, a stage is added where individuals represent 

membrane parameters, including migration frequency (γ), discrete node density (ρ), and lattice constant (D0). 

The diffusion coefficient will then depend on how each individual in the population represents specific 

values of parameters (γ, ρ, D0). The GA will be used to search for a combination of parameters that optimize 

the diffusion coefficient (14) and (15): 

 
𝜕𝑐

𝜕𝑡
− 𝛻 ⋅ {𝐷 𝑒𝑥𝑝(−𝛽𝐽 ∗ 𝑐) [𝛻𝑐 − 𝛽𝑐(1 − 𝑐)𝛻𝐽 ∗ 𝑐]} = 0 (14) 

 

𝐷 = 𝑑 𝑒𝑥𝑝(−𝛽𝑈0) (15) 

 

Here, 𝑑 is the diffusion coefficient at the limit of some finite temperature. To incorporate the mesoscopic 

approach into (14), the found values of parameters from the optimized population will be introduced to 

calculate the diffusion coefficient in each iteration of the GA. The optimization using the GA is performed 
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iteratively. In other words, the values of parameters (γ, ρ, D0) are changed n-times by the GA, aiming to 

maximize the diffusion coefficient and optimize the membrane separation process [15]. 

Such an approach allows the combination of the GA with mesoscopic modeling to more efficiently 

optimize the parameters of separating membranes in the context of adsorbate diffusion. To link the GA with 

the mesoscopic model of continuous medium, especially in the one-dimensional approximation with an 

expression for the effective diffusion coefficient, the following steps will be taken. Firstly, the parameters for 

optimization will be defined. For this purpose, the parameters of the mesoscopic model that influence the 

effective diffusion coefficient (Deff) will be considered (16): 

 

𝐷𝑒𝑓𝑓 = 𝛾 ∗ 𝜌 ∗ 𝑘  (16) 

 

The parameters may include node density (ρ), migration frequency (γ), lattice constant (k), and others. Next, 

the fitness functions will be formulated. The expression for the effective diffusion coefficient will be 

incorporated into the GA fitness function. Thus, diffusion efficiency will be maximized while optimizing 

parameters. The fitness function can be represented as the (17): 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐷𝑒𝑓𝑓 = 𝛾 ∗ 𝜌 ∗ 𝑘 (17) 

 

The subsequent step involves the deployment of the GA. The GA will be employed to optimize the 

parameters of the mesoscopic model that influence diffusion. By evolving the population, the GA will search 

for combinations of parameters that maximize diffusion efficiency within this model. The iterative process of 

the GA will be repeated until the optimal parameter values are achieved. The GA progressively refines the 

population, aiming for maximum diffusion efficiency in the mesoscopic model [16]. The stage of "Launching 

the GA" using the core operators is described in more detail (Figure 1). The integrated method has been 

implemented using the Python programming language. This process of population evolution systematically 

improves parameter values to achieve better results in the context of the specified optimization task [17]. 

 

 

 
 

Figure 1. Genetic algorithm 
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3. RESULTS AND DISCUSSION 

Integration of the GA and mesoscopic modeling for the optimization of membrane separation 

processes is a promising and powerful approach, as demonstrated by the conducted calculations and analysis 

of the results. In Figure 2, we can observe the variation in population size depending on the selection 

coefficient. When analyzing the change in the population size from 1 to 10, it is observed that different 

values of the selection coefficient affect the efficiency of optimization. Small populations may face the issue 

of insufficient genetic material diversity, while large populations can increase computational complexity. 

This balance should be considered when choosing the population size. The process of improving the 

population's fitness in this context involves applying the GA to a set of individuals (membranes) to achieve 

optimal values of their characteristics. Thus, the GA undergoes several iterations, applying selection, 

crossover, and mutation operators to the initial population of membranes [18]. As a result of these operations, 

the algorithm strives to make the membrane characteristics more optimal, closer to the target values. 

Therefore, by improving the population's fitness, the GA directs the evolution of membrane parameters 

towards better solutions for the optimization task in the context of membrane separation processes (Figure 3). 

A fixed population of 10 individuals initially has initial selection coefficient values, and then, after 

applying the GA, it reaches improved values. This indicates the optimization algorithm's ability to enhance 

the fitness of the population under specific conditions. Convergence rates visualize how quickly the 

algorithm reaches optimal values with an increase in the number of iterations (Figure 4). 
  

   

  
 

Figure 2. Population size variation 

 

Figure 3. Fitness improvement 
 

 

 
 

Figure 4. Convergence rate 
  

 

In the initial stages, when the number of iterations is low, the values may undergo significant 

changes. Gradually, with an increase in iterations, the algorithm converges to optimal values, and the graph 

becomes less variable. An interesting point is when the graph shows minimal changes, indicating that the 

algorithm has reached optimal values (1.0 in this case) and does not require additional iterations. Thus, the 

convergence rate graph provides a visual representation of how quickly the GA approaches the desired 

selection target values with an increasing number of iterations. Iterations and the values of the selection 

coefficient at each step allow an assessment of the algorithm's convergence speed. The rapid achievement of 

optimal values indicates the efficiency of the proposed method [19], [20]. Figure 5 illustrates the stability of 
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the GA under various conditions, showing how the target selection coefficient changes at each iteration 

across multiple repetitions. 

 

  

 
 

Figure 5. Stability under different conditions 

 

 

Therefore, repeated iterations with different initial values and varying final selection coefficient 

values allow us to assess the algorithm's stability under different conditions, considering the variability of 

real processes. Figure 6 reflects the evolution of the membrane population at each iteration of the GA. The 

algorithm tracks changes in selection coefficients for each membrane at each iteration, gauging the GA's 

effectiveness in reaching optimal values. Figure 7 illustrates the evolving optimal selection coefficients, 

showcasing a trend towards increased values. This reflects the GA's success in optimizing membrane 

parameters for enhanced separation processes. 

 

 

  
 

Figure 6. Evolution at each iteration 

 

Figure 7. Optimal value over iterations 

 

 

Significant improvements in separation efficiency and energy consumption reduction were 

demonstrated by conducted experiments. The main findings are presented in tables and include the following 

data (Table 1): 

− Component separation efficiency: an increase of 25% compared to traditional methods. 

− Energy consumption: a reduction of 15% compared to existing methods. 

− System performance: an increase in performance by 20%. 

 

 

Table 1. Impact of optimization on membrane separation parameters 
Parameters Before optimization After optimization 

Separation efficiency (%) 75 94 

Energy consumption (kwh) 120 102 

Productivity (%) 80 96 
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The results of this study demonstrate that the integration of GA and mesoscopic modeling can 

significantly improve the parameters of membrane systems. Key achievements include improved separation 

efficiency and reduced energy costs, which are important steps in the development of energy efficient 

technologies. Comparison with previous studies shows that developed approach outperforms traditional 

optimization methods. For example, the study [3] showed a 10% improvement in efficiency, whereas our 

study showed a 25% improvement. At the same time, we have some limitations in this study, namely, 

mesoscopic modeling requires significant computational resources. Also, to adapt the method to different 

types of membrane processes and study additional parameters affecting performance, there is a need for 

further research [21], [22]. 

Studying the optimal value of the selection coefficient at each iteration allows evaluating the 

algorithm's effectiveness in achieving optimal results. It is evident that the algorithm successfully converges 

to optimal values, which is promising in the context of its application to membrane separation processes. 

Experiments confirm that the integration of GA and mesoscopic modeling is effective in optimizing 

membrane separation processes. The balance of parameters, such as population size, iterations, and initial 

values, plays a crucial role in the algorithm's success. The algorithm demonstrates the ability to rapidly 

converge to optimal values, and its stability under different conditions makes it a promising tool for solving 

complex optimization tasks in membrane separation. The obtained results open doors for further research and 

practical application of this method in various engineering and technological applications [23]-[25]. 

   

   

4. CONCLUSION 

The conducted study demonstrated that the integration of a GA and mesoscale modeling is an 

effective approach for optimizing membrane separation processes. The primary achievements include a 

significant increase in separation efficiency and a reduction in energy consumption. The integration of GA 

and mesoscale modeling in the context of optimizing membrane separation processes is a promising 

approach. The relevance of membrane technologies in today's world makes this method particularly 

significant for addressing complex issues related to improving the efficiency and cost-effectiveness of 

separation processes. Experiments with various parameters, such as population size, initial values, and 

iterative processes, allow for a better understanding of optimization dynamics. The research result graphs 

clearly demonstrate changes in adaptability, convergence to optimal values, and stability under various 

conditions. 

It is important to note that the conducted analysis confirms the positive impact of integrating a GA 

and mesoscale modeling on the optimization of membrane separation processes. Observed improvements in 

process technology and stability under different conditions confirm the effectiveness of the proposed method. 

Thus, this study not only provides valuable scientific results but also opens new perspectives for future 

research in the field of membrane technologies. Additional parameters and conditions can be considered, 

optimization methodologies improved, and further experiments conducted to deepen our understanding of 

membrane separation processes. Attention to additional parameters, advanced optimization methodologies, 

and an expanded experimental base can further enhance our understanding of separation processes and lay 

the foundation for the development of more efficient separation technologies in the future. The main 

conclusion of this study is that the integration of GA and mesoscale modeling opens new prospects for 

optimizing membrane technologies, providing more efficient and energy-efficient solutions for industrial 

applications. 
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