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 Neural radiance field (NeRF) is a form of deep learning model that may be 

used to depict 3D scenes from a collection of photos. It has been 

demonstrated that NeRF can produce photorealistic photographs of fresh 

perspectives on a scene even from a small number of input images. 

However, the optimizer that is employed can have a significant impact on 

the quality of the final reconstruction. Finding an effective optimizer is one 

of the biggest challenges while learning NeRF models. The optimizer is 

responsible for making changes to the model's parameters to minimize the 

discrepancy between the model's predictions and the actual data. We cover 

the many optimizers that have been used to train NeRF models in this study. 

We present research results contrasting the effectiveness of multiple 

optimizers and examine the benefits and drawbacks of each optimizer. For 

training NeRF models, four different optimizers viz. Adaptive moment 

estimation (Adam), AdamW, root mean square propagation (RMSProp), and 

adaptive gradient (Adagrad) are trained. The most effective optimizer for a 

given assignment will vary depending on a variety of elements, including the 

size of the dataset, the complexity of the scene, and the level of accuracy that 

is required. 
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1. INTRODUCTION 

A 3D scene representation technique called neural radiance fields (NeRF), learns to represent a 

scene as a continuous volumetric function. This function converts a 5D point, which has 3D spatial 

coordinates and a 2D viewing direction, into a radiance value, which denotes the amount of light that point in 

the scene emits or reflects [1]. NeRF models are developed using a series of input photos that serve as 

training data. Pairs of 5D points and radiance values that are produced by raytracing the scene from various 

angles make up the training data. To reduce the error between the produced images from the model and the 

original photos, the NeRF model is then trained. 

It has been demonstrated that NeRF models are particularly good at producing photorealistic 

photographs of complicated settings. They have been employed to produce models of a wide range of 

objects, including both synthetic and real-world settings. One of the key features of NeRF is continuous 

https://creativecommons.org/licenses/by-sa/4.0/
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volumetric representation, which allows for smooth interpolation between different viewpoints. Other 

features are the ability to render photorealistic images of complex scenes and quick training even with large 

datasets. 

To establish the minimum value of a function, an optimizer is employed. In the context of NeRF, the 

function whose minimization we seek is the loss function. The loss function calculates the variation between 

the original photos and the rendered images produced by the NeRF model. To decrease the loss function, the 

optimizer is used to adjust the NeRF model's parameters. An optimizer is used to determine a function's 

minimum value. The loss function is the function that we are attempting to minimize in the context of NeRF. 

The difference between the rendered images produced by the NeRF model and the original images is 

measured by the loss function. The NeRF model's parameters are updated using the optimizer to reduce the 

loss function. Optimizers can make training substantially faster, optimizers are crucial for NeRF. Since a 

good optimizer can locate the loss function's minimum more rapidly, the NeRF model can be trained using 

fewer input photos. 

Earlier studies tried to compare the performance of different optimizers [2], [3]. The ultimate results 

of machine learning model training are greatly influenced by the optimizer selection. It's critical to 

understand that, even when used on the same dataset, different optimizers might produce different outcomes. 

Additionally, the dataset's properties have a significant influence on the model's performance. Specifically, 

larger datasets tend to provide clearer and more robust results, as they offer a broader spectrum of examples 

for the model to learn from and generalize. 

Some of the recent trends in NeRF include generalizable NeRF, adapting to new scenes instantly  

by integrating multi-view stereo with differentiable volume rendering [4]. NeRF-visual odometry (NeRF-

VO) [5] combines learning-based sparse visual odometry (VO) for fast camera tracking with a neural 

radiance scene representation, enabling advanced dense reconstruction and novel view synthesis. Recursive-

NeRF [6] is an efficient and dynamically growing NeRF that enables a balance between efficiency and 

quality by reducing computational time. With shadow NeRF and Sat-NeRF, it's possible to consider the solar 

angle in a NeRF-based framework for rendering scenes from new viewpoints using satellite images for 

training. One of the recent works [7] builds on these contributions by demonstrating how to make the 

renderings season-specific. Another application of NeRF is audio-driven talking head animation. An entirely 

end-to-end talking head animation method that inherently captures 3D structures through learning a 

conditional NeRF [8]. 

In this work, we will delve into the critical consideration of selecting the most suitable optimization 

technique based on the specific dataset at hand. This decision is instrumental in harnessing the full potential 

of the NeRF model. Understanding the interplay between optimizer selection and dataset characteristics 

empowers practitioners to make informed choices, optimizing model training for superior performance. In 

essence, current work aims to guide how to leverage the NeRF model to its utmost capabilities. By tailoring 

the optimization approach to the dataset's size, complexity, and inherent characteristics, one can unlock the 

model's potential to generate accurate and meaningful insights or reconstructions, whether in computer 

vision, 3D scene rendering, or other applications where NeRF excels. 

The rest of the paper is organized as follows. The method section provides a brief overview of the 

dataset used for these tests. Section 3 reviews the different optimizers that have been used for training this 

NeRF model. Section 4 showcases the results of individual optimizers and a comparison of their 

performance. Section 5 includes concluding remarks of the work. 

 

 

2. METHOD 

The training of machine learning models, especially neural networks, requires the use of an optimizer. 

Its main purpose is to repeatedly modify the model's weights and biases during the training phase to minimize a 

predetermined loss function. The parameters of the model are initialized before training begins. This 

initialization may entail giving the parameters random values or, in some situations, starting with values that 

have already been learned using a different model. A batch of training data is transmitted through the neural 

network in what is referred to as the feed-forward throughout each iteration or epoch of training. Predictions or 

outputs from this method are compared to the actual target values. A loss is calculated as a result of this 

comparison, which expresses the degree to which the predictions and the actual objectives differ [9]. 

The optimizer then performs a step known as backpropagation, sometimes known as the backward 

pass. Here, the gradients of the loss for each model parameter are calculated. This stage applies the chain rule 

to analyze how changes in each parameter affect the overall loss. It is based on the calculus concepts [10]. 

The next step for the optimizer is to use these gradients to modify the model's parameters. The objective is to 

consistently lower the loss by changing the parameters. Depending on the optimization technique being used, 

the specifics of this parameter updating mechanism can change. 
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The entire training dataset is covered by this iterative procedure, which goes on for several 

iterations. Training typically lasts until a predetermined ending criterion is reached. This could include doing 

so after a specific number of training iterations or when the loss converges to an acceptable level. The 

convergence of this process ultimately indicates that the parameters of the model have been adjusted 

iteratively to minimize the loss function. As a result, the model improves over time at making precise 

predictions using the training set of data. The optimizer selected as well as the hyperparameters linked to it 

can have a considerable impact on the training process and, as a result, the final performance of the machine 

learning model. Therefore, choosing the right optimizer and maybe adjusting its hyperparameters are crucial 

factors in successfully training a model for a particular task. 

 

2.1.  Overview of the dataset 

The dataset can contain images and data that are real and fake. Synthetic data is sometimes created 

using computer graphics techniques like 3D modeling and rendering programs like blender or unity. 

Synthetic environments can be created by adjusting several variables, such as lighting, camera settings, and 

object placement. This makes it possible to manipulate data accurately and create many scenarios that adhere 

to accepted reality. A set of 2D photos of Lego toys together with the associated camera angles make up the 

NeRF dataset. The NeRF model needs to be trained with this dataset to learn a continuous representation of 

the underlying 3D scene and produce unique views from various angles. 

Real-world pictures are taken using cameras and depict real-world scenes from various angles. 

Structure-from-motion (SfM) and simultaneous localization and mapping (SLAM) techniques, as well as 

intrinsic camera parameters, are used to extract the camera poses, which comprise location and orientation 

information. The dataset may include depth data that was gathered using stereo matching, depth sensors, or 

depth estimating methods [11]. 

To guarantee that the NeRF model's input criteria are met, the dataset is carefully selected and 

preprocessed. To ensure effective training, this may entail resizing photos, lining up camera angles, and structuring 

the data into the right forms. All things considered, the NeRF dataset provides the basis for training the model to 

understand 3D scene representation and allows the creation of realistic views from original points of view. Figure 1 

shows a typical dataset showing details of the images captured from various angles and processed. 

 

 

 

 
 

Figure 1. A typical dataset showing details of the images captured from various angles and processed 

 

 

2.2.  Peak signal-to-noise ratio calculation 

The peak signal-to-noise ratio (PSNR) between two pictures is measured in decibels. It is computed 

using the PSNR block. The original and compressed images’ quality is compared using this ratio. The quality 

of the compressed or rebuilt image improves with increasing PSNR. 

The mean-square error (MSE) and PSNR are used to compare the quality of image compression. 

While the MSE shows the cumulative squared error between the original and compressed image, the PSNR 

measures the peak error. The MSE value has an inverse relationship with the error. To compute the PSNR, 

the block first calculates the mean-squared error using (1): 

 

𝑀𝑆𝐸 = ∑ [𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛)]
2 ÷ (𝑀 ∗ 𝑁)𝑀,𝑁  (1) 

 

The rows and columns of the input images are denoted by M and N in the preceding equation. Next, 

the block uses (2) to calculate the PSNR. In (2), R is the maximum fluctuation in the input image data type. R 
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is 1, for instance, if the data type of the input image is double-precision floating-point. R is 255, for example, 

if the data type is an 8-bit unsigned integer. 

 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(𝑅
2/𝑀𝑆𝐸) (2) 

 

The following steps are carried out by the designed source code to calculate PSNR: 

− It calculates camera-originating rays (lines) at a given point and orientation (as determined by testpose). 

In a 3D scene, these rays are utilized to replicate the camera's perspective. 

− The rendering function in the code uses these rays to generate a picture (RGB), a depth map (depth), and 

accumulation information. The rendering function considers the number of samples per ray as well as the 

depth range (near and far). 

− After rendering, it compares the RGB to a ground truth image to determine the loss value (loss). This loss 

measures how closely the rendered image resembles the original. 

− Based on the calculated loss, it calculates the PSNR. Better image quality is indicated by higher PSNR 

values. 

− The PSNR values and iteration counts are recorded in the code for subsequent analysis or logging. The 

iteration numbers aid in tracking progress during training or evaluation, while the PSNR values offer 

insights into how closely the produced images correspond to the actual scene. 

In conclusion, this code segment generates images, computes a loss comparing them to the ground 

truth, computes PSNR for evaluating quality, and tracks these metrics over numerous iterations, probably to 

evaluate and enhance the efficiency of the rendering model. 

 

 

3. OVERVIEW OF DIFFERENT OPTIMIZERS 

The story of NeRF started with a simple light field rendering  experiment performed by Levoy and 

Hanrahan [12]. They provided the bases required for the development of NeRF by Mildenhall et al. [13]. The 

work presented in [14] provided the mathematical infrastructure needed in the paper "a volumetric method 

for building complex models from range images". Since then gradient descent algorithms have evolved at a 

much faster rate. NeRF has attracted attention ever since it emerged as the quickest method for rendering a 

variety of images [15]. 

 

3.1.  Adaptive moment estimation 

Adaptive moment estimation (Adam) is a well-established optimization technique that is applied to 

the training of deep neural networks and other machine learning models. It is a well-known optimization 

technique that is an extension of stochastic gradient descent (SGD) [16]-[20] and is useful for optimizing 

complicated models. Adam integrates concepts from Momentum and root mean square propagation 

9RMSProp), two different optimization techniques [21]. Figure 2 depicts the results of Adam optimizer for 

1,000 iterations along with PSNR. 
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Figure 2. Results of Adam for 1,000 iterations along with PSNR 

 

 

3.2.  AdamW 

Weight decay regularization is used by the Adam optimizer variation known as AdamW. Most 

people agree that AdamW is the best optimizer for training NeRF models. It has been demonstrated to 

generate high-quality NeRF models on a range of datasets, and it is reasonably quick and simple to use [22]. 

The results of AdamW performance for 1,000 iterations along with PSNR as shown in Figure 3. 
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Figure 3. Results of AdamW for 1,000 iterations along with PSNR 

 

 

3.3.  Root mean square propagation 

A moving average of the squared gradients is used by RMSProp, a stochastic gradient descent 

optimizer, to determine the learning rate. In general, AdamW is thought to be more effective than RMSProp 

when it comes to training NeRF models. On very big datasets, it can be more efficient than AdamW for training 

NeRF models [23]. Figure 4 depicts the results of RMSProp optimizer for 1,000 iterations along with PSNR. 
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Figure 4. Results of RMSProp for 1,000 iterations along with PSNR 

 

 

3.4.  Adaptive gradient 

Adaptive learning rate optimizer adaptive gradient (Adagrad) gives parameters with infrequent 

updates and higher learning rates. When it comes to training NeRF models on datasets with a lot of 

parameters, Adagrad can be superior to AdamW. Adagrad may, however, also be more susceptible to 

hyperparameter adjustments [24], [25]. The Adagrad technique known as Adagrad, dynamically modifies 

learning rates for individual model parameters based on historical gradient amplitudes. Particularly for 

models trained on sparse data or with features of different scales, this adaptability is advantageous. However, 

Adagrad has drawbacks, including the potential for learning rates to become exceedingly small over time, 

causing sluggish convergence. Hyperparameter tuning is crucial for optimizing the system's performance, but 

it adds up to the slow convergence. The results of Adagrad are shown in Figure 5. 
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Figure 5. Results of Adagrad for 1,000 iterations along with PSNR 
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4. PERFORMANCE COMPARISON OF DIFFERENT OPTIMIZERS 

As a part of this work, we evaluated PSNR results for all 4 optimizers. The steps involved in 

calculation are mentioned in the section 2.2. The subsequent paragraphs depict details of each optimizer's 

behavior and crucial results. 

NeRF's major option and the standard training approach is the Adam optimization algorithm. After 

some time of training and deeper inspection, a clear and consistent upward trajectory in terms of model 

performance becomes apparent [26]. According to the PSNR metric, model performance during this training 

phase specifically shows a steady rising tendency. In quantitative terms, the PSNR value is recorded at an 

initial 7.883498, reflecting the model's performance at the onset of this time frame. However, it is noteworthy 

that this value demonstrates an inclination toward improvement throughout training. The training process 

culminates in the attainment of a peak PSNR value, reaching a commendable 23.12753 and ultimately ending 

at 22.83474. This trend of development underlines the Adam optimizer's efficiency in situations where 

training time is limited and the dataset being studied doesn't contain a sizable amount of data. With its 

momentum-based methodology and adjustable learning rate, Adam excels at rapidly improving rendering 

quality and fine-tuning model parameters throughout training comparatively brief training intervals. 

The unique qualities of the particular challenge at hand and the precise architectural setup of the 

neural network model being used are what determine which optimization technique is used. It is essential to do 

empirical experimentation and evaluation to determine the best optimizer for a particular task. In this process, 

AdamW's relative performance against other optimization techniques is carefully analyzed and quantitatively 

measured. The initial PSNR measurement, which represents the model's performance at the start of this 

timeframe, registers at 7.7753005 in terms of numerical metrics. It is important to note that this value exhibits 

a tendency to improve over the course of training. The PSNR value increases noticeably during the training, 

peaking at 22.86007 before ending at 23.336285, which is a significant improvement. In the current scenario, 

considering the dataset utilized in conjunction with the applied model, it is observed that the AdamW 

optimization algorithm emerges as the superior choice among the various optimizer options. This choice is 

substantiated by its demonstrably superior performance in comparison to alternative optimization techniques. 

All three adaptive optimization algorithms-RMSProp, Adam, and AdamW-adjust learning rates 

during training; however, their approaches to handling weight decay, accumulating moments, and 

implementing bias correction are different. Which of these optimizers is better for a given task may require 

empirical experimentation because the choice between them frequently depends on the particular problem, 

dataset, and model design. The model's performance at the beginning of this temporal interval is indicated by 

the initial measurement of PSNR, which is measured as 7.853294 in numerical terms. It is crucial to stress 

that this indicator shows a clear inclination toward improvement over the course of training. Throughout the 

training, the PSNR metric gradually and steadily increases, reaching a peak at 20.292233, an increase that, 

while indicating improvement, can be categorized as somewhat positive. In contrast to Adam and AdamW 

within the specific context under consideration, it becomes evident that this particular optimizer falls short in 

terms of surpassing their performance levels. However, it is noteworthy that this optimizer demonstrates a 

greater aptitude when applied to datasets characterized by substantial volume. Nevertheless, it successfully 

accomplishes the optimization task at hand. 

In Adagrad, PSNR quantification at the beginning of this time period, which registered at 8.077606 in 

numerical terms, provides a clear indication of the model's performance over this time period. It is crucial to stress 

that, this statistic shows a steady and gentle inclination for improvement throughout the course of training. The 

PSNR metric shows a smooth and consistent increase during the training period, reaching its peak at 9.510035 with 

the least observed increment among all the other optimizers. Adagrad exhibits optimal compatibility when applied 

to extensive datasets, extended time frames, and ample computational resources. However, its performance in the 

present context is notably deficient, as it fails to generate a discernible image for us. Figure 6 depicts the PSNR 

values of all four optimizers. The summary of all four optimizers is mentioned in Table 1. 

 

 

 
 

Figure 6. Comparison graph showing PSNR values of different optimizers 
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Table 1. Comparison matrix of all 4 optimization techniques 
Optimization 

algorithm 
Performance trajectory 

Initial 

PSNR 

Peak 

PSNR 
Notable features Suitability 

Adam Demonstrates a clear and 

consistent upward performance 

trajectory during training, 
efficiently improving model 

performance. 

7.883498 23.12753 Momentum-based with 

adjustable learning rate. 

Effective for rapid 
quality enhancement in 

shorter training intervals. 

Well-suited for limited 

training time and 

smaller datasets. 

AdamW Relative performance must be 
assessed through empirical 

experimentation. Significantly 

improves PSNR from 
7.7753005 to 23.336285. 

7.775300 23.33628 Effective optimization, 
particularly when 

applied to specific 

datasets and models. 

Demonstrates superiority 
in certain contexts. 

RMSProp Displays a clear inclination for 

performance improvement, 
albeit with a modest increase 

from 7.853294 to 20.292233. 

7.853294 20.29223 Adaptive learning 

rates. 

May fall short compared 

to Adam and AdamW 
but performs better with 

substantial datasets. 

Adagrad Fails to produce a discernible 
image in the current context 

despite a gradual increase in 

PSNR from 8.077606 to 
9.510035. 

8.077606 9.510035 Adaptive learning rates 
based on gradient 

magnitudes. 

Best suited for large 
datasets, extended 

training, and ample 

resources. May suffer 
from slow convergence. 

 

   

5. CONCLUSION 

This review study has explored four optimization algorithms in depth, specifically Adam, AdamW, 

RMSProp, and Adagrad, in the context of NeRF model training. We have identified distinct performance 

trajectories and characteristics for each optimizer through a thorough analysis. The choice of the best 

optimizer is dependent on many variables, including the size of the dataset, the resources that may be used 

for computing, and the particulars of the model at hand. The best optimizer for a specific task can only be 

found by empirical experimentation. 

Ultimately, this research deepens our understanding of how optimization algorithms behave during 

NeRF model training and emphasizes the significance of customized selection depending on specific needs. 

For training NeRF models, we discover that the Adam optimizer is typically the most successful optimizer. 

However, in rare circumstances, alternative optimizers, like RMSProp, may also be useful. According to our 

research, selecting an optimizer is a crucial decision to make while training NeRF models. The most effective 

optimizer for a given assignment will vary depending on a variety of elements, including the amount of the 

dataset, the complexity of the scene, and the level of accuracy that is required. We hope that our results will 

help researchers and practitioners choose the best optimizer for their NeRF applications. Future studies may 

look towards hybrid strategies or cutting-edge optimization methods to improve the training of neural models 

like NeRF. 
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