Bulletin of Electrical Engineering and Informatics
Vol. 14, No. 1, February 2025, pp. 287~296
ISSN: 2302-9285, DOI: 10.11591/eei.v14i1.8285 a 287

Deep hybrid neural network for automatic classification of
heart arrhythmias using 12-lead electrocardiograms

Daniyar Sultan!?3, Meirzhan Baikuvekov!, Batyrkhan Omarov®?3 Aray Kassenkhan?,
Saltanat Nuralykyzy*, Maigul Zhekambayeva*

!Department of Information Systems, Faculty of Information Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
2Department of Mathematical and Computer Modeling, Faculty of Computer Technology and CyberSecurity, International Information

Technology University, Almaty, Kazakhstan

3School of Digital Technology, Narxoz University, Almaty, Kazakhstan
“Department of Software Engineering, Institute of Automation and Information Technologies, Satbayev University, Almaty, Kazakhstan

Article Info

ABSTRACT

Article history:

Received Feb 6, 2024
Revised Aug 28, 2024
Accepted Sep 4, 2024

Keywords:

Bidirectional long short-term
memory

Convolutional neural network
Deep learning

Heart disease

Medical signal processing

This research introduces a novel convolutional neural network-bidirectional
long short-term memory (CNN-BiLSTM) hybrid network for the automatic
classification of heart arrhythmias using 12-lead electrocardiograms (ECGs).
By merging the spatial feature extraction capabilities of CNNs with the
temporal precision of BiLSTM networks, our approach sets a new standard
in cardiac diagnostics. The proposed model was tested against the
comprehensive CPSC2018 dataset, demonstrating superior performance with
an accuracy of 90.67%, precision of 93.27%, recall of 96.35%, and an F-
score of 94.78%, surpassing existing state-of-the-art methods. These results
underscore the effectiveness of integrating spatial and temporal data
analysis, offering a robust and reliable tool for medical practitioners. This
study represents a significant advancement in automated ECG analysis,
paving the way for improved diagnosis and treatment of heart diseases, and
contributing to enhanced patient outcomes in cardiac care.
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1. INTRODUCTION

Heart arrhythmias, encompassing a wide range of irregular heart rhythms, represent a significant
health risk and contribute substantially to cardiovascular morbidity and mortality worldwide [1]. The 12-lead
electrocardiogram (ECG) is a critical diagnostic tool for detecting these arrhythmias, offering a
comprehensive electrical mapping of the heart’s activity [2]. However, the manual interpretation of ECGs is
both time-consuming and prone to variability due to differences in clinicians’ expertise and experience [3].
This variability can lead to inconsistent and potentially inaccurate diagnoses, highlighting the need for
automated, reliable diagnostic systems.

Previous studies have explored various machine learning to address these challenges [4].
convolutional neural networks (CNNSs) have been particularly prominent due to their ability to extract spatial
features from ECG signals [5]. For example, studies have demonstrated the efficacy of CNNs in identifying
specific arrhythmia patterns within ECG data. However, CNNs often fall short in capturing the temporal
dependencies within ECG signals, which are crucial for accurate arrhythmia classification [6]. This gap has
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led to the integration of bidirectional long short-term memory (BiLSTM) networks, known for their strength
in processing time-series data and learning long-term dependencies [7].

Despite these advancements, existing solutions still have significant limitations. Many models
struggle with the high-dimensionality and complexity of ECG signals, leading to suboptimal performance in
clinical settings. Furthermore, while some studies have integrated spatial and temporal features, they often do
so in a manner that does not fully leverage the potential of each method. For instance, previous research has
demonstrated the utility of combining CNNs and BiLSTMs, yet these models frequently fail to achieve the
desired balance between capturing spatial and temporal patterns effectively.

In this study, we address these gaps by proposing a hybrid neural network that combines the
strengths of CNNs and BiLSTMs to improve the automatic classification of heart arrhythmias. By leveraging
the complementary strengths of these architectures, we seek to achieve superior performance in classifying
various types of arrhythmias, ultimately enhancing the precision and reliability of automated ECG analysis.
Our primary objective is to develop a sophisticated model that not only surpasses existing methods in
accuracy but also offers practical utility in clinical settings. To demonstrate its effectiveness and potential
real-world applicability, we test our model against the comprehensive CPSC2018 dataset. By advancing the
integration of spatial and temporal data analysis in medical diagnostics, this study aims to revolutionize the
way heart arrhythmias are identified and managed, contributing significantly to the advancement of cardiac
healthcare.

2. METHOD
2.1. Proposed model

In this research, a distinctive CNN-BIiLSTM network architecture was constructed for the automatic
classification of heart arrhythmias from 12-lead ECGs. Figure 1 demonstrates the proposed deep hybrid
neural network for heart arrhythmias detection based on CNN and BiLSTM architectures.
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Figure 1. Architecture of the proposed CNN-BiLSTM hybrid model
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This architecture is comprised of a sequence of layers: an initial input layer, successive CNN blocks,

a BIiLSTM layer, and a concluding classification layer.

— Input layer: this layer receives the initial data. In the context of ECG signal processing, the input layer
handles segmented ECG time-series signals. These signals are typically represented as a
multi-dimensional array, where each dimension corresponds to one of the 12 leads of the ECG, and the
length of each dimension represents the number of samples in each lead.

— Convolutional layer (CNN): this layer performs feature extraction. In a 1D convolutional layer for ECG
data, convolution operations are applied to the input signals [7]. The operation involves sliding filters (or
kernels) across the input to create feature maps. Mathematically, this can be represented as (1):

Feyy(X) = o(W X + b) 1)

where * denotes the convolution operation, X is the input signal, ¢ denotes the activation function, w is the

filter, and b is the bias.

— BILSTM layer: the feature matrix Fyy(X) obtained from the CNN blocks is then fed into the BILSTM
layer [8]. The forward and backward hidden states, H,, and H,,,, are computed as (2):

Hp, () = HWy, - [Hpw (€ — 1), Foun (X)] + b))
Hpyw (t) = HWy,y, - [Hpy, (t + 1), Feyy (Xe)] + bpy) @)

where, Wy, and W, are the weights, by, and by, are the biases for the forward and backward LSTM units,

respectively, H is the LSTM cell’s activation function, and t indexes the time step.

— Fully connected layer: this layer integrates the features learned by previous layers to identify higher-level
patterns. Typically, a fully connected layer is represented as (3):

y = activation(Wx + b) 3)

where, W and b are the weights and biases, and activation is an activation function like ReLU. Output
layer: the layer, which provides the output of the model. For classification tasks like arrhythmia detection, the
output layer often uses a softmax function to provide a probability distribution over the target classes. The
softmax function is given by (4):

Zi
0@ =gr—zfori="1,.. Kandz = (z,.... 7) (4)
j=

where, K is the number of classes.

2.2. Data

In this investigation, the CPSC2018 dataset [9] served as the foundation for training and assessing
the proposed CNN-BILSTM model, specifically designed for heart arrhythmia classification. The dataset’s
extensive scope and variety are instrumental in forging a model with high accuracy in arrhythmia
identification across various types. This dataset, comprising 6,877 ECG recordings spanning 10 seconds each
and encompassing a range of cardiac conditions, is meticulously annotated by cardiology experts. It includes
diverse arrhythmia classes, thereby offering a comprehensive platform for evaluating the model’s
effectiveness and real-world applicability in clinical settings. The CPSC2018 dataset’s complexity,
encompassing typical clinical challenges such as signal noise and patient-specific ECG variations, enhances
the model’s potential in practical, clinical scenarios.

The data from ECGs provides crucial information about the heart’s electrical activity [10]. A typical
ECG tracing showcases a recognizable pattern comprising the P wave, QRS complex, and T wave. A typical
ECG tracing exhibits a distinct pattern consisting of the P wave, QRS complex, and T wave, as depicted in
Figure 2 [11].
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Figure 2. The ECG recording displays a sinus rhythm with distinct P waves, QRS complexes, and T waves
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Proper interpretation of these waveforms, especially in a 12-lead ECG, requires specialized
knowledge. The 12-lead ECG offers comprehensive cardiac monitoring by recording 12 different signals,
combining limb leads (from arms and legs) and precordial (chest) leads, to provide a detailed view of the
heart’s activity [12]. This thorough approach is essential for accurate arrhythmia diagnosis, yet traditional
manual analysis can be time-intensive and subject to human error. Figure 3 demonstrates samples of 12-lead
ECG [13].
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Figure 3. Sample of 12-lead ECG

To ensure the reproducibility of our study, we have made the source code available on Google
Colab. This resource provides a comprehensive implementation of the proposed CNN-BiLSTM model,
including all necessary configurations and parameters. Interested readers and researchers can access the code
and replicate the experiment using the following link:
https://colab.research.google.com/drive/1AeDd3T12VjBk-290lde8UbX_ePDmqyll?usp=sharing. This
availability supports transparency and facilitates further research in the automatic classification of heart
arrhythmias.

3. RESULTS AND DISCUSSION
3.1. Evaluation parameters

Accuracy measures the overall effectiveness of a model [14]. It calculates the proportion of true
results in the total population, offering a general assessment of the model’s performance [15]. It quantifies
the overall correctness of the model and is defined by (5) [16]:

correct_predictions
accuracy = ———

total_cases (5)
Precision measures how well a model predicts positive instances by calculating the ratio of true positives to

all positive results [17]. It is calculated as in (6):

TP

precision = ——
TP+FP

(6)

Recall assesses the model’s capability to identify all actual positive cases [18]. Recall determines the model’s
ability to correctly identify actual positives, formulated as (7):

TP
TP+FN

recall =

(7
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The F-score harmonizes precision and recall [19]. It is particularly useful in situations where an equilibrium
between precision and recall is essential, typically in imbalanced datasets [20]. It is expressed as in (8) [21]:

2precision-recall
F — score = S22 Tec (8)

precision+recall

3.2. Experiment results

The results section delineates the outcomes and analytical insights from the study, focusing on the
evaluation of the CNN-BIiLSTM network tailored for heart arrhythmia classification using 12-lead ECGs.
Key performance metrics derived from the CPSC2018 dataset experiments are detailed, underscoring the
model’s proficiency in arrhythmia detection and classification. This segment also includes a comparative
analysis with leading methods, illustrating the proposed model’s superiority in arrhythmia detection. An in-
depth examination of these results offers critical perspectives on the model’s effectiveness, it is operational
strengths, and potential limitations, thereby elucidating its applicability in clinical settings. The network’s
accuracy, charted over a series of learning epochs, is visually represented, with the analysis indicating
optimal accuracy achievement within a specific number of epochs, highlighting the network’s efficient
learning dynamics.

The results as depicted in Figure 4 elucidate the performance trajectory of the CNN-BIiLSTM
network over 16 learning epochs. The graphical representation in Figure 4(a), with the blue curve for training
accuracy and the orange for test accuracy, reveals a progressive enhancement in the model’s capability.
Notably, a convergence of both training and test accuracies to 99% is observed at the 16th epoch. This
convergence, particularly the stabilization of test accuracy from the 12" epoch, signifies the network’s
efficient learning capability. It implies that the model attains optimal proficiency in classifying heart diseases
within a limited epoch range, emphasizing the efficiency and effectiveness of the CNN-BILSTM network in
medical diagnostics.

Figure 4(b), presents an analysis of the training and validation loss in the CNN-BiLSTM network.
The loss metrics are indicative of the discrepancy between the network’s predictions and the actual labels. A
declining trend in training loss reflects the network’s proficiency in internalizing and replicating patterns
associated with heart disease classification. Concurrently, a stable and low test loss signifies the model’s
capability to generalize effectively to unseen data. This dual observation of declining training loss and stable
test loss, alongside high accuracy, underscores the network’s ability to accurately classify heart diseases
while avoiding overfitting, thereby affirming its robustness and reliability in practical applications.
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Figure 4. Training and validation of the proposed model; (a) accuracy for 16 learning epochs and (b) loss of
for 16 learning epochs

In Figure 5, confusion matrices delineate the classification efficacy of heart diseases by the
proposed model. The analysis of the confusion matrices reveals that while all models are generally effective
at identifying heart disease cases, there are significant differences in their precision and their ability to avoid
missed diagnoses. The proposed model stands out as the most effective, balancing high sensitivity with
reasonable specificity, making it the most reliable for clinical applications where missing a diagnosis could
have severe implications. The relatively high FP rates across models suggest a common challenge in avoiding
over-diagnosis, highlighting an area for potential improvement in future model iterations.

Deep hybrid neural network for automatic classification of heart arrhythmias using ... (Daniyar Sultan)



292

ISSN: 2302-9285

True Labels

True Labels

True Labels

Disease

Normal

Disease

Normal

Disease

Normal

Confusion Matrix for CNN Model

.
Disease

Confusion Matrix for BiLSTM Model

!
Disease

Predicted Labels

Predicted Labels

44

36

!
Normal

41

!
Normal

Confusion Matrix for MLP Model

24

Disease

Predicted Labels

51

43

Normal

True Labels

True Labels

True Labels

Confusion Matrix for LSTM Maodel

43

Disease

Normal

Disease Normal
Predicted Labels

Confusion Matrix for GRU Model

32

Disease

33 33}

Normal

Disease Normal
Predicted Labels

Confusion Matrix for Proposed Model

37

Disease

19 31

Normal

Diséase Norﬁal
Predicted Labels

Figure 5. Confusion matrix in heart disease classification

Figure 6 demonstrates the analysis of performance metrics for heart disease detection using various deep

learning models and the proposed model-reveals critical insights into their effectiveness and applicability in clinical
settings. The proposed model outperforms the traditional and commonly used models across all metrics,
demonstrating its potential as a highly effective tool for automatic heart disease classification. Its superior
performance metrics suggest that it could significantly enhance diagnostic processes, reduce the burden on
healthcare professionals, and potentially lead to better patient outcomes through timely and accurate diagnosis.
This analysis supports the integration of advanced machine learning techniques in medical diagnostics.

We found that our proposed CNN-BiLSTM hybrid network correlates strongly with higher accuracy

and reliability in classifying heart arrhythmias compared to existing methods. Specifically, the proposed
method demonstrated a 90.67% accuracy, 93.27% precision, 96.35% recall, and a 94.78% F-score when
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tested on the CPSC2018 dataset. These metrics indicate that our model tends to have an inordinately higher
proportion of correct classifications, both in terms of identifying arrhythmias and avoiding false positives,
compared to state-of-the-art techniques. This significant improvement underscores the effectiveness of
combining spatial and temporal data analysis in enhancing diagnostic accuracy and reliability.

Performance Metrics

1.0f
0.0 I I I I I
CNN LSTM BiLSTM GRU MLP Proposed
Models
BN Accuracy WEE Precision WM Recall F-score AUC-ROC

Figure 6. Performance metrics in heart disease classification

By making our source code available as open source, we promote transparency and reproducibility,
encouraging further research and refinement of our model. Ultimately, our work not only advances the field
of ECG analysis and automated arrhythmia classification but also paves the way for future innovations in
medical diagnostics, enhancing healthcare delivery and patient outcomes through timely and precise
interventions. Our findings indicate that the proposed hybrid CNN-BIiLSTM network achieves higher
accuracy (90.67%) compared to other methods such as the deep neural network (90.58%) and the
interpretable deep learning model (90.5%). Moreover, our model exhibits superior precision (93.27%), recall
(96.35%), and F-score (94.78%) when compared to other approaches, indicating a higher proportion of
correct classifications and a balanced performance between precision and recall.

Table 1 presents a comparative analysis between the proposed study and state-of-the-art research,
highlighting the advancements and improvements introduced by the proposed methodology. The deep
learning model based on a GAN, while showing a high positive predictive value (PPV) of 95%, does not
surpass our model in overall accuracy. The subdomain adaptive deep network achieves an F1-macro score of
89.43%, which is lower than the F-score of our proposed model, suggesting that our approach more
effectively balances precision and recall. Additionally, the deep conventional neural network achieves an
F-score of 91.3%, which, while respectable, is still lower than our model’s F-score of 94.78%. This
comparison underscores the efficacy of combining CNNs and BiLSTMs more comprehensively.

Table 1. The results were analyzed and compared with findings from state-of-the-art research results

Approach Dataset Results (%)

Proposed hybrid CNN-BIiLSTM  CPSC2018 dataset [21] Accuracy=90.67, precision=93.27, recall=96.35, F-score=94.78
network

Deep learning model based on a  Own dataset AUC=90.5, sensitivity=90.5, specificity=90.5, PPV=95, NPVV=90.5
GAN [22]

Deep neural network (2022) [23]  12-lead ECG [24] Accuracy=9058

Subdomain  adaptive  deep  Own dataset F1-macro=89.43

network [25]

Deep neural network [26] Own dataset AUC=90, precision=85

Interpretable deep learning [27] Own dataset Accuracy=90.5

Deep  conventional neural  12-lead ECG [24] F-score=91.3

network [28]

Deep neural network [29] Own dataset AUC=90.5

Deep hybrid neural network for automatic classification of heart arrhythmias using ... (Daniyar Sultan)
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Our study’s primary contribution lies in demonstrating that integrating CNNs for spatial feature
extraction with BiLSTMs for temporal dependency capture can significantly enhance the classification
performance of heart arrhythmias. These results suggest that our proposed method benefits from this hybrid
approach without negatively affecting key performance metrics. This improvement highlights the potential of
our model to provide more reliable and accurate diagnostic tools in clinical settings, thus advancing the field
of automated ECG analysis and heart arrhythmia classification.

The high accuracy and F-score of our model highlight its effectiveness in capturing the intricate
patterns within ECG signals that are indicative of various arrhythmias. Compared to other studies, our
model’s integration of CNN and BiLSTM networks allows for a more comprehensive analysis, combining
spatial and temporal data processing capabilities. This hybrid approach significantly enhances the diagnostic
accuracy compared to models that rely solely on CNNs or traditional machine learning techniques.

The proposed study’s primary objective was to develop a model that integrates the strengths of
CNNs and BiLSTMs to improve the classification of heart arrhythmias. The findings align with this
objective, demonstrating that our hybrid model outperforms existing methods. This supports our hypothesis
that combining spatial and temporal data analysis can lead to more accurate arrhythmia classification.

3.3. Limitations

This study investigated a comprehensive hybrid CNN-BIiLSTM model for classifying heart
arrhythmias using the CPSC2018 dataset. However, additional and in-depth research may be required to
confirm its generalizability, particularly regarding its performance with diverse and unseen clinical data.
While our model showed significant improvements in different evaluation parameters in real-world clinical
settings where data quality and patient demographics vary widely remains to be validated. Future studies
should consider different clinical environments to fully establish its robustness and applicability.
Furthermore, addressing potential overfitting and ensuring the model’s adaptability to different ECG signal
characteristics are crucial steps for enhancing its practical utility.

3.4. Ensuring reproducibility

To ensure the reproducibility of our study and provide additional clarity, we have made the source
code available on  Google Colab  (https://colab.research.google.com/drive/1AeDd3T12V|Bk-
2901de8UbX_ePDmqy1l?usp=sharing). The source code includes all the necessary implementations of the
proposed CNN-BIiLSTM model, as well as the data processing, training procedures, and evaluation metrics.
Moreover, it contains detailed annotations and illustrations of the results. Researchers can access and interact
with the code using the following link: Google Colab Source Code. This resource supports transparency and
facilitates further research in the automatic classification of heart arrhythmias using 12-lead ECGs. In
summary, the proposed CNN-BIiLSTM hybrid model represents a substantial advancement in the automatic
classification of heart arrhythmias. By addressing the limitations and expanding the scope of validation, we
can further enhance its utility in clinical diagnostics.

4. CONCLUSION

In this study, we introduced a CNN-BiLSTM hybrid network for classification of heart arrhythmias,
demonstrating superior performance with significant improvements in different evaluation metrics compared
to existing deep models. The proposed approach effectively combines the spatial features of CNNs with the
temporal dependencies of BiLSTMs, addressing previous models’ limitations. These findings suggest
substantial implications for the research community and clinical practice, offering a robust tool for more
accurate and reliable heart arrhythmia diagnosis. The broader applicability of our model to other medical
diagnostic tasks highlights its potential utility in analyzing complex, time-sensitive data across various
domains. Future research should explore optimizing this hybrid approach and adapting it to diverse clinical
environments to confirm it is generalizability and effectiveness. By making our implementation available as
open source, we promote transparency and reproducibility, encouraging further research and refinement.
Ultimately, our work advances ECG analysis and automated arrhythmia classification, paving the way for
innovations in medical diagnostics and enhancing healthcare delivery and patient outcomes through timely
and precise interventions.
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