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 This study explores the intricacies posed by the unique features of 5G/6G 

wireless sensor networks (WSNs) to guarantee dependable and long-lasting 

connectivity. The increasing energy consumption in 5G/6G networks due to 

higher data rates and more complex architectures emphasizes the necessity 

for energy-efficient techniques. The WSN resources are limited, specially 

designed resource allocation and management techniques are essential. In 

this paper, a unique analogue combining design called advanced spatial 

adaptive channel estimation (ASACE) and an optimization model for 

channel state information (CSI) estimation that takes use of the low-rank 

characteristics of channel matrix sparsity are presented. Gradient descent 

(GD) optimization is incorporated to improve the suggested approach, 

demonstrating improvements in residual errors and computing complexity. 

The optimization problem aims to find the gains and orientations of 

wideband channel paths. Moreover, a comparative analysis is conducted 

between the suggested model and many cutting-edge methods, emphasizing 

error minimization. This thorough analysis offers a nuanced viewpoint on 

the effectiveness and efficiency of the suggested ASACE approach in the 

context of wideband cross-entropy (CE) and optimization, which makes a 

significant contribution to the area. 
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1. INTRODUCTION 

The spatial and frequency domain dimensions of wireless signals are expanding quickly to meet the 

increasing demand for communication capacity in 6G networks [1]. From 5G to 6G, there is a noticeable shift 

in the spatial domain from massive-multiple-input multiple-output (mMIMO) to very large-scale MIMO 

(XLMIMO) and XL-MIMO increases spectral efficiency tenfold with a notably higher number of antennas [2]. 

In order to access greater spectrum resources, the operational frequency simultaneously moves from sub-6G 

to the terahertz (THz) and millimeter wave (mmWave) bands [3]. Many high-gain arrays at high frequencies 

have been designed as a result of the smaller wavelength, which causes high-frequency antennas to be 

proportionately smaller in size [4], [5]. Therefore, it is natural and acknowledged that XL-MIMO and high-

frequency communications are essential technologies for the development of 6G communications. Like 5G 

mmWave massive MIMO, high-frequency communications use hybrid precoding to reduce radio-frequency 

(RF) chain power consumption [6], and accurate channel state information (CSI) is essential for successful 

hybrid precoding. Intelligent communication systems, large data platforms, and advanced processing 

applications all require the integration of wireless communication technology. This integration is expected to 

be more thorough in the world of 6G technology, expanding on the foundation established by 5G 

https://creativecommons.org/licenses/by-sa/4.0/
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technologies and the 6G networks are designed to support interactive media, mapping, and high-speed phone 

services [7], [8]. Wireless sensor networks (WSNs) are crucial for 5G and 6G networks, which aim to 

provide fast, reliable, and comprehensive connections for various devices and applications.  

Enhanced data throughput, lower latency, wide device connectivity, and network slicing will boost 

wireless communication. WSNs can leverage 5G/6G infrastructure for better long-distance communication 

and network integration. However, 5G/6G’s high data rates and complexity pose challenges for WSNs, 

which have limited memory, CPU, power, and network throughput. Energy-efficient techniques and 

optimized algorithms are necessary to ensure long-term, sustainable communication, addressing WSNs’ 

resource constraints through tailored resource allocation and management strategies. In these scenarios, non-

orthogonal pilot sequences are used due to many devices and short wireless channel coherence time. The key 

finding is that user activity sparsity allows for a compressed sensing (CS) approach [9]–[16], where study [9] 

explores user activity and data detection for code division multiple access (CDMA) systems with perfect CSI 

at the base station (BS). When CSI is unavailable, [10], [11] jointly address user activity detection and cross-

entropy (CE). Xu et al. [10] proposes a Bayesian CS technique for cloud radio-access network, while [11] 

uses basis pursuit denoising for orthogonal frequency division multiplexing (OFDM) systems. 

Studies [12], [13] focus on cooperative information decoding using various CS algorithms. 

However, a major limitation in previous research is the lack of thorough performance analysis for non-

orthogonal multiple-access techniques, especially with large connections. To address this, recent work 

suggests using the approximate message passing (AMP) technique for simultaneous user activity detection 

and CE [14], [15]. This approach, aided by state evolution analysis [16], simplifies evaluating missed 

detection and false alarm probabilities. However, the analysis in [14], [15] is complex, particularly with 

multiple antennas at the BS, and is limited to device detection without considering its impact on user 

achievable rates. To overcome these issues, Zhang et al. [17] introduces a hybrid beamforming (HBF) 

approach, combining analog beamforming for beam alignment and digital beamforming for effective 

interference mitigation. Prior research lacks comprehensive performance analysis, especially with many 

connections and complex antenna configurations, and focuses mainly on device detection without addressing 

its impact on user rates.  

Recognizing constraints in RF chains, this paper introduces an innovative analogue combining 

design featuring a random spatial sampling arrangement and the design incorporates a purely random stage 

preceding the input of analogue received signals into the digital component of the HBF receiver. This 

configuration is employed for gathering channel session measurements, utilizing an analogue combiner with 

valves to approximate signals at individual receiving antennas. The proposed model, named advanced spatial 

adaptive channel estimation (ASACE), distinguishes itself with the unique characteristic of randomly 

selecting analogue receive beams during the channel period. Coupled with the suggested CSI estimation 

approach, this design enhances performance while requiring shorter training periods.  

The matrix produced at the HBF receiver after the analogue processing of training signals with 

multiple receiving beams exhibits an identical rank to that of the mmWave MIMO channel matrix. 

Leveraging this observation, we formulate a CSI estimation optimization model that capitalizes on both the 

low-rank property of channel matrix sparsity and the received training signal matrix in the beamspace. The 

proposed optimization problem aims to discern the orientations and gains of the wideband channel paths and 

the distinctions lie in the mathematical formulations. The low-rank feature specific to narrowband mmWave 

MIMO channels determines their measurement requirements and the scalability of the technique in wideband 

mmWave MIMO channels. Additionally, we incorporate the gradient descent (GD) optimization approach, 

contributing to the reduction of residual errors and computational complexity in the proposed methodology. 

ASACE can be applied to enhance the performance of wideband mmWave MIMO communication systems in 

various scenarios, including urban environments, IoT networks, and high-speed mobile communication. 

  

 

2. LITERATURE SURVEY 

Classic least squares (LS) estimators require large pilot overheads due to the limitation on the 

number of RF chains, as received pilots must match the channel’s dimensions for robust estimation. Using 

past channel knowledge can alleviate this issue. To address this, various CS-based algorithms, categorized 

into Bayesian, deep learning (DL), and sparse reconstruction methods, have been explored. Sparse 

reconstruction methods rely on creating a dictionary matrix that represents channel as the sparse vector. The 

CE then becomes a sparse reconstruction problem, which can be solved using commercial techniques [18].  

A discrete Fourier transform (DFT)-based dictionary shows channel sparsity for a uniform array in the far field, 

equivalent to sampling the angular domain with uniform grids [19]. Angle and distance affect the array response 

near the array, necessitating specific grid patterns to sample both domains [20]. Studies show that near-field 

channels cannot be properly sparsified with far-field dictionaries and vice versa [21]. Determining the fraction 
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of path components is crucial for designing optimal hybrid-field dictionaries, but this remains unresolved. 

Current literature recommends dictionary learning for non-uniform arrays in hybrid-field mode [22], where a 

site-specific dataset optimizes the dictionary, though it may not transfer well to other sites. Bayesian 

techniques rely on the channel’s prior distribution, with iterative algorithms like AMP achieving optimal 

estimation if the prior is known [23]. 

The true preceding distribution is often unfamiliar in real-world scenarios and to address this, earlier 

research empirically chose a base distribution and updated its parameters iteratively using the expectation-

maximization principle. These priors can be unstructured (e.g., Gaussian mixture [24], Laplacian [25], or 

Bernoulli-Gaussian [26]) or structured (e.g., hidden Markov model [27]) when detailed channel knowledge is 

available. Matched and structured priors usually provide more accurate estimations but rely on complex 

channel models with robust assumptions, which may not be feasible for hybrid-field THz UM-MIMO 

channels. Unstructured priors can adapt to various channel conditions but might struggle with accuracy.  

A deep belief network (DBN)-based energy-efficient routing system has been developed to reduce energy 

consumption and enhance data transmission efficiency [28]. Effective IoT data transfer requires energy-

efficient WSN deployment. Although several routing protocols exist, none have achieved optimal speed and 

efficiency [29]. Implementing 5G/6G solutions is essential for higher data rates and lower latency, with data 

rates measured in gigabits per second. 

Comparing 5G/6G networks with 3G, 4G, and LTE shows significant improvements in BS 

bandwidth and quality of service (QoS) [30]. Opting for 5G/6G networks enhances QoS, increases capacity, 

and addresses modern cellular network challenges, aligning with technological advancements and rising 

multimedia data consumption. These networks interconnect multiple BSs and systems [31]. In standard and 

attack scenarios, routing algorithms in mobile ad hoc network (MANETs) maintain a consistent packet 

transmission ratio, lower overhead connections, and shorter end-to-end delays. Compared to other advanced 

MANET routing protocols, like ad-hoc on-demand distance-vector, these algorithms, especially when 

combined with an ant colony optimization algorithm based on optimized fuzzy algorithms, are more effective 

and perform better [32]. To integrate e-health systems into 5G-based WSNs, a study proposed a quick 

authentication process considering user requests and time constraints. The healthcare system facilitates data 

storage and communication for e-health users, drawing significant academic interest. However, the rise of 

wireless devices and sensors raises privacy and security concerns [33]. Researchers explored a game-

theoretic zone-based routing protocol to enhance node cooperation and power efficiency. Current research 

focuses on CE and HBF with AI algorithms, but high computational complexity and power consumption 

hinder performance. To address this, [34] proposed a deep-network-based HBF for 5G MIMO systems. 

 

 

3. PROPOSED METHOD 

In this work, we examine a point-to-point communication network, denoted as 𝐴𝑅 ×  𝐴𝑇 large 

MIMO, operating in wideband mmWave channels and in this scenario, the transmitter is stimulated with 𝐴𝑇 

antennas, and the receiver has 𝐴𝑅 antennas. Our assumption is that each of the 𝐴𝑇 antenna components of the 

transmitter is connected to an individual RF chain and, the receiver’s antenna is linked to 𝐴𝑅, which is less than 

𝑁𝑅 at RF chains. This configuration allows the transmitter to digitally precode up to 𝐴𝑇 distinct signals from a 

single dedicated RF link. Additionally, we consider the receiver to be equipped with the HBF designs [35], 

enabling both digital and analog combining. The mmWave MIMO network under consideration involves a 

wireless communication link for information 𝑏𝑐 ≤ min(𝐴𝑇 , 𝐴𝑅), which is separate from the data streams.  

An analog-based HBF-receiver for wideband MIMO channels was proposed to manage numerous 

antennas. While the communication system may change between frames, it is assumed to remain consistent 

within each frame. F blocks are used for CE per frame, with the rest for data transmission. Increasing F 

improves channel prediction but reduces data transfer time. Using 𝐴𝑇 antennas, the transmitter approximates 

the intended wideband mmWave MIMO channel for each block 𝑓 (𝑓 =  1, 2, . . . , 𝐹) by using the 𝐴𝑇 ×  1 

training symbols vector 𝑐[𝑓]. To be clear, we don’t consider additive white gaussian noise (AWGN) to be a 

factor. Therefore, the obtained training signal with a dimension of 𝐴𝑅 can be represented. 

 

𝑑̃[𝑓] = ∑ 𝐺(𝑒)𝑐[𝑓 − 𝑒]𝐸−1
𝑒=0  (1) 

 

The delay channel 𝐸’s convolution matrices and matching training vectors are shown; these are 

represented by the notation 𝑐[𝑓 − 𝑒] ∈  𝐶𝐴𝑇× 1. As with (1), this representation is as (2): 

 

𝑑̃[𝑓] = ∑ ∑ 𝑔ℎ(𝑒)𝑐ℎ[𝑓 − 𝑒]𝐴𝑇
ℎ=0

𝐸−1
𝑒=0  (2) 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 6, December 2024: 4069-4078 

4072 

The ℎ-th element of the vector 𝑐[𝑓] is shown by 𝑐ℎ[𝑓 − 𝑒], while the ℎ-th column of the matrix 

𝐺(𝑟) is represented by 𝑔ℎ(𝑒). We can change the order of summation in (2) to describe the inner convolution 

sum of the 𝐸 × 𝐹 Toeplitz matrix. In specific, the 𝐸 ×  𝐹 Toeplitz matrix h is introduced, and its (𝑒, 𝑓)-th 

element is determined by [𝐷̃]
𝑒,𝑓

= 𝑐ℎ[𝑓 − 𝐸 − 𝑒 + 2]. Where ℎ =  1, 2, … , 𝐴𝑇 and 𝑒 =  0, 1, 2, . . . , 𝐸 − 1. 

The expression provided in the preceding (2) can be expressed as (3): 

 

𝐷̃  = ∑ 𝐺̃ℎM̃ℎ
𝐴𝑇
ℎ=1  (3) 

 

Where, 𝐺̃ℎ = [𝑔ℎ(0) … 𝑔ℎ(𝐸 − 1)] ∈ ℂ𝐴𝑅 × 𝐸𝑎𝑛𝑑𝑌̃ ∈ ℂ𝐴𝑅 × 𝐹 . The arrangement of M̃ and G̃ is revised to be 

organized according to transmitting antennas, resulting (4) as follows 𝐷̃  = 𝑀̃ 𝐺̃. Where,  
M̃  =  [M𝐹(0) … M𝐹(𝐸 − 1)]𝐹 ∈ ℂ 𝐸𝐴𝑇×𝐹 and 𝐺̃ = [𝐺(0) … 𝐺(𝐸 − 1)] ∈ ℂ𝐴𝑅 𝑥 𝐸𝐴𝑇. Furthermore, the 

decomposition of the beamspace matrix at each delay path is as (4): 

 

𝐺̅ = 𝑁𝑅𝑃̅(𝐼𝑅 ⊗ 𝑁𝑇
𝐺), 𝐷̃ = 𝑁𝑅𝑃̅(𝐼𝑅 ⊗ 𝑁𝑇

𝐺)𝑀̃ (4) 

 

Where, 𝑃̅ = [𝑃(0) … 𝑃(𝐸 − 1)] ∈ ℂ𝐴𝑅 × 𝐸𝐴𝑇 . In the scenario of the wideband channel matrix G̅, the 

decomposition outlined in (4) is equivalent to the beamspace decomposition stated in (4) (𝐷̃ value). 

Consolidating all the aforementioned details, the matrix incorporating the received training symbols is 

presented as 𝐷̃. The difference between (𝐺̅) and (𝐷̃) is that the latter includes the training symbols in the 

rightmost matrix M̃. The latter formula will be utilized in our method to represent the incoming training data 

with respect to the combined virtual channel gains P̅. 

We provide a thorough analysis of the problem related to the suggested CE procedure as well as a 

thorough algorithmic fix, and the summing of the AWGN matrix 𝐴 and the low-rank matrix. That comprises 

the learning symbols delivered across the wideband mmWave MIMO link, yields the received learning signal 

matrix at the extended connector’s output. The low-rank property of D̃ is utilized in this study to estimate the 

wideband channel matrix P̅. First, for simplicity’s sake, we look at the later matrix’s rank properties. 

We formulate the subsequent dual-purpose optimization procedure for estimating P̅, exploiting on 

both the sparsity structure of P̅ and low-rank property of the learning symbols’ matrix D̃: 

 

𝑚𝑖𝑛𝐷,𝑃̅ 𝑄𝑅‖𝐷‖∗ + 𝑄𝑝‖𝑃̅‖1 (5) 

 

Which subject to, 𝑅Ω = Ω(D + A), 𝐷 = 𝑈𝑃̅𝑉. During the optimization process, the low-rank property of D is 

enforced by the nuclear norm, while the sparsity of P̅ is enforced by the 𝑒1-norm. Usually, one may calculate 

the positive weighted parameters 𝑄𝑅 and 𝑄𝑃 by considering the number 𝐸 of distinct propagation paths for 

mmWave MIMO channels. We replace the initial restriction in (5) with its least-squares approximation 

‖𝑅Ω − Ω ∗ D‖𝑆
2 in the following because of the uncertainty in the noisy matrix 𝐴. 

The optimization problem (5) is effectively solved by using the alternating direction method of 

multipliers technique. As stated in the mathematical (5), sampling is carried out on the channel matrix 

relatively than the received signal learning. In order to tackle this optimization issue, the subsequent actions 

are implemented and to recast the desired procedure into an analogous form, we first introduce two input 

matrix variables: 𝑍 ∈  𝐶𝐴𝑅𝑥 𝐹𝑎𝑛𝑑 𝑊 =  𝐷 –  𝑈𝑃̅𝑉. 

 

𝑚𝑖𝑛𝐷,𝑃̅,𝑍,𝑊 𝑄𝑅‖𝐷‖∗ + 𝑄𝑃‖𝑃̅‖1 +  ½‖𝑊‖𝑆
2 + 1/2‖Ω ∗ Z −  𝑅Ω‖𝑆

2 (6) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐷 = 𝑍 𝑎𝑛𝑑 𝑊 = 𝐷 − 𝑈𝑃̅𝑉 

  

In this case, the cost function may be broken down into four variables: 𝐷, 𝑃̅, 𝑊, 𝑎𝑛𝑑 𝑍. This is in 

line with (5). Interestingly, the objective function’s third component now takes care of the discretization 

error, while the fourth term accounts for the interference noise that AWGN introduces. The Lagrangian 

function optimization procedure is easily represented as (7): 

  

ℒ(𝐷, 𝑃̅, 𝑍, 𝑊, 𝑋1, 𝑋2) = 𝑄𝑅‖𝐷‖∗ + 𝑄𝑃‖𝑃̅‖1 + ½‖𝑊‖𝑆
2 + 1/2‖Ω ∗ Z −  𝑅Ω‖𝑆

2 + (7) 

𝑡𝑟(𝑋1
𝐺(𝐷 − 𝑍)) + 𝜌/2‖𝐷 − Z‖𝑆

2 + 𝑡𝑟(𝑋2
𝐺(𝑊 − 𝑍 + 𝑈𝑃̅𝑉)) + 𝜌/2‖𝑊 − 𝑍 + 𝑈𝑃̅𝑉‖𝑆

2 

 

The dual factors in this case are represented by 𝑋1 ∈ ℂ𝐴𝑅 𝑥 𝑇 and 𝑋2 ∈ ℂ𝐴𝑅 𝑥 1, which operate as 

Lagrange multipliers to add the constraints of (7) to the cost function. The ARSCE step size is indicated by 

the parameter ρ. According to the typical approach, for each 𝑖-th algorithmic step (𝑖 =  0, 1, … , 𝐼𝑚𝑎𝑥 the 

following separate sub-problems must be solved: 
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𝑋1
(𝑖+1)

= 𝑋1
(𝑖)

+ 𝜌(𝑍(𝑖+1) − 𝐷(𝑖+1)), 𝑋2
(𝑖+1)

= 𝑋2
(𝑖)

+ 𝜌(𝑊(𝑖+1)  −  𝑍(𝑖+1) − 𝑈𝑃̅(𝑖+1)𝑉) (8) 

 

Since the first subproblem concerns the optimization of variable 𝐷, let’s formulate it by 

concentrating on the relevant terms and streamlining the notation, that is, 

 

𝐷(𝑖+1) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐷 𝑄𝐷‖𝐷‖∗ + 𝜌/2 ‖𝐷 − (𝑍(𝑖) − 1/𝜌(𝑋1
(𝑖)

))‖
𝑆

2

 (9) 

 

It is thought that the singular value thresholding (SVT) function can be used to get the following 

solution to (14) [36]. 

 

𝐷(𝑖+1) = 𝐹𝐸
(𝑖)

𝑑𝑖𝑎𝑔 (𝑠𝑖𝑔𝑛(𝐾𝑗
(𝑖)

) × 𝑚𝑎𝑥(𝐾𝑗
(𝑖)

, 0)
1≤𝑗≤𝑟

) (𝐹𝑅
(𝑖)

)
𝐺

 (10) 

 

Here, 𝐾𝑗
(𝑖)

= 𝜎𝑗 − 𝑄/𝜌, where 𝜎𝑗 represents the r singular values, and 𝐹𝑅
(𝑖)

 and 𝐹𝐸
(𝑖)

 include the right 

and left singular vectors of matrix (𝑍(𝑖) − 1/𝜌(𝑋1
(𝑖)

)). Inverting the matrix is necessary to solve this equation, 

but because of diagonal matrix, the issue that can be solving by the following mathematical model: 

 

𝑧 = (𝐻1 + 2𝜌𝐼)−1(𝑋1
(𝑖)

+ 𝜌𝐷(𝑖+1) + 𝑅Ω + 𝑋2
(𝑖)

+ 𝜌𝑊(𝑖) + 𝜌𝐻2𝑃̅(𝑖)) (11) 

 

In the case of the unknown variable P̅, it can be formulated as the vectorization-based minimization 

of P̅, much like the corresponding sparse optimization issue. In order to address this problem, we use the 

traditional LASSO form [37], that is 𝑚𝑖𝑛𝑃̅ ‖𝑃̅‖1 + ‖𝑃̅ − 𝑌(𝑖)‖
2

2
. Here, 𝑝̅ can be approximated using a soft-

thresholding function and 𝑌(𝑖) ∈ ℂ𝐸𝐴𝑇𝐴𝑅 𝑥 1, as (12): 

 

𝑝̅(𝑖+1) = 𝑠𝑖𝑔𝑛 (𝑅(𝑌(𝑖))) °𝑚𝑎𝑥(|𝑅(𝑌(𝑖))| − 𝑄𝑃
′ , 0) + 𝑠𝑖𝑔𝑛 (𝐼𝑚𝑔(𝑌(𝑖))) °𝑚𝑎𝑥(|𝐼𝑚𝑔(𝑌(𝑖))| − 𝑄𝑃

′ , 0) (12) 

 
In this case, 𝑄𝑃

′  = 𝑄𝑃/𝜌, and the 𝑠𝑖𝑔𝑛(. ) and 𝑚𝑎𝑥(. ) operations are applied component-wise. 

Significantly, the suggested evolutionary algorithm will make use of the superscript (𝑖 + 1). The vector 

obtained from (12) is then parametrically generated as follows: 𝑃̅(𝑖+1) ∈ ℂ𝐸𝐴𝑇×𝐴𝑅 . 

The increasing of computational complexity has served the major challenge in the proposed model, 

so to overcome the computation burden for the 𝛾(𝑖), which is written by 𝛾(𝑖) ≜ 𝛨2
†ℎ(𝑖) ∈ ℂ𝐴𝑅𝐴𝑇 × 1. The 

normal form of the equation as ϖ𝛾(𝑖) ≜ 𝑣(𝑖). Where the ϖ and 𝑣(𝑖) can be formulated as (13): 

 

ϖ ≜ 𝛨2
𝐺 𝐻2 ∈ ℂ𝐸𝐴𝑅𝐴𝑇 × 𝐸𝐴𝑅𝐴𝑇 , 𝑣(𝑖) ≜ 𝛨2

𝐺 ℎ(𝑖) ∈ ℂ𝐸𝐴𝑅𝐴𝑇 × 1 (13) 

 

In order to calculate error at every iteration 𝑖, the exact least-square method was getting used in 

ARSCE. Here, we approximate 𝛾(𝑖) using the GD optimization and the (𝑖)th iteration can be given as (14): 

 

𝛾̃(𝑖) = 𝛾̃(𝑖−1) − 𝜑(𝑖)𝛽(𝑖), 𝛽(𝑖) = 𝑣(𝑖) − 𝜛𝛾̃(𝑖−1) (14) 

 

Here, 𝛽(𝑖) denotes the residual of (𝑖) − 𝑡ℎ iteration. To approximate 𝛽(𝑖) the over variation of 𝑖 

iteration, each step is varying at the right-hand side and 𝜑(𝑖) denotes the step size. The 𝜑(𝑖) can be computed 

by a pre-fixed value, i.e., 𝛽(𝑖) is always be greater to zero. 

 

𝜑(𝑖) = (𝛽(𝑖))
𝐺

𝛽(𝑖) (𝛽(𝑖))
𝐺

𝑈𝛽(𝑖)⁄  (15) 

 

The eigenvalue can be computed using the ratio of largest to smallest; 𝜀 ≜ 𝜇𝑚𝑎𝑥 𝜇𝑚𝑖𝑛⁄ . The spectral 

variation of the matrix ϖ totally depends upon the convergence proportion of GD optimization approach and 

called as eigenvalue. Moreover, the upper bound for the 𝑖-step residual computation is written as (16): 

 

‖𝜅(𝑖)‖U ≤ (
𝜀−1

𝜀+1
) ‖𝜅(0)‖U (16) 

 

The 𝜅(𝑖) denotes the residual vector and ϖ is the diagonal leading matrix, which insure the spread of 

the constraint eigenvalue and the fast convergence rate; 𝜅(𝑖) ≜ 𝛾(𝑜𝑝𝑡) − 𝛾(𝑖). In terms of computational 
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efficiency, our approach requires only two matrix-vector products to get the GD step size and residual, as 

opposed to computing the pseudoinverse of 𝐻2. While the modified GD technique presented here yields an 

approximate answer, its performance is favorable. This is due to a notable property of ARSCE, which states 

that convergence can be seen in some situations where the alternating minimalization stages are performed 

rather imprecisely. 

The proposed ASACE model, featuring random spatial sampling and an analogue combiner, 

improves CE by randomly selecting analogue receive beams during the channel period. This enhances the 

efficiency of gathering channel session measurements, leading to better accuracy in estimating CSI. Coupled 

with the CSI estimation approach, the ASACE model reduces the training periods needed for CE. Utilizing 

the low-rank property of channel matrix and received signal matrix at training phase in the beamspace, the 

model systematically estimates channel characteristics. Additionally, the low-rank charaterstics of 

narrowband mmWave MIMO channels aids measurement requirements and scalability for wideband 

channels. Incorporating GD optimization reduces residual errors and computational complexity, making the 

approach feasible for practical systems with limited computational resources. 

 

 

4. RESULTS AND DISCUSSION  

In this section, we will examine the use of mmWave MIMO technology with considering a large 

range of 𝐴𝑅 and 𝐴𝑇. Using the adaptive random spatial combining design, the performance of the suggested 

wideband CE method for HBF transmission is assessed. With MATLAB, all computational simulations are 

carried out. In particular, we average findings from several Monte-Carlo realizations to approximate average 

mean square error (MSE) performances. Furthermore, we compare the computational cost and convergence 

rate of the suggested method to comparable state-of-the-art techniques. 

SVT [36] is employed in this strategy to solve the rank-constrained optimization problem. 

orthogonal matching pursuit (OMP) [38] is one example of an iterative thresholding technique that can 

effectively handle L1 minimization with little computational burden, although its estimation accuracy is best 

suited for highly sparse vectors, or situations where the unknown vector has few non-zero members. On the 

other hand, more reliable estimation performance is provided by message passing methods such as vector-

AMP (VAMP) [39], particularly for signals with reduced sparsity and measurements that are prone to higher 

noise levels. These accepted practices are taken into account to contrast with the suggested strategy.  

Vadgave et al. [40], proposed ARSCE is the approach which not taking the training advantage using the GD, 

therefore we have considered this approach to validate our proposed model. 

The system comprises 16 transmitting antennas, 32 receiving antennas, a total of 4 clusters, 6 

channel realizations, 4 receive RF chains, a variable number of training frames ranging from 5 to 40, and 

operates under a signal-to-noise ratio (SNR) of -15 dB with 20 algorithmic iterations. The result analysis 

based on the provided Figure 1 for frames length vs normalized mean square error (NMSE) (error), with 

ASACE as the proposed approach; frames length 5: ASACE improves over SVT, OMP and ARSCE by 

37.92%, 24.41%, and 26.08%. Frames length 25: ASACE improves over SVT, OMP and ARSCE by 

63.58%, 35.09%, and 50.83%. Frames length 40: ASACE improves over SVT, OMP, and ARSCE by 

59.91%, 39.38%, and 17.05%. These percentages indicate the reduction in NMSE achieved by ASACE 

compared to each alternative approach, higher positive values indicate a more significant improvement. In all 

cases, ASACE demonstrates substantial improvement over SVT, OMP, and ARSCE, showcasing its 

effectiveness in enhancing the estimation accuracy for different frame lengths. 
  

 

 
 

Figure 1. Frames length vs NMSE 
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The specifications for Figure 2 include 16 transmitting antennas, 32 receiving antennas, a total of 4 

clusters, 6 channel realizations, 16 receive RF chains, 5 training frames, and -5 dB SNR with 20 algorithmic 

iterations. Figure 3 illustrates the efficacy of the proposed CE approach in terms of NMSE against the 

number of RF chains. ASACE consistently outperforms the other methods, showing improvements ranging 

from 22.64% to 27.47% at increasing number of RF chains. 

Details for Figure 3 include 16 transmitting antennas, 32 receiving antennas, 48 channel propagation 

paths, 4 total clusters, 1 channel realization, 4 receive RF chains, 30 training frames, and -5 SNR with 10 

algorithmic iterations. The figure displays the NMSE concerning the number of channel paths. In this 

analysis, ASACE consistently demonstrates superior performance compared to other methods, showcasing 

improvements ranging from 15.21% to 21.59% as the number of channel paths increases. Examined 

parameter specifications for Figure 4; include 16 transmitting antennas, 32 receiving antennas, 12 channel 

propagation paths, a total of 4 clusters, channel realization set at 6, 4 receive RF chains, 25 training frames, 

and an SNR of -10, with 10 iterations in the algorithmic process. Table 1 shows the numerical representation 

of number of channel delay taps vs NMSE for the better understanding of Figure 4. In Figure 5, the specific 

parameters include 4 transmitting antennas, 32 receiving antennas, a total of 4 clusters, 100 channel 

realizations, 4 receive RF chains, 35 training frames, and an SNR range from -15 to 15, with 100 algorithmic 

iterations. 
 
 

 
 

Figure 2. RF chains vs NMSE 

 
 

Figure 3. Channel paths vs NMSE 
 

 

 
 

Figure 4. No. of channel delay taps vs NMSE 
 

  

Table 1. Numerical representation of no. of channel delay taps vs NMSE 
No. of channel delay taps SVT OMP VAMP ARSCE ASACE 

2 0.72829 0.39737 1 0.68528 0.64581 

4 0.73175 0.89659 1 0.70293 0.65666 
6 0.74829 0.82667 1 0.71729 0.69182 

8 0.74204 0.66316 1 0.71437 0.70101 

10 0.72545 0.79379 1 0.68766 0.72010 
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Figure 5. SNR vs NMSE 

 

 

The NMSE efficacy is depicted in Figure 5, illustrating its variation with different SNR. In this 

analysis, ASACE consistently showcase the superior performance as related to other considered methods. 

Table 2 shows the numerical representation of SNR vs NMSE for the better understanding of Figure 5 and it 

showcasing all the numerical variation through out the SNR values. 

 

  

Table 2. Numerical representation of SNR vs NMSE 
SNR OMP VAMP ARSCE ASACE 

-15 1 0.912329542 0.514239731 0.385363559 

-12 1 0.540224532 0.303055818 0.224176123 
-9 1 0.305913199 0.199276421 0.142559385 

-6 0.952277289 0.222858988 0.16096364 0.109106506 

-3 0.895688663 0.181333251 0.12508141 0.073796403 
0 0.709409506 0.164766657 0.106445753 0.063582378 

3 0.613868381 0.17258491 0.123746377 0.076949825 

6 0.378957823 0.174220045 0.101970491 0.060589505 
9 0.254511226 0.249832965 0.10966335 0.063881907 

12 0.141629256 0.286092178 0.107637722 0.06283538 

15 0.106478596 0.27317278 0.112553388 0.062141885 

 

 

5. CONCLUSION 

This paper presents the ASACE technique for wideband mmWave MIMO CE, leveraging the 

channel’s low-rank properties and beamspace sparsity for enhanced accuracy, particularly in short beam 

learning intervals. The low-rank matrix sum, incorporating learned signals through the system, is represented 

by the received matrix of training signal at the extended link’s end. GD optimization further refines the 

approach, reducing residual errors and computational complexity. Simulation results showcase improved 

performance in NMSE, especially in short beam training and noisy environments. Comparative analysis 

highlights the ARSCE model’s superior channel estimates, translating to higher throughput and enhanced 

user experience. This study signify a significant advancement in wideband mmWave MIMO CE techniques, 

offering improved accuracy and efficiency, particularly in challenging environments with short beam training 

durations. Moreover, this contributes to the ongoing efforts to enhance wireless communication systems, 

benefiting various sectors and applications within the research community and broader society. Future 

research can explore extensions of ASACE to address specific challenges such as dynamic channel 

conditions, mobility scenarios, and diverse antenna configurations. Additionally, investigations into the 

integration of machine learning techniques for enhanced CE could be pursued. 
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