
Bulletin of Electrical Engineering and Informatics

Vol. 14, No. 1, February 2025, pp. 476~484

ISSN: 2302-9285, DOI: 10.11591/eei.v14i1.8315  476

Journal homepage: http://beei.org

Optimizing neural radiance field: a comprehensive review of the

impact of different optimizers on neural radiance fields

Latika Pinjarkar1, Aditya Nittala1, Mahantesh P. Mattada2, Vedant Pinjarkar3, Bhumika Neole4,

Manisha Kogundi Math5
1Symbiosis Institute of Technology Nagpur Campus, Symbiosis International (Deemed University), Pune, India

2Department of Electronics and Communication, PES Institute of Technology and Management, Shivamogga, India

3Department of Electronics and Communication Engineering, Shri Ramadeobaba College of Engineering and Management, Nagpur,
India

4Department of Electronics and Communication Engineering, Ramdeobaba University, Nagpur, India

5Department of Information Science and Engineering, JNN College of Engineering, Shivamogga, India

Article Info ABSTRACT

Article history:

Received Feb 15, 2024

Revised Aug 20, 2024

Accepted Sep 4, 2024

 Neural radiance field (NeRF) is a form of deep learning model that may be

used to depict 3D scenes from a collection of photos. It has been

demonstrated that NeRF can produce photorealistic photographs of fresh

perspectives on a scene even from a small number of input images.

However, the optimizer that is employed can have a significant impact on

the quality of the final reconstruction. Finding an effective optimizer is one

of the biggest challenges while learning NeRF models. The optimizer is

responsible for making changes to the model's parameters to minimize the

discrepancy between the model's predictions and the actual data. We cover

the many optimizers that have been used to train NeRF models in this study.

We present research results contrasting the effectiveness of multiple

optimizers and examine the benefits and drawbacks of each optimizer. For

training NeRF models, four different optimizers viz. Adaptive moment

estimation (Adam), AdamW, root mean square propagation (RMSProp), and

adaptive gradient (Adagrad) are trained. The most effective optimizer for a

given assignment will vary depending on a variety of elements, including the

size of the dataset, the complexity of the scene, and the level of accuracy that

is required.

Keywords:

Adagrad

Adam

AdamW

Deep learning

NeRF

RMSProp

This is an open access article under the CC BY-SA license.

Corresponding Author:

Latika Pinjarkar

Symbiosis Institute of Technology Nagpur Campus, Symbiosis International (Deemed University)

Pune, Maharashtra, India

Email: latika.pinjarkar@sitnagpur.siu.edu.in

1. INTRODUCTION

A 3D scene representation technique called neural radiance fields (NeRF), learns to represent a

scene as a continuous volumetric function. This function converts a 5D point, which has 3D spatial

coordinates and a 2D viewing direction, into a radiance value, which denotes the amount of light that point in

the scene emits or reflects [1]. NeRF models are developed using a series of input photos that serve as

training data. Pairs of 5D points and radiance values that are produced by raytracing the scene from various

angles make up the training data. To reduce the error between the produced images from the model and the

original photos, the NeRF model is then trained.

It has been demonstrated that NeRF models are particularly good at producing photorealistic

photographs of complicated settings. They have been employed to produce models of a wide range of

objects, including both synthetic and real-world settings. One of the key features of NeRF is continuous

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing neural radiance field: a comprehensive review of the impact of different … (Latika Pinjarkar)

477

volumetric representation, which allows for smooth interpolation between different viewpoints. Other

features are the ability to render photorealistic images of complex scenes and quick training even with large

datasets.

To establish the minimum value of a function, an optimizer is employed. In the context of NeRF, the

function whose minimization we seek is the loss function. The loss function calculates the variation between

the original photos and the rendered images produced by the NeRF model. To decrease the loss function, the

optimizer is used to adjust the NeRF model's parameters. An optimizer is used to determine a function's

minimum value. The loss function is the function that we are attempting to minimize in the context of NeRF.

The difference between the rendered images produced by the NeRF model and the original images is

measured by the loss function. The NeRF model's parameters are updated using the optimizer to reduce the

loss function. Optimizers can make training substantially faster, optimizers are crucial for NeRF. Since a

good optimizer can locate the loss function's minimum more rapidly, the NeRF model can be trained using

fewer input photos.

Earlier studies tried to compare the performance of different optimizers [2], [3]. The ultimate results

of machine learning model training are greatly influenced by the optimizer selection. It's critical to

understand that, even when used on the same dataset, different optimizers might produce different outcomes.

Additionally, the dataset's properties have a significant influence on the model's performance. Specifically,

larger datasets tend to provide clearer and more robust results, as they offer a broader spectrum of examples

for the model to learn from and generalize.

Some of the recent trends in NeRF include generalizable NeRF, adapting to new scenes instantly

by integrating multi-view stereo with differentiable volume rendering [4]. NeRF-visual odometry (NeRF-

VO) [5] combines learning-based sparse visual odometry (VO) for fast camera tracking with a neural

radiance scene representation, enabling advanced dense reconstruction and novel view synthesis. Recursive-

NeRF [6] is an efficient and dynamically growing NeRF that enables a balance between efficiency and

quality by reducing computational time. With shadow NeRF and Sat-NeRF, it's possible to consider the solar

angle in a NeRF-based framework for rendering scenes from new viewpoints using satellite images for

training. One of the recent works [7] builds on these contributions by demonstrating how to make the

renderings season-specific. Another application of NeRF is audio-driven talking head animation. An entirely

end-to-end talking head animation method that inherently captures 3D structures through learning a

conditional NeRF [8].

In this work, we will delve into the critical consideration of selecting the most suitable optimization

technique based on the specific dataset at hand. This decision is instrumental in harnessing the full potential

of the NeRF model. Understanding the interplay between optimizer selection and dataset characteristics

empowers practitioners to make informed choices, optimizing model training for superior performance. In

essence, current work aims to guide how to leverage the NeRF model to its utmost capabilities. By tailoring

the optimization approach to the dataset's size, complexity, and inherent characteristics, one can unlock the

model's potential to generate accurate and meaningful insights or reconstructions, whether in computer

vision, 3D scene rendering, or other applications where NeRF excels.

The rest of the paper is organized as follows. The method section provides a brief overview of the

dataset used for these tests. Section 3 reviews the different optimizers that have been used for training this

NeRF model. Section 4 showcases the results of individual optimizers and a comparison of their

performance. Section 5 includes concluding remarks of the work.

2. METHOD

The training of machine learning models, especially neural networks, requires the use of an optimizer.

Its main purpose is to repeatedly modify the model's weights and biases during the training phase to minimize a

predetermined loss function. The parameters of the model are initialized before training begins. This

initialization may entail giving the parameters random values or, in some situations, starting with values that

have already been learned using a different model. A batch of training data is transmitted through the neural

network in what is referred to as the feed-forward throughout each iteration or epoch of training. Predictions or

outputs from this method are compared to the actual target values. A loss is calculated as a result of this

comparison, which expresses the degree to which the predictions and the actual objectives differ [9].

The optimizer then performs a step known as backpropagation, sometimes known as the backward

pass. Here, the gradients of the loss for each model parameter are calculated. This stage applies the chain rule

to analyze how changes in each parameter affect the overall loss. It is based on the calculus concepts [10].

The next step for the optimizer is to use these gradients to modify the model's parameters. The objective is to

consistently lower the loss by changing the parameters. Depending on the optimization technique being used,

the specifics of this parameter updating mechanism can change.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 476-484

478

The entire training dataset is covered by this iterative procedure, which goes on for several

iterations. Training typically lasts until a predetermined ending criterion is reached. This could include doing

so after a specific number of training iterations or when the loss converges to an acceptable level. The

convergence of this process ultimately indicates that the parameters of the model have been adjusted

iteratively to minimize the loss function. As a result, the model improves over time at making precise

predictions using the training set of data. The optimizer selected as well as the hyperparameters linked to it

can have a considerable impact on the training process and, as a result, the final performance of the machine

learning model. Therefore, choosing the right optimizer and maybe adjusting its hyperparameters are crucial

factors in successfully training a model for a particular task.

2.1. Overview of the dataset

The dataset can contain images and data that are real and fake. Synthetic data is sometimes created

using computer graphics techniques like 3D modeling and rendering programs like blender or unity.

Synthetic environments can be created by adjusting several variables, such as lighting, camera settings, and

object placement. This makes it possible to manipulate data accurately and create many scenarios that adhere

to accepted reality. A set of 2D photos of Lego toys together with the associated camera angles make up the

NeRF dataset. The NeRF model needs to be trained with this dataset to learn a continuous representation of

the underlying 3D scene and produce unique views from various angles.

Real-world pictures are taken using cameras and depict real-world scenes from various angles.

Structure-from-motion (SfM) and simultaneous localization and mapping (SLAM) techniques, as well as

intrinsic camera parameters, are used to extract the camera poses, which comprise location and orientation

information. The dataset may include depth data that was gathered using stereo matching, depth sensors, or

depth estimating methods [11].

To guarantee that the NeRF model's input criteria are met, the dataset is carefully selected and

preprocessed. To ensure effective training, this may entail resizing photos, lining up camera angles, and structuring

the data into the right forms. All things considered, the NeRF dataset provides the basis for training the model to

understand 3D scene representation and allows the creation of realistic views from original points of view. Figure 1

shows a typical dataset showing details of the images captured from various angles and processed.

Figure 1. A typical dataset showing details of the images captured from various angles and processed

2.2. Peak signal-to-noise ratio calculation

The peak signal-to-noise ratio (PSNR) between two pictures is measured in decibels. It is computed

using the PSNR block. The original and compressed images’ quality is compared using this ratio. The quality

of the compressed or rebuilt image improves with increasing PSNR.

The mean-square error (MSE) and PSNR are used to compare the quality of image compression.

While the MSE shows the cumulative squared error between the original and compressed image, the PSNR

measures the peak error. The MSE value has an inverse relationship with the error. To compute the PSNR,

the block first calculates the mean-squared error using (1):

𝑀𝑆𝐸 = ∑ [𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛)]
2 ÷ (𝑀 ∗ 𝑁)𝑀,𝑁 (1)

The rows and columns of the input images are denoted by M and N in the preceding equation. Next,

the block uses (2) to calculate the PSNR. In (2), R is the maximum fluctuation in the input image data type. R

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing neural radiance field: a comprehensive review of the impact of different … (Latika Pinjarkar)

479

is 1, for instance, if the data type of the input image is double-precision floating-point. R is 255, for example,

if the data type is an 8-bit unsigned integer.

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(𝑅
2/𝑀𝑆𝐸) (2)

The following steps are carried out by the designed source code to calculate PSNR:

− It calculates camera-originating rays (lines) at a given point and orientation (as determined by testpose).

In a 3D scene, these rays are utilized to replicate the camera's perspective.

− The rendering function in the code uses these rays to generate a picture (RGB), a depth map (depth), and

accumulation information. The rendering function considers the number of samples per ray as well as the

depth range (near and far).

− After rendering, it compares the RGB to a ground truth image to determine the loss value (loss). This loss

measures how closely the rendered image resembles the original.

− Based on the calculated loss, it calculates the PSNR. Better image quality is indicated by higher PSNR

values.

− The PSNR values and iteration counts are recorded in the code for subsequent analysis or logging. The

iteration numbers aid in tracking progress during training or evaluation, while the PSNR values offer

insights into how closely the produced images correspond to the actual scene.

In conclusion, this code segment generates images, computes a loss comparing them to the ground

truth, computes PSNR for evaluating quality, and tracks these metrics over numerous iterations, probably to

evaluate and enhance the efficiency of the rendering model.

3. OVERVIEW OF DIFFERENT OPTIMIZERS

The story of NeRF started with a simple light field rendering experiment performed by Levoy and

Hanrahan [12]. They provided the bases required for the development of NeRF by Mildenhall et al. [13]. The

work presented in [14] provided the mathematical infrastructure needed in the paper "a volumetric method

for building complex models from range images". Since then gradient descent algorithms have evolved at a

much faster rate. NeRF has attracted attention ever since it emerged as the quickest method for rendering a

variety of images [15].

3.1. Adaptive moment estimation

Adaptive moment estimation (Adam) is a well-established optimization technique that is applied to

the training of deep neural networks and other machine learning models. It is a well-known optimization

technique that is an extension of stochastic gradient descent (SGD) [16]-[20] and is useful for optimizing

complicated models. Adam integrates concepts from Momentum and root mean square propagation

9RMSProp), two different optimization techniques [21]. Figure 2 depicts the results of Adam optimizer for

1,000 iterations along with PSNR.

P
S

N
R

Number of iterations Number of iterations

Figure 2. Results of Adam for 1,000 iterations along with PSNR

3.2. AdamW

Weight decay regularization is used by the Adam optimizer variation known as AdamW. Most

people agree that AdamW is the best optimizer for training NeRF models. It has been demonstrated to

generate high-quality NeRF models on a range of datasets, and it is reasonably quick and simple to use [22].

The results of AdamW performance for 1,000 iterations along with PSNR as shown in Figure 3.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 476-484

480

P
S

N
R

Number of iterations Number of iterations

Figure 3. Results of AdamW for 1,000 iterations along with PSNR

3.3. Root mean square propagation

A moving average of the squared gradients is used by RMSProp, a stochastic gradient descent

optimizer, to determine the learning rate. In general, AdamW is thought to be more effective than RMSProp

when it comes to training NeRF models. On very big datasets, it can be more efficient than AdamW for training

NeRF models [23]. Figure 4 depicts the results of RMSProp optimizer for 1,000 iterations along with PSNR.

P
S

N
R

Number of iterations Number of iterations

Figure 4. Results of RMSProp for 1,000 iterations along with PSNR

3.4. Adaptive gradient

Adaptive learning rate optimizer adaptive gradient (Adagrad) gives parameters with infrequent

updates and higher learning rates. When it comes to training NeRF models on datasets with a lot of

parameters, Adagrad can be superior to AdamW. Adagrad may, however, also be more susceptible to

hyperparameter adjustments [24], [25]. The Adagrad technique known as Adagrad, dynamically modifies

learning rates for individual model parameters based on historical gradient amplitudes. Particularly for

models trained on sparse data or with features of different scales, this adaptability is advantageous. However,

Adagrad has drawbacks, including the potential for learning rates to become exceedingly small over time,

causing sluggish convergence. Hyperparameter tuning is crucial for optimizing the system's performance, but

it adds up to the slow convergence. The results of Adagrad are shown in Figure 5.

P
S

N
R

Number of iterations Number of iterations

Figure 5. Results of Adagrad for 1,000 iterations along with PSNR

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing neural radiance field: a comprehensive review of the impact of different … (Latika Pinjarkar)

481

4. PERFORMANCE COMPARISON OF DIFFERENT OPTIMIZERS

As a part of this work, we evaluated PSNR results for all 4 optimizers. The steps involved in

calculation are mentioned in the section 2.2. The subsequent paragraphs depict details of each optimizer's

behavior and crucial results.

NeRF's major option and the standard training approach is the Adam optimization algorithm. After

some time of training and deeper inspection, a clear and consistent upward trajectory in terms of model

performance becomes apparent [26]. According to the PSNR metric, model performance during this training

phase specifically shows a steady rising tendency. In quantitative terms, the PSNR value is recorded at an

initial 7.883498, reflecting the model's performance at the onset of this time frame. However, it is noteworthy

that this value demonstrates an inclination toward improvement throughout training. The training process

culminates in the attainment of a peak PSNR value, reaching a commendable 23.12753 and ultimately ending

at 22.83474. This trend of development underlines the Adam optimizer's efficiency in situations where

training time is limited and the dataset being studied doesn't contain a sizable amount of data. With its

momentum-based methodology and adjustable learning rate, Adam excels at rapidly improving rendering

quality and fine-tuning model parameters throughout training comparatively brief training intervals.

The unique qualities of the particular challenge at hand and the precise architectural setup of the

neural network model being used are what determine which optimization technique is used. It is essential to do

empirical experimentation and evaluation to determine the best optimizer for a particular task. In this process,

AdamW's relative performance against other optimization techniques is carefully analyzed and quantitatively

measured. The initial PSNR measurement, which represents the model's performance at the start of this

timeframe, registers at 7.7753005 in terms of numerical metrics. It is important to note that this value exhibits

a tendency to improve over the course of training. The PSNR value increases noticeably during the training,

peaking at 22.86007 before ending at 23.336285, which is a significant improvement. In the current scenario,

considering the dataset utilized in conjunction with the applied model, it is observed that the AdamW

optimization algorithm emerges as the superior choice among the various optimizer options. This choice is

substantiated by its demonstrably superior performance in comparison to alternative optimization techniques.

All three adaptive optimization algorithms-RMSProp, Adam, and AdamW-adjust learning rates

during training; however, their approaches to handling weight decay, accumulating moments, and

implementing bias correction are different. Which of these optimizers is better for a given task may require

empirical experimentation because the choice between them frequently depends on the particular problem,

dataset, and model design. The model's performance at the beginning of this temporal interval is indicated by

the initial measurement of PSNR, which is measured as 7.853294 in numerical terms. It is crucial to stress

that this indicator shows a clear inclination toward improvement over the course of training. Throughout the

training, the PSNR metric gradually and steadily increases, reaching a peak at 20.292233, an increase that,

while indicating improvement, can be categorized as somewhat positive. In contrast to Adam and AdamW

within the specific context under consideration, it becomes evident that this particular optimizer falls short in

terms of surpassing their performance levels. However, it is noteworthy that this optimizer demonstrates a

greater aptitude when applied to datasets characterized by substantial volume. Nevertheless, it successfully

accomplishes the optimization task at hand.

In Adagrad, PSNR quantification at the beginning of this time period, which registered at 8.077606 in

numerical terms, provides a clear indication of the model's performance over this time period. It is crucial to stress

that, this statistic shows a steady and gentle inclination for improvement throughout the course of training. The

PSNR metric shows a smooth and consistent increase during the training period, reaching its peak at 9.510035 with

the least observed increment among all the other optimizers. Adagrad exhibits optimal compatibility when applied

to extensive datasets, extended time frames, and ample computational resources. However, its performance in the

present context is notably deficient, as it fails to generate a discernible image for us. Figure 6 depicts the PSNR

values of all four optimizers. The summary of all four optimizers is mentioned in Table 1.

Figure 6. Comparison graph showing PSNR values of different optimizers

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 476-484

482

Table 1. Comparison matrix of all 4 optimization techniques
Optimization

algorithm
Performance trajectory

Initial

PSNR

Peak

PSNR
Notable features Suitability

Adam Demonstrates a clear and

consistent upward performance

trajectory during training,
efficiently improving model

performance.

7.883498 23.12753 Momentum-based with

adjustable learning rate.

Effective for rapid
quality enhancement in

shorter training intervals.

Well-suited for limited

training time and

smaller datasets.

AdamW Relative performance must be
assessed through empirical

experimentation. Significantly

improves PSNR from
7.7753005 to 23.336285.

7.775300 23.33628 Effective optimization,
particularly when

applied to specific

datasets and models.

Demonstrates superiority
in certain contexts.

RMSProp Displays a clear inclination for

performance improvement,
albeit with a modest increase

from 7.853294 to 20.292233.

7.853294 20.29223 Adaptive learning

rates.

May fall short compared

to Adam and AdamW
but performs better with

substantial datasets.

Adagrad Fails to produce a discernible
image in the current context

despite a gradual increase in

PSNR from 8.077606 to
9.510035.

8.077606 9.510035 Adaptive learning rates
based on gradient

magnitudes.

Best suited for large
datasets, extended

training, and ample

resources. May suffer
from slow convergence.

5. CONCLUSION

This review study has explored four optimization algorithms in depth, specifically Adam, AdamW,

RMSProp, and Adagrad, in the context of NeRF model training. We have identified distinct performance

trajectories and characteristics for each optimizer through a thorough analysis. The choice of the best

optimizer is dependent on many variables, including the size of the dataset, the resources that may be used

for computing, and the particulars of the model at hand. The best optimizer for a specific task can only be

found by empirical experimentation.

Ultimately, this research deepens our understanding of how optimization algorithms behave during

NeRF model training and emphasizes the significance of customized selection depending on specific needs.

For training NeRF models, we discover that the Adam optimizer is typically the most successful optimizer.

However, in rare circumstances, alternative optimizers, like RMSProp, may also be useful. According to our

research, selecting an optimizer is a crucial decision to make while training NeRF models. The most effective

optimizer for a given assignment will vary depending on a variety of elements, including the amount of the

dataset, the complexity of the scene, and the level of accuracy that is required. We hope that our results will

help researchers and practitioners choose the best optimizer for their NeRF applications. Future studies may

look towards hybrid strategies or cutting-edge optimization methods to improve the training of neural models

like NeRF.

ACKNOWLEDGEMENTS

Authors would like to thank Symbiosis Institute of Technology, Nagpur for providing necessary

facility and funding for this research work.

REFERENCES
[1] K. Rematas, C. H. Nguyen, T. Ritschel, M. Fritz, and T. Tuytelaars, “Novel views of objects from a single image,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 8, pp. 1576–1590, Aug. 2017, doi:

10.1109/TPAMI.2016.2601093.
[2] A. Mustapha, L. Mohamed, and K. Ali, “Comparative study of optimization techniques in deep learning: application in the

ophthalmology field,” Journal of Physics: Conference Series, vol. 1743, no. 1, 2021, doi: 10.1088/1742-6596/1743/1/012002.

[3] F. Martínez, H. Montiel, and F. Martínez, “Comparative study of optimization algorithms on convolutional network for
autonomous driving,” International Journal of Electrical and Computer Engineering, vol. 12, no. 6, pp. 6363–6372, Dec. 2022,

doi: 10.11591/IJECE.V12I6.PP6363-6372.

[4] D. Lee and K. M. Lee, “Dense depth-guided generalizable NeRF,” IEEE Signal Processing Letters, vol. 30, pp. 75–79, 2023, doi:
10.1109/LSP.2023.3240370.

[5] J. Naumann, B. Xu, S. Leutenegger, and X. Zuo, “NeRF-VO: real-time sparse visual odometry with neural radiance fields,” IEEE

Robotics and Automation Letters, vol. 9, no. 8, pp. 7278–7285, Dec. 2023, doi: 10.1109/LRA.2024.3421192.
[6] G. W. Yang, W. Y. Zhou, H. Y. Peng, D. Liang, T. J. Mu, and S. M. Hu, “Recursive-NeRF: an efficient and dynamically growing

NeRF,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 12, pp. 5124–5136, Dec. 2023, doi:

10.1109/TVCG.2022.3204608.
[7] M. Gableman and A. Kak, “Incorporating season and solar specificity into renderings made by a NeRF architecture using satellite

images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 6, pp. 4348–4365, Jun. 2024, doi:

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Optimizing neural radiance field: a comprehensive review of the impact of different … (Latika Pinjarkar)

483

10.1109/TPAMI.2024.3355069.
[8] S. Shen, W. Li, X. Huang, Z. Zhu, J. Zhou, and J. Lu, “SD-NeRF: towards lifelike talking head animation via spatially-adaptive

dual-driven NeRFs,” IEEE Transactions on Multimedia, vol. 26, pp. 3221–3234, 2024, doi: 10.1109/TMM.2023.3308441.

[9] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2010,

pp. 249–256.

[10] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, Jan.
1999, doi: 10.1016/S0893-6080(98)00116-6.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2016, pp.
630–645, doi: 10.1007/978-3-319-46493-0_38/TABLES/5.

[12] M. Levoy and P. Hanrahan, “Light field rendering” Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 441–452, Aug.

2023, doi: 10.1145/3596711.3596759.
[13] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “NeRF: representing scenes as neural

radiance fields for view synthesis,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), Springer Science and Business Media Deutschland GmbH, 2020, pp. 405–421,
doi: 10.1007/978-3-030-58452-8_24.

[14] B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in Proceedings of the 23rd

Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, Association for Computing Machinery,
Inc, Aug. 1996, pp. 303–312, doi: 10.1145/237170.237269.

[15] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv, 2016, doi: 10.48550/arXiv.1609.04747.

[16] S. Zhang, A. E. Choromanska, and Y. LeCun “Deep learning with elastic averaging SGD,” in Advances in Neural Information
Processing Systems 28 (NIPS), 2015, pp. 685–693.

[17] S. Mandt, M. D. Hoffman, and D. M. Blei, “Stochastic gradient descent as approximate Bayesian inference,” Journal of Machine

Learning Research, vol. 18, pp. 1–35, 2017.
[18] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” Journal of

Machine Learning Research, vol. 12, pp. 2121–2159, 2011.

[19] J. Schmidhuber, “Deep learning in neural networks: an overview,” Neural Networks, vol. 61, pp. 85–117, Jan. 2015, doi:
10.1016/J.NEUNET.2014.09.003.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Dec. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.
[21] D. P. Kingma and J. L. Ba, “ADAM: A method for stochastic optimization,” arXiv, pp. 1-15, 2014, doi:

10.48550/arXiv.1412.6980.

[22] H. Zhong et al., “Adam revisited: a weighted past gradients perspective,” Frontiers of Computer Science, vol. 14, no. 5, pp. 1–16,
Oct. 2020, doi: 10.1007/S11704-019-8457-X/METRICS.

[23] T. Kurbiel and S. Khaleghian, “Training of deep neural networks based on distance measures using RMSProp,” arXiv, pp. 1–6,

2017, doi: 10.48550/arXiv.1708.01911.
[24] A. T. Hadgu, A. Nigam, and E. Diaz-Aviles, “Large-scale learning with AdaGrad on Spark,” in Proceedings - 2015 IEEE

International Conference on Big Data, IEEE Big Data 2015, pp. 2828–2830, Dec. 2015, doi: 10.1109/BIGDATA.2015.7364091.

[25] N. Zhang, D. Lei, and J. F. Zhao, “An improved adagrad gradient descent optimization algorithm,” in Proceedings 2018 Chinese
Automation Congress, CAC 2018, pp. 2359–2362, Jul. 2018, doi: 10.1109/CAC.2018.8623271.

[26] A. Neelakantan et al., “Adding gradient noise improves learning for very deep networks,” arXiv, 2015, doi:

10.48550/arXiv.1511.06807.

BIOGRAPHIES OF AUTHORS

Latika Pinjarkar obtained her Ph.D. in Computer Science and Engineering from

CSVTU CG, India in 2019. She completed an M.Tech. degree in Computer Technology and

Application from CSVTU, CG, India in 2008 and a B.E. degree in Computer Technology from

Nagpur University, Maharashtra in 1999. She has been engaged in research and teaching for

more than 22 years. At present, she is an Associate Professor and Academic Head in the in

Department of Computer Science and Engineering at Symbiosis Institute of Technology

Nagpur, Symbiosis International (Deemed University) Pune, Maharashtra, India. She has

presented more than 40 papers in International/National Journals/Conferences and has 05

Patents to her credit. She has completed one research project sponsored by TEQIP-III. Her

research interests include image processing, computer vision, content-based image retrieval,

and machine learning. She can be contacted at email: latika.pinjarkar@sitnagpur.siu.edu.in.

Aditya Nittala is a final year B.Tech. student in Computer Science and

Engineering at Symbiosis Institute of Technology, Nagpur. His area of research and projects

lie in the intersection of deep learning, machine learning, and artificial intelligence. He can be

contacted at email: aditya.nittala.batch2021@sitnagpur.siu.edu.in.

https://orcid.org/0000-0002-3701-4727
https://scholar.google.co.in/citations?user=pb0eiVwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57200090983
https://www.webofscience.com/wos/author/record/56177003
https://orcid.org/0009-0007-8351-0493
https://scholar.google.co.in/citations?hl=en&user=-zgSeOsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=59229422900

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 476-484

484

Mahantesh P. Mattada holds a Ph.D. in time mode data converters from

Visvesvaraya Technological University, Belagavi, India. He is currently working as an

Associate Professor at the Department of ECE, PES Institute of Technology and Management,

Shivamogga, India. His research interest includes time to digital converters, CMOS VLSI

design, and digital circuit design on FPGA. He has 20 publications in reputed International

Journals and Conferences. He is a reviewer for well-known IEEE conferences and Journals.

He is a life member of ISTE and IAENG. He can be contacted at email:

mpmathad@gmail.com or mahanthesh@pestrust.edu.in.

Vedant Pinjarkar is currently a final year student at Shri Ramdeobaba College

of Engineering and Management where he's completing his Bachelor of Technology degree in

Electronics and Communication Engineering. His research interests include computer vision,

machine learning, and embedded systems. He has worked on projects such as driver

drowsiness detection using computer vision and crop defects detection using CNN. He aspires

to continue advancing and working on the combined field of embedded systems and machine

learning through impactful research and collaboration. He can be contacted at email:

pinjarkarvs@rknec.edu.

Bhumika Neole received her Bachelor of Engineering (Electronics Engineering)

in 2001 from Priyadarshini College of Engineering and Architecture, RTM Nagpur University,

India and M.Tech. (VLSI design) in 2007 from RCOEM, Nagpur, India. She has been

awarded Ph.D. from VNIT, Nagpur, India in 2018. She has published 25 research papers in

International Journals and Conferences, 1 Copyright and 1 Patent granted. Since 2004, she has

been working as an Assistant Professor at Ramdeobaba University, Nagpur, India. Her current

research interest is embedded and VLSI design, digital image processing, and signal

processing. She is member of IEEE and a life member of ISTE. She can be contacted at email:

neoleba@rknec.edu.

Manisha Kogundi Math holds an M.Tech. degree from Visvesvaraya

Technological University, Belagavi, India. She is currently working as an Assistant Professor

at the Department of Information Science and Engineering, JNN College of Engineering,

Shivamogga, India. Her research interest includes image processing and machine learning. She

is a life member of ISTE and IAENG. She can be contacted at email:

km.manisha294@gmail.com.

mailto:mpmathad@gmail.com
mailto:mahanthesh@pestrust.edu.in
https://orcid.org/0000-0002-9413-5605
https://scholar.google.co.in/citations?hl=en&user=tpMhPtIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55964738100
https://www.webofscience.com/wos/author/record/CAA-9608-2022
https://orcid.org/0009-0004-2529-7477
https://scholar.google.co.in/citations?view_op=list_works&hl=en&user=49AA36cAAAAJ
https://www.webofscience.com/wos/author/record/LCD-3240-2024
https://orcid.org/0000-0003-3413-0826
https://scholar.google.com/citations?hl=en&user=IiQQaCcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57200497099
https://www.webofscience.com/wos/author/record/AAE-2354-2021
https://orcid.org/0009-0002-1729-5151

