
Bulletin of Electrical Engineering and Informatics

Vol. 14, No. 1, February 2025, pp. 153~172

ISSN: 2302-9285, DOI: 10.11591/eei.v14i1.8376  153

Journal homepage: http://beei.org

Modern artificial intelligence technics for unmanned aerial

vehicles path planning and control

Yasmine Zamoum1, Karim Baiche1, Youcef Benkeddad2, Brahim Bouzida2, Razika Boushaki3
1Laboratoire d’Ingénierie des Systèmes et Télécommunications, Ingénierie de Génie Elèctrique, Faculté de Technologie, Université

M’hamed Bougara de Boumerdes, Boumerdes, Algérie
2Institut de Génie Electrique et Electronique, Université M’hamed Bougara de Boumerdes, Boumerdes, Algérie

3Laboratoire d’Automatique Appliquée, Département d’Elèctotechnique et Automatique, Institut de Génie Electrique et Electronique,
Université M’hamed Bougara de Boumerdes, Boumerdes, Algérie

Article Info ABSTRACT

Article history:

Received Feb 22, 2024

Revised Aug 28, 2024

Accepted Sep 4, 2024

 Unmanned aerial vehicles (UAVs) require effective path planning

algorithms to navigate through complex environments. This study

investigates the application of Deep Q-learning and Dyna Q-learning

methods for UAV path planning and incorporates fuzzy logic for enhanced

control. Deep Q-learning, a reinforcement learning technique, employs a

deep neural network to approximate Q-values, allowing the UAV to improve

its path planning capabilities by maximizing cumulative rewards.

Conversely, Dyna Q-learning leverages simulated scenarios to update Q-

values, refining the UAV’s decision-making process and adaptability to

dynamic environments. Additionally, fuzzy logic control is integrated to

manage UAV movements along the planned path. This control system uses

linguistic variables and fuzzy rules to handle uncertainties and imprecise

information, enabling real-time adjustments to speed, altitude, and heading

for accurate path following and obstacle avoidance. The research evaluates

the effectiveness of these methods individually, with a focus on model-free

learning in a gradual training approach, and compares their performance in

terms of path planning accuracy, adaptability, and obstacle avoidance. The

paper contributes to a deeper understanding of UAV path planning

techniques and their practical applications in various scenarios.

Keywords:

Deep Q-learning

Dyna Q-learning

Fuzzy logic

Quadrotor

Unmanned aerial vehicle path

planning

This is an open access article under the CC BY-SA license.

Corresponding Author:

Yasmine Zamoum

Laboratoire d’Ingénierie des Systèmes et Télécommunications, Ingénierie de Génie Elèctrique

Faculté de Technologie, Université M’hamed Bougara de Boumerdes

35000 Boumerdes, Algeria

Email: y.zamoum@univ-boumerdes.dz

1. INTRODUCTION

Deep reinforcement learning has become the state-of-the-art for many tasks in recent years [1]. Path

planning is very important for facilitating effective and secure navigation, a basic overview of obstacle

avoidance based on reinforcement learning was provided [2]. Path planning’s intelligent algorithms, such as

Deep Q-learning and Dyna Q-learning, enhances the path planning capabilities of autonomous systems. By

integrating a fuzzy logic control System can provide robust control and improve the system's ability to follow

the generated path.

The objective of many autonomous drone racing, is to move as quickly as possible through a

sequence of checkpoints [3], so this study aims to address the research problem of optimizing path planning

using Deep Q-learning, Dyna Q-learning, and using both standard and adaptive fuzzy logic control systems.

https://creativecommons.org/licenses/by-sa/4.0/
https://www.mdpi.com/2076-0825/12/2/57#B22-actuators-12-00057

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

154

The primary objective is to compare the performance of these two reinforcement learning algorithms in

generating optimal paths for autonomous systems. Additionally, we seek to investigate the effectiveness of

integrating a fuzzy logic control System and compare it to its more advanced version “adaptive fuzzy logic”

to improve the system's ability to accurately follow the generated paths.

The Q-learning algorithm is used to overestimate action values under specific assumptions [4], and

suffer from some limitations when dealing with high-dimensional or continuous inputs [5]. In this research,

we solved the problem by implementing an obstacle avoidance and path planning algorithm for unmanned

vehicles using the Deep Q-learning and Dyna-Q reinforcement learning algorithms [6]. The investigation will

involve simulating various scenarios with dynamic obstacles and varying environments to evaluate the

algorithms' performance. Furthermore, the study will explore the integration of both standard and adaptive

fuzzy logic control systems as a means of enhancing the autonomous system's path following capabilities.

The Deep Q-learning offers to robotics a set of tools for the design [7]. To implement and evaluate

the Deep Q-Learning and Dyna Q-learning algorithms in simulated environments, and design a fuzzy logic

Control System to enable accurate path following the generated paths. To compare the performance of Deep

Q-learning and Dyna Q-learning algorithms in terms of path planning efficiency to assess the effectiveness of

the integrated fuzzy logic control system in improving path following accuracy. This study will utilize a

simulated environment to collect data for evaluation. The dataset will include information on the

environment characteristics, obstacles, generated paths, and the performance metrics of the Deep Q-learning,

Dyna Q-learning, standard, and adaptive fuzzy logic control systems. Through this research, we aim to

contribute to the advancement of autonomous systems' path planning capabilities by exploring and

comparing the performance of Deep Q-learning and a slightly modified Dyna Q-learning algorithms.

Furthermore, integrating fuzzy logic control systems can provide insights into enhancing path.

2. METHOD

Deep Q-learning algorithms and Dyna Q-learning algorithms for path planning are explained in this

section, along with fuzzy logic and proportional integral derivative (PID) adaptive fuzzy logic for controlling

the quadrotor.

2.1. Path planning methods

2.1.1. Deep Q-learning algorithm

The unmanned aerial vehicles (UAV's) 3-D trajectories have a remarkable effect on the performance

of networks [8]. However, a number of intelligent algorithms have been put out to address the obstacle

avoidance problem as a result of the quick development of computer technology and hardware [9]. The path

planning, maximizes the quadcopter's operational potential while simultaneously ensuring the safety of its

surroundings [10]. A carefully thought-out path reduces the quadcopter's energy consumption, increases its

flight time, and improves its agility, allowing it to execute difficult maneuvers with accuracy.

A deep neural network, known as the Q-network, is employed in Deep Q-learning to approximate

the Q-values. The Bellman equation, which encapsulates the relationship between the present state-action

pair and the anticipated future rewards, is used to compute the target Q-values, and the network is trained to

minimize the difference between these values and the predicted Q-values. The Bellman equation is given by

(1):

𝑄(𝑆, 𝐴) ← 𝑅 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) (1)

An essential reinforcement learning approach is called Deep Q-learning, which is very important for

training a deep neural network, or deep Q-network, to approximate the well-known Q-function [11]. The

approach makes use of an experience replay buffer to train the Q-network. As it interacts with its

surroundings during training, the agent records observed state-action-reward-next state transit ions in the

replay buffer. The approach samples from a batch of transitions from the replay buffer and utilizes them to

update the network's weights rather than updating the Q-network after each interaction. With this strategy,

the learning process is stabilized and the correlations between subsequent updates are decreased.

Target network is another method used by the Deep Q-learning algorithm [12]. The weights from

the primary network are periodically changed on this distinct replica of the Q-network. During training, the

target network computes the target Q-values while the main network forecasts the Q-values. The technique

overcomes the problem of the target values fluctuating continuously during learning, which can cause

instability, by employing a distinct target network. In Deep Q-learning algorithm, the agent selects the

highest Q-value and the random actions with a probability of epsilon exploration [13]. The agent's behavior is

often gradually changed from exploration to exploitation by annealing the exploration rate epsilon over time.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modern artificial intelligence technics for unmanned aerial vehicles path planning … (Yasmine Zamoum)

155

The Deep Q-learning is a potent path planning system that fuses deep neural networks and

reinforcement learning but in order to properly apply this technique in scenarios that resemble the complexity

of the actual world, agents must overcome a challenging task [12]. Deep Q-learning achieves consistent and

effective learning by using a target network, experience replay, and a neural network to approximate Q-

values. Its use in path planning has produced encouraging results in a number of fields. The algorithm is [14]:

Initialize replay memory Ɗ to capacity N

Initialize action-value function Ԛ with random weights

For episode = 1, M do

 Initialise state st

 For t = 1, T do

 With probability ԑ select a random action at

 otherwise select at = maxa Ԛ* (st, a ;ϴ)

 execute action at and observe reward rt and state st+1

 Store transition (st, at, rt, st+1) in Ɗ

 Set st+1 = st

 Sample random minibatch of transitions (st, at, rt, st+1) from Ɗ

 Set 𝑦𝑗 = {
𝑟𝑗 for terminal 𝑠𝑡 + 1
rj + γ maxa′ 𝑄(𝑠𝑡 + 1, a′ ; 𝛳) for non − terminal 𝑠𝑡 + 1

 Perform a gradient descent step on (yj – Q (st, aj ; ϴ))2

 end for

 end for

a. Experimental setup

1) Simulation environment description

A 3D grid-based representation serves as the simulation environment for training the Deep Q-

learning algorithm for quadcopter path planning. Utilizing an occupancy map (omap3D) that simulates the

environment's barriers, it is put into practice. The grid's width, length, and height are supplied, and together

they specify the environment's size. Because the occupancy map is generated randomly, it accurately depicts

the environment's barriers for the agent to avoid.

The objective of the quadcopter agent is to arrive at the goal posture (goalPose), which is a

predetermined target position. The goal stance depicts the place in the environment that is intended to be

reached. The agent must develop the ability to choose the best routes from arbitrary starting points to the

desired pose while avoiding collisions with the obstacles.

2) Training case studies and performance indicators

The agent interacts with the environment frequently throughout a number of episodes in the training

settings. In each episode, the agent begins in a random location within the environment and moves through a

series of steps to find its way to the desired pose. The agent's objective is to efficiently complete the goal

pose while avoiding obstacles in order to maximize its cumulative reward.

Each episode features the agent acting in accordance with the learnt Q-values and the current

condition. In order to gain experience and learn from the effects of its actions, the agent initially explores the

world by acting arbitrarily. The agent eventually moves toward using the learnt Q-values to inform decisions

as the training goes on. Several performance measures are employed to assess the effectiveness of the Deep

Q-learning system for quadcopter path planning:

b. Episode reward

The agent's overall reward in each episode reveals if it was able to effectively navigate to the goal

posture. A greater episode reward indicates that the agent is developing efficient methods for navigating

barriers and getting to the destination. During training and evaluation, the agent's behavior is greatly

influenced by the reward function. Each action made by the agent is given a numerical value, reflecting its

usefulness or desirability in attaining the intended goal. The reward function affects the agent's decision-

making in the context of quadcopter path planning by giving feedback on the effectiveness of its actions.

The reward function in the sample code consists of a number of parts that together make up the

overall reward:

− Goal reached: when the agent reaches the goal pose, a positive reward of 100 is assigned. This encourages

the agent to prioritize reaching the goal as it signifies successful completion of the task.

− Obstacle collision: if the agent collides with an obstacle, a negative reward of -100 is given. This

penalizes the agent for making unsafe or invalid moves, discouraging it from colliding with obstacles.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

156

− Map boundary violation: if the agent moves outside the boundaries of the map, a negative reward of -10 is

assigned. This penalizes the agent for going beyond the allowed limits of the environment and encourages

it to stay within the defined map boundaries.

− Time penalty: for each step taken by the agent, a small negative reward of -1 is given. This encourages

the agent to find efficient paths and reach the goal in the minimum number of steps.

When these incentive elements are combined, the agent is guided toward safe and effective

navigation while avoiding obstacles and completing the goal posture. The reward function influences the

agent's behavior and directs it toward learning the best path planning strategies by allocating positive and

negative incentives based on desired and unwanted activities, respectively. It's vital to remember that the

reward function's design and tweaking can have a big impact on how well the agent learns and performs. The

balance of rewards for the various components should be carefully considered in order to promote desired

behaviors and deter undesirable ones. Additionally, domain-specific information and experience can be used

to improve and tailor the reward function to meet the needs and restrictions of certain applications.

1) Number of steps

The agent's path planning effectiveness is shown by the number of steps it takes in each episode. A

decreasing number of steps shows that the agent is improving its navigation strategy by learning to take more

direct routes to the goal posture. Training time: to assess the learning algorithm's computational

effectiveness, the amount of time spent training the deep Q-network is measured. A quicker training time

indicates that the algorithm can learn quickly and converge to the best solutions in a fair amount of time.

These performance indicators give information about the agent's path planning efficiency and learning

progress in the simulated environment. Figures 1 and 2 represent successively a schematic depiction of deep

reinforcement learning and simple schematic of Q-Learning: Q-Table.

Figure 1. Schematic depiction of deep reinforcement learning [15]

Figure 2. Simple schematic of Q-Learning: Q-Table [16]

2.1.2. Dyna Q-learning algorithm

The Dyna-Q model is used to create more training data for the agent and simulate experiences. The

agent can then use the simulated events to update its Q-table, allowing it to learn more quickly and decide

more wisely. By providing fictitious experiences that the agent has never had, the model-based component

aids with environment exploration as well [13], [17].

In Q-learning, the agent chooses its course of action based on the highest possible Q-values for a

certain state. Through reinforcement learning, the Q-values are progressively improved. exploitation and

exploration are combined. It uses a model of the environment to simulate future states in addition to updating

Q-values, allowing the agent to explore and plan its course of action. The model-free method Q-learning

States a0 a1 a2 . . .

s0 Q (s0, a0) Q (s0, a1) Q (s0, a2) . . .

s1 Q (s1, a0) Q (s1, a1) Q (s1, a2) . . .

s2 Q (s2, a0) Q (s2, a1) Q (s2, a2) . . .

.

.

.

.

.

.

.

.

.

.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modern artificial intelligence technics for unmanned aerial vehicles path planning … (Yasmine Zamoum)

157

directly learns the best course of action by changing Q-values in response to observed state-action-reward

transitions. It is independent of an environment model. It keeps an environment model and employs it to

simulate potential future situations. This improves planning abilities by enabling the agent to adjust Q-values

through simulated experiences. Dyna-Q uses a model of the world to create simulated experiences,

incorporating planning into the process. This enables more effective research and decision-making by taking

conceivable future states into account [18].

Q-learning simply needs to update Q-values based on observed transitions; it often has reduced

computational complexity [13]. Dyna Q-Learning Due to model updates and planning stages, Dyna-Q

increases computational complexity. The computing demands may rise when hypothetical future situations

are simulated and Q-values are updated based on simulated experiences [18]. The Dyna Q-learning's model-

based planning for Quadcopter promotes quick decision-making [19]. This ability for real-time adaptation

enables the quadcopter to instantly modify its trajectory in response to changing environmental factors,

enhancing overall performance and responsiveness.

Dyna Q-learning presents a promising method for improving quadcopter path planning. It is

particularly suited for the difficulties presented by quadcopter navigation in complex and dynamic situations

since it can efficiently learn from both real experiences and simulated environments. The Q-learning

reinforcement learning method seeks to identify the best course of action for an agent interacting with its

surroundings [20]. The Q-values are iteratively updated according to the agent's experiences under the Q-

learning update rule. In the Dyna-Q update, the agent uses an exploration approach to choose an action

depending on its current Q-values. Second, using the Q-learning, the agent adjusts its Q-value for the prior

state-action combination after seeing the outcome's state and reward. The Dyna update rule is given by (2):

𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) − 𝑄(𝑆, 𝐴)] (2)

a. Experimental setup

1) Description of simulation environment

The simulation environment in this project aims to train a quadcopter agent to plan optimal paths in

a 3D map with obstacles. The map is represented by a grid of dimensions mapWidth x mapLength x

mapHeight. The agent's objective is to navigate from a start pose to a goal pose while avoiding obstacles. The

environment provides information about the current state (pose) of the agent and allows it to take actions

corresponding to different movement directions in 3D space.

2) Training case studies and performance indicators

The agent's training is conducted using Dyna Q-learning, an algorithm that combines model-free

reinforcement learning techniques. The training involves multiple episodes, each consisting of a sequence of

steps. The performance of the agent is evaluated based on two key indicators:

− Total reward per episode

The cumulative reward obtained by the agent throughout each episode reflects its ability to navigate

efficiently towards the goal pose while avoiding obstacles. A higher total reward indicates better

performance.

− Total steps per episode

The total number of steps taken by the agent in each episode indicates the efficiency of the planned

paths. A lower number of steps suggests that the agent has successfully learned to navigate through the

environment more directly.

b. Assessment of Dyna Q-learning for planning quadcopter paths

The use of Dyna Q-learning in this work offers several advantages and unique features:

1) Reward function customization

The reward function is tailored to encourage optimal behavior. Positive rewards are assigned for

reaching the goal pose, while negative rewards are given for colliding with obstacles or deviating from the

planned path. By fine-tuning the reward function, the agent learns to prioritize efficient and obstacle-free

navigation.

2) Extended action space
The agent is equipped with an expanded set of 26 actions, allowing for more precise and accurate

movement in 3D space. This additional granularity enhances the agent's ability to navigate through complex

environments and plan optimal paths.

3) Deterministic environment

The environment is deterministic, meaning that the outcomes of actions are predictable. Exploiting this

determinism, the Q-values are updated directly using the current state, next state, and reward information.

Temporal-difference learning is not utilized, allowing the agent to converge to the optimal policy faster. By

employing Dyna Q-learning with these modifications, the agent aims to learn an optimal policy.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

158

4) Slight improvment to the leterature method

In this work, we made some slight modifications compared to previous methods of reinforcement

learning. to the way of learning the first is buy starting the training of the agent in locations close to the goal

pose to help find optimal solutions faster knowing that for any reinforcement learning algorithm in order to

work or find the optimal behavior needs to get to the goal pose to obtain maximum reward thus an optimal

policy obtained.

2.2. Control methods

2.2.1. Unmanned aerial vehicles fuzzy logic control

For the purpose of controlling complex nonlinear systems, it is practical to translate theoretical

descriptions into automatic control strategies [21]. The high characteristics of a UAV include its capacity to

conduct quick movements, take off and land vertically, and hover in a stable air state. However, because a

quadrotor is an unstable and underactuated nonlinear system, developing a high-performance drone controller

is a complex task [22]. Dynamic systems are characterized by exterior disturbances, unknown parameters,

and complex nonlinearities [23]. Then it is suggested to develop a fuzzy logic controller to ensure the

stability of the quadrotor.

a. Fuzzy rules

Fuzzy logic is usually expressed by linguistic rules showing in Figure 3 by the form:

Figure 3. Linguistic fuzzy rule

The general form of the fuzzy rules is given as (3):

If 𝑋1 is 𝑥1 and/or 𝑋2 is 𝑥2 and/or … 𝑋𝑛 is 𝑥𝑛 then Y is y. (3)

The proposed method presents the advantages of the defuzzification and adaptive inference engines

that have been fuzzified. Along with various other approaches, the fuzzy controller is evaluated subjectively

and objectively, where the processing time is taken in consideration [24].

b. The quadrotor rule base

A rule base has been established for all six controllers, where the Table 1 represent the rules of each

controller (roll, pitch, yaw, and x, y, z positions) ensuring that the rules are derived based on empirical

evidence and careful analysis.

Table 1. Quadrotor rule base
𝒅𝑬 𝒅𝒕 NB N Z P PB

N GDM GD GD S GU

Z GUM GD S GU GUM

P GD S GU GUM GUM

where: N is negative; Z is zero; P is positive; GUM is go up much; GU is go up; S is stand; GDM is go down much; GD is go down; NB

is negative big; and PB is positive big.

Triangular, trapezoid, and Gaussian membership functions are the most used for controlling UAVs.

The input range for the system is set as [-4, 4], while the output variables have different ranges: [-12.22,

12.22] for U1[-3.05, 3.05] for U2 and U3, [-0.066, 0.066] for U4, and [-1, 1] for pitch and roll. The

membership functions for each controller are defined using the "fuzzy" instruction in MATLAB, as

illustrated in the accompanying Figures 4 and 5, where Figure 4(a) displays the error input and Figure 4(b)

displays the derivative of error input for membership function and Figure 5 displays the output membership

function.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modern artificial intelligence technics for unmanned aerial vehicles path planning … (Yasmine Zamoum)

159

(a) (b)

Figure 4. Membership functions for; (a) error input and (b) derivative of error input

Figure 5. Output membership function

c. Roll controller

A rotating subsystem (roll, pitch, and yaw) and a translating subsystem (x, y, and z coordinates)

could be used to control the movement of a quadrotor [25]. To handle the control input of a roll controller, an

equation script is employed that makes use of the "evalfis" instruction. This script ensures that the controller

operates within the defined range by implementing a saturation code. This code prevents any situation where

the value exceeds the specified range, thereby maintaining control stability and reliability.

𝑈2(𝑘) = 𝐾𝑃𝜃𝑒𝜃(𝑘) + 𝐾𝐷𝜃[𝑒𝜃(𝑘) − 𝑒𝜃(𝑘 − 1)] + 𝐾𝐼𝜃[𝑒𝜃(𝑘) − 2𝑒𝜃(𝑘 − 1) + 𝑒𝜃(𝑘 − 2)]
+𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑈3(𝑘), [𝑒(𝑘) , 𝑒(𝑘 − 1)])

(4)

Such that: 𝑒𝜃 is the error between the referential roll angle and the desired roll angle.

eθ (k) = θref(k) − θ(k) (5)

d. Pitch controller

To manage the control input of a pitch controller, an equation script is utilized that incorporates the

"evalfis" instruction. This script allows the pitch controller to operate within the specified range and includes

a saturation code to prevent any conditions that could cause the value to exceed the defined range. The

saturation code ensures that the pitch controller remains within the desired boundaries, ensuring stability and

preventing any undesirable effects.

𝑈3(𝑘) = 𝐾𝑃𝜑𝑒𝜑 (𝑘) + 𝐾𝐷𝜑[𝑒𝜑 (𝑘) − 𝑒𝑒𝜑 (𝑘 − 1)] + 𝐾𝐼𝜑[𝑒𝜑 (𝑘) − 2𝑒𝜑 (𝑘 − 1)

+𝑒𝜑 (𝑘 − 2)] + 𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑈3(𝑘), [𝑒(𝑘) , 𝑒(𝑘 − 1)])

 (6)

where evalfis is the instruction of the FLC and 𝑒𝜑 is the error between the referential pitch angle and the

desired pitch angle:

𝑒𝜑(𝑘) = 𝜑𝑟𝑒𝑓(𝑘) − 𝜑(𝑘) (7)

e. Yaw controller

From (8) and (9) can be used to define the control input for yaw angle:

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

160

U4(k) = KPe(k) + KD[e(k) − e(k − 1)]

+KI[e(k) − 2e(k − 1) + e(k − 2)] + evalfis(U4(k), [e(k), e(k − 1)])

 (8)

𝑒𝜓(𝑘) = 𝜓𝑟𝑒𝑓(𝑘) − 𝜓(𝑘) (9)

Such that: 𝑒 is the error between the referential yaw angle and the desired yaw angle.

f. Altitude controller

The altitude control input is specified as the control input for the quadrotor's Z position can be

defined as (10) and (11):

𝑈1(𝑘) = 𝐾𝑃𝑍𝑒𝑍(𝑘) + 𝐾𝐷𝑍[𝑒𝑍(𝑘) − 𝑒𝑍(𝑘 − 1)]
+𝐾𝐼𝑍[𝑒𝑍(𝑘) − 2𝑒𝑍(𝑘 − 1) + 𝑒𝑍(𝑘 − 2)] + 𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑈1(𝑘), [𝑒(𝑘) , 𝑒(𝑘 − 1)]) (10)

𝑒𝑍 𝑍 (𝑘) = 𝑍𝑟𝑒𝑓(𝑘) − 𝑍(𝑘) (11)

Such that: 𝑒𝑍 is the error between the referential Z position and the desired Z position.

g. X and Y position controller

While the quadrotor's ability to maintain a forward and level position is commendable, it is not

flawless. In the presence of unexpected external forces, there is a possibility of slight roll or pitch angles

being introduced, causing a deviation from the desired position. To address this issue, a fuzzy PID controller

can be employed for each position, allowing for the adjustment of these angles based on the quadrotor's X

and Y positions. By implementing this controller, the quadrotor can effectively counteract any deviations and

maintain its desired position more accurately.

𝜃𝑟𝑒𝑓(𝑘) = 𝐾𝑃𝑋𝑒𝑋(𝑘) + 𝐾𝐷𝑋[𝑒𝑋(𝑘) − 𝑒𝑋(𝑘 − 1)]

+𝐾𝐼𝑋[𝑒𝑋(𝑘) − 2𝑒𝑋(𝑘 − 1) + 𝑒𝑋(𝑘 − 2)] + 𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝜃𝑟𝑒𝑓(𝑘), [𝑒(𝑘), 𝑒(𝑘 − 1)])

 (12)

𝜑𝑟𝑒𝑓(𝑘) = 𝐾𝑃𝑌𝑒𝑌 (𝑘) + 𝐾𝐷𝑌[𝑒𝑌 (𝑘) − 𝑒𝑌 (𝑘 − 1)] + 𝐾𝐼𝑌[𝑒𝑌(𝑘) − 2𝑒𝑌(𝑘 − 1)

+𝑒𝑌(𝑘 − 2)] + 𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝜑𝑟𝑒𝑓(𝑘), [𝑒(𝑘), 𝑒(𝑘 − 1)])

 (13)

2.2.2. Proportional integral derivative adaptive fuzzy logic control

a. Principle

When using the PID control approach, tracking performance is comparatively lower since the PID

controller is unable to alleviate the effects of external interference and the uncertainty of the system model,

so it is required to adjust the PID’s parameters in real time [26]. Adaptive control refers to a method

employed to adjust and operate a system in real-time. In industrial applications, conventional PID controllers

are commonly utilized. However, in robotic applications, traditional controllers often face challenges such as

overshooting and oscillation around settling points. These issues can be addressed by incorporating fuzzy

logic control. When developing an adaptive controller, the initial step involves understanding how fuzzy

logic interacts with the parameters of a conventional PID controller (Figure 14), as well as with the error and

error signal. The error and rate of change of error are fed into the fuzzy logic controller, which then produces

adjustments in the values of Kp, Ki, and Kd (proportional, integral, and derivative gains). Using this

technique, we insured, System's sustainability and robustness in the face of external wind disturbances when

compared to the classical PID. The simulation results validate the optimization of the system parameters [27]

of the PID controller in real time. Figure 6 shows a block diagram of the adaptive fuzzy PID control. In this

paper, we have compared and evaluated deep learning methods in order to determine the suitable algorithm

for distance measurement for autonomous drone controlled in real time [28].

Figure 6. Adaptive fuzzy PID control

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modern artificial intelligence technics for unmanned aerial vehicles path planning … (Yasmine Zamoum)

161

3. RESULTS AND DISCUSSION

3.1. Path planning

3.1.1. Deep Q-learning algorithm

In this simulation, we set a 3D environment. For each episode, random starting points were chosen on

the map, from which the agent initiated its navigation. The number of steps taken and the total reward

accumulated during each episode were recorded. Additionally, the total time taken for the agent to complete the

learning process was measured. The steps graph shown above tells us that the agent does not get to the goal

point so often since the number of steps is always near its maximum. The reward graph shows that it gets

negative quite often specially at the latest episodes which is completely inacceptable and quite the opposite of

what was expected. This method trained the neural network 32,000 times and took nearly 16 hours.

The application of Deep Q-learning for UAV path planning in the 3D grid, where it follows a

predetermined path to collect calculation tasks from smart devices posed significant challenges, leading to

unsatisfactory results [29]. Deep reinforcement learning trains general-purpose neural network approach to

overcome the constraint [30] using a reward-based system, the UAV learns to select optimal actions based on

its current state. The neural network employed in the learning process faced difficulties in deriving patterns

or relationships between the input and output, primarily due to the fixed Q-values of the occupied spaces set

to 0, which remained unmodifiable throughout the learning phase.

The inability of the neural network to learn meaningful Q-values severely impacted the agent's

decision-making capability and hindered the effectiveness of the Deep Q-learning approach. Consequently, the

agent exhibited suboptimal path planning behavior and struggled to navigate the environment efficiently. The

challenges encountered in this study underscore the difficulties of utilizing Deep Q-learning in complex, 3D

grid world environments for UAV path planning. The unique characteristics of the environment, such as the

fixed Q-values of occupied spaces, present obstacles that hinder the learning process and prevent the agent from

acquiring an optimal policy. Further investigation and potential modifications to the Deep Q-learning approach,

including reward shaping, exploration strategies, network architecture, or augmented inputs shown in

Figure 7(a) represent total step (y-axe) per episode (x-axe) and Figure 7(b) represent reward (y-axe) per episode

(x axe) (may be necessary to address these challenges and improve the results in similar scenarios).

(a) (b)

Figure 7. Response per episode for; (a) total steps and (b) rewards for dqn algorithm

In conclusion Deep Q-learning doesn’t fit a nonlinear model due to nature of neural networks that is

why we moved to Dyna Q-learning that puts data in a tabular form. Figure 2 shows the simple schematic of

Dyna Q-Learning and Figure 3 shows the simple schematic of Q-Learning, and explain how they differ

where a Deep Q-learning that uses neural networks and underneath it a dyna that uses a table.

3.1.2. Dyna Q-learning algorithm

Each episode's total steps taken and accrued rewards were kept track off. Additionally, the amount of

time needed for the agent to finish learning was calculated. The Bellman equation, which is significantly more

straightforward, was used as the update rule for the q instead of the temporal differencing (TD) error. Figure 8(a)

shows response for reward per episode and Figure 8(b) shows total steps per episode for Dyna_Q and Figure 9(a)

shows response for reward per episode and Figure 9(b) shows total steps per episode in the improved Dyna_Q.

We first start by sampling random points in the entire map with equally distributed probabilities, it

took the agent 202.3 seconds to complete the learning we started training the agent in the points closer to the

goal point and then we keep getting farther until we cover the entire map. This method took the agent

144.0879 seconds to complete learning. The method of training the agent in a smaller environment with in

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

162

the neighborhood of the goal point took the agent 144.0879 seconds to learn, which is quite a significant

improvement over the standard method. It is 29% faster to be precise. In the Figures 4 and 5, we see that the

agent takes an obstacle clean path and manages to get to the goal point successfully and does not take a very

long path (Figure 10) which is exactly the goal of this work. The final model tested to generate paths from 2

different start points, where Figure 10(a) represent the occupancy map for the first Start point and

Figure 10(b) represent the occupancy map for the second start point.

(a) (b)

Figure 8. Display response for; (a) reward and (b) total steps per episode for Dyna_Q

(a) (b)

Figure 9. Display response for; (a) reward and (b) total steps per episode in the improved Dyna_Q

(a) (b)

Figure 10. Occupancy map for; (a) first start point and (b) second start point to generated path

3.2. Control methods

3.2.1. Unmanned aerial vehicles fuzzy logic control

The drone's objective is to arrive at the terminal destination safely [31], so in this design, we used a

pre-defined UAV model which has its control laws already calculated. The fuzzy logic controller than was

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modern artificial intelligence technics for unmanned aerial vehicles path planning … (Yasmine Zamoum)

163

added after the PID controller, so it compensates any error or miss-calculation from the PID. This control

method is a combination of traditional PID controller with fuzzy logic [26]. A generated path from our path

planning model was used as the input for the fuzzy logic control system. After running the simulation,

obtained the results shown in Figures 11 and 12, where Figure 10 shows the control inputs for path 1.

Figure 11. Control inputs for path 1

A resilient controller is the fuzzy logic controller. We are extremely convinced that this controller is

more than capable of handling the task because it demonstrated its performance throughout our experiment

and provided some incredibly adequate performance figures. It also successfully followed the generated

paths, which gives us even more confidence. Figure 12(a) (in Appendix) is an illustration of the global

trajectory in (x, y, and z axes) and Figure 12(b) (in Appendix) shows the fuzzy PID responses of the

quadrotor in 3D for path 1. After running the simulation for the second generated path we obtained the

graphs shown in Figure 13 (in Appendix) that represent control inputs for path 2 and Figure 14(a) (in

Appendix) is an illustration of the global trajectory in (x, y, and z axes) and Figure 14(b) (in Appendix)

shows fuzzy PID responses of the quadrotor in 3D for path 2.

The Table 2 shows that there is no steady-state, and the settling time sits just under 6 seconds for the

first path and a little more than 4 seconds in the second path. Pitch and Yaw angles exhibit no steady-state

error. Note that the settling time for X and Y positions is 0. This is due to the nature of the path and has

nothing to do with the performance of the system.

Table 2. The results for the fuzzy controllers of the UAV
Settling time first, (second) path Steady state error

X position 0 Sec, (0 Sec) 0

Y position 0 Sec, (0 Sec) 0

Z position 5.8 Sec, (4.22 Sec) 0

3.2.2. Proportional integral derivative adaptive fuzzy logic control

For the simulation, the parameters of each PID control are adapted by a fuzzy controller, and the

results are shown by the Figures 15 to 21. The table shows that there is no steady-state, and the settling time

for the z position sits just under 5.6 seconds for the first generated path and there is hardly any settling time

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

164

for the X and Y positions. Which means that the adaptive fuzzy proved to be a better alternative than the

standard fuzzy logic control system.

Figure 15. Adaptive fuzzy logic control inputs

Figure 16. PID parameters of x position

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modern artificial intelligence technics for unmanned aerial vehicles path planning … (Yasmine Zamoum)

165

Figure 17. PID parameters of y position

Figure 18. PID parameters of pitch angle

Figure 15 illustrate the control inputs (time in x-axe and amplitude in y-axe) of the quadrotor for

adaptive fuzzy logic controller and Figures 16 to 20 illustrate successively the PID parameters for (x, y and z

position and pitch, roll and yaw, where the (time in x-axe and amplitude in y-axe). Figure 21(a) is an

illustration of the global trajectory of the quadrotor in (x, y, and z axes), and Figure 21(b) shows the adaptive

fuzzy response successively of (pitch, roll and yaw angle and x, y, and z positions) of the quadrotor in 3-D.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

166

Figure 19. PID parameters of roll angle

Figure 20. PID parameters of yaw angle

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modern artificial intelligence technics for unmanned aerial vehicles path planning … (Yasmine Zamoum)

167

(a)

(b)

Figure 21. Global trajectory; (a) adaptive fuzzy response and (b) for the UAV in 3-D

Table 3 shows that there is no steady-state, and the settling time for the z position sits just under 5.6

seconds for the first generated path and there is hardly any settling time for the X and Y positions. Which

means that the adaptive fuzzy proved to be a better alternative than the standard fuzzy logic control system.

Table 3. The discussion of the adaptive fuzzy controllers for the UAV
Settling time Steady state error

X position 0 Sec 0

Y position 0 Sec 0

Z position 5.55 sec 0

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

168

4. CONCLUSION

The objective of this research was to evaluate the suitability of Deep Q-learning and Dyna

Q-learning algorithms for UAV path planning, along with the integration of a fuzzy logic control system for

precise path following. The findings of this study indicate that Deep Q-learning is not well-suited for UAV

path planning due to the absence of clear patterns or relations in the data. However, Dyna Q-learning, with

customized modifications, showed promise in learning an optimal policy quicker than the standard Dyna

algorithm. Additionally, the integrated fuzzy logic control system proved to be highly effective in ensuring

precise path following by the UAV, and its more advanced version “Adaptive Fuzzy Logic” does always

have the edge over the standard one when it comes to overall performance and versatility. The results suggest

that when dealing with complex and unpredictable environments, such as UAV path planning, Deep Q-

learning may not be the most suitable algorithm. The lack of discernible patterns in the data poses challenges

for the neural network to learn accurate Q-values. However, Dyna Q-learning, with bespoke modifications,

overcame these challenges and demonstrated improved performance in learning optimal policies.

Based on the findings, it is recommended to further explore and refine the customized Dyna

Q-learning algorithm for UAV path planning. Additionally, the integration of adaptive fuzzy logic control

systems should be considered for other autonomous systems requiring precise path following. Further

research could focus on optimizing the customization of the Dyna algorithm and investigating alternative

reinforcement learning algorithms that may better suit the UAV path planning problem. By identifying the

limitations of Deep Q-learning for UAV path planning, showcasing the effectiveness of customized Dyna

Q-learning, and highlighting the applicability of fuzzy and adaptive fuzzy logic control systems, this study

contributes to the advancement of autonomous systems in complex environments. The insights gained from

this research can guide further developments in path planning algorithms and enhance the capabilities of

UAVs and other autonomous systems.

APPENDIX

(a)

(b)

Figure 12. Global trajectory; (a) fuzzy PID responses and (b) of the quadrotor in 3D for path 1

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modern artificial intelligence technics for unmanned aerial vehicles path planning … (Yasmine Zamoum)

169

(b)

Figure 12. Global trajectory; (b) of the quadrotor in 3D for path 1 (continued)

Figure 13. Control inputs for path 2

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

170

(a)

(b)

Figure 14. Global trajectory; (a) fuzzy PID responses and (b) of the quadrotor in 3D for path 2

REFERENCES
[1] N. V. Varghese and Q. H. Mahmoud, “A survey of multi-task deep reinforcement learning,” Electronics (Switzerland), vol. 9, no.

9, pp. 1–21, Aug. 2020, doi: 10.3390/electronics9091363.

[2] G. T. Tu and J. G. Juang, “Path planning and obstacle avoidance based on reinforcement learning for UAV application,” in

Proceedings of 2021 International Conference on System Science and Engineering, ICSSE 2021, IEEE, Aug. 2021, pp. 352–355,

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Modern artificial intelligence technics for unmanned aerial vehicles path planning … (Yasmine Zamoum)

171

doi: 10.1109/ICSSE52999.2021.9537945.
[3] Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous Drone Racing with Deep Reinforcement Learning,” in

IEEE International Conference on Intelligent Robots and Systems, IEEE, Sep. 2021, pp. 1205–1212, doi:

10.1109/IROS51168.2021.9636053.
[4] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-learning,” 30th AAAI Conference on Artificial

Intelligence, AAAI 2016, vol. 30, no. 1, pp. 2094–2100, Mar. 2016, doi: 10.1609/aaai.v30i1.10295.

[5] Y. Bi, Y. Wu, and C. Hua, “Deep Reinforcement Learning Based Multi-User Anti-Jamming Strategy,” in IEEE International
Conference on Communications, IEEE, May 2019, pp. 1–6, doi: 10.1109/ICC.2019.8761848.

[6] J. Huang, Q. Tan, J. Ma, and L. Han, “Path Planning Method Using Dyna-Q Algorithm under Complex Urban Environment,” in

Proceedings - 2022 Chinese Automation Congress, CAC 2022, IEEE, Nov. 2022, pp. 6776–6781, doi:
10.1109/CAC57257.2022.10054800.

[7] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” International Journal of Robotics

Research, vol. 32, no. 11, pp. 1238–1274, Sep. 2013, doi: 10.1177/0278364913495721.
[8] A. H. Arani, M. M. Azari, P. Hu, Y. Zhu, H. Yanikomeroglu, and S. Safavi-Naeini, “Reinforcement Learning for Energy-

Efficient Trajectory Design of UAVs,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 9060–9070, Jun. 2022, doi:

10.1109/JIOT.2021.3118322.
[9] J. Li, X. Xiong, Y. Yan, and Y. Yang, “A Survey of Indoor UAV Obstacle Avoidance Research,” IEEE Access, vol. 11, pp.

51861–51891, 2023, doi: 10.1109/ACCESS.2023.3262668.

[10] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” arXiv preprint arXiv, 150-02971, 2015.
[11] A. Ramaswamy and E. Hullermeier, “Deep Q-Learning: Theoretical Insights from an Asymptotic Analysis,” IEEE Transactions

on Artificial Intelligence, vol. 3, no. 2, pp. 139–151, Apr. 2022, doi: 10.1109/TAI.2021.3111142.

[12] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015,
doi: 10.1038/nature14236.

[13] F. N. Zohedi, M. S. M. Aras, H. A. Kasdirin, and N. B. Nordin, “New lambda tuning approach of single input fuzzy logic using

gradient descent algorithm and particle swarm optimization,” Indonesian Journal of Electrical Engineering and Computer
Science, vol. 25, no. 3, pp. 1344–1355, Mar. 2022, doi: 10.11591/ijeecs.v25.i3.pp1344-1355.

[14] A. T. Humod and N. M. Ameen, “Robust nonlinear pd controller for ship steering autopilot system based on particle swarm

optimization technique,” IAES International Journal of Artificial Intelligence, vol. 9, no. 4, pp. 662–669, Dec. 2020, doi:
10.11591/ijai.v9.i4.pp662-669.

[15] A. Oppermann, “How AI Teach Themselves Through Deep Reinforcement Learning,” builtIn, Oct. 21, 2021. [Online]. Available:

https://builtin.com/machine-learning/deep-reinforcement-learning.
[16] “20. Q-Table – EN – Deep Learning Bible,” Wikidocs, https://wikidocs.net/174536, 2023.

[17] S. P. Singh and R. S. Sutton, “Reinforcement learning with replacing eligibility traces,” Machine Learning, vol. 22, no. 1–3, pp.

123–158, 1996, doi: 10.1007/BF00114726.
[18] R. S. Sutton, “Dyna, an integrated architecture for learning, planning, and reacting,” ACM SIGART Bulletin, vol. 2, no. 4, pp.

160–163, Jul. 1991, doi: 10.1145/122344.122377.

[19] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-efficient approach to policy search,” in Proceedings of
the 28th International Conference on Machine Learning, ICML 2011, 2011, pp. 465–472, doi: 10.5555/3104482.3104541.

[20] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3–4, pp. 279–292, May 1992, doi:

10.1007/bf00992698.
[21] M. Mekhanet, L. Mokrani, A. Ameur, and Y. Attia, “Adaptive Fuzzy Gain of Power System Stabilizer to Improve the Global

Stability,” Bulletin of Electrical Engineering and Informatics, vol. 5, no. 4, pp. 421–429, Dec. 2016, doi: 10.11591/eei.v5i4.576.

[22] M. A. M. Basri and A. Noordin, “Optimal backstepping control of quadrotor uav using gravitational search optimization
algorithm,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 5, pp. 1819–1826, Oct. 2020, doi:

10.11591/eei.v9i5.2159.

[23] M. A. A. Ghany and M. A. Shamseldin, “Fuzzy type two self-tuning technique of single neuron PID controller for brushless DC
motor based on a COVID-19 optimization,” International Journal of Power Electronics and Drive Systems, vol. 14, no. 1, pp.

562–576, Mar. 2023, doi: 10.11591/ijpeds.v14.i1.pp562-576.
[24] A. A. Baker and Y. Y. Ghadi, “Autonomous system to control a mobile robot,” Bulletin of Electrical Engineering and

Informatics, vol. 9, no. 4, pp. 1711–1717, Aug. 2020, doi: 10.11591/eei.v9i4.2380.

[25] A. Saibi, H. Belaidi, R. Boushaki, R. Z. Eddine, and A. Hafid, “Enhanced backstepping control for disturbances rejection in
quadrotors,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 6, pp. 3201–3216, Dec. 2022, doi:

10.11591/eei.v11i6.3997.

[26] C. Li, Y. Wang, and X. Yang, “Adaptive fuzzy control of a quadrotor using disturbance observer,” Aerospace Science and

Technology, vol. 128, p. 107784, Sep. 2022, doi: 10.1016/j.ast.2022.107784.

[27] A. Elbatal, A. M. Youssef, and M. M. Elkhatib, “Smart aerosonde uav longitudinal flight control system based on genetic

algorithm,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2433–2441, Oct. 2021, doi:
10.11591/eei.v10i5.2342.

[28] A. I. Arrahmah, R. Rahmania, and D. E. Saputra, “Comparison between convolutional neural network and K-nearest neighbours

object detection for autonomous drone,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 4, pp. 2303–2312, Aug.
2022, doi: 10.11591/eei.v11i4.3784.

[29] F. Song et al., “Evolutionary Multi-Objective Reinforcement Learning Based Trajectory Control and Task Offloading in UAV-

Assisted Mobile Edge Computing,” IEEE Transactions on Mobile Computing, vol. 22, no. 12, pp. 7387–7405, 2023, doi:
10.1109/TMC.2022.3208457.

[30] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation with asynchronous off-policy

updates,” in Proceedings - IEEE International Conference on Robotics and Automation, IEEE, May 2017, pp. 3389–3396, doi:
10.1109/ICRA.2017.7989385.

[31] X. Han, J. Wang, J. Xue, and Q. Zhang, “Intelligent Decision-Making for 3-Dimensional Dynamic Obstacle Avoidance of UAV

Based on Deep Reinforcement Learning,” in 2019 11th International Conference on Wireless Communications and Signal
Processing, WCSP 2019, IEEE, Oct. 2019, pp. 1–6, doi: 10.1109/WCSP.2019.8928110.

https://builtin.com/machine-learning/deep-reinforcement-learning

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 153-172

172

BIOGRAPHIES OF AUTHORS

Yasmine Zamoum received the Engineer degree in Electromechanical

Engineering from the university of MHamed Bougara of Boumerdes in 2002, she received the

Magister degree in Industrial Electrical Equipment from Faculty of Hydrocarbon and

Chemistry from the university of MHamed Bougara Boumerdes in 2010. Currently, she has

been an assistant professor at Faculty of Hydrocarbon and Chemistry since 2019 in the

Department of Automation and Electrification of Industrial Processes. Her main research

interests include: control strategies for drones, renewable energy, and electrical machines. She

can be contacted at email: y.zamoum@univ-boumerdes.dz.

Karim Baiche received his Magister’s degree in Applied Automation from the

University of M’Hamed Bougara Boumerdes in 1998 and received his Ph.D. from the

University of M’Hamed Bougara Boumerdes, Algeria in 2014. He is currently an Associate

Professor at the University of M’Hamed Bougara Boumerdes, Algeria. His main current

research interests include: signal processing, system diagnostics and evolutionary

computation, and metaheuristics. He can be contacted at email: kbaiche@univ-boumerdes.dz.

Youcef Benkeddad received his Bachelor's degree in Electrical and Electronics

Engineering from the Institute of Electrical and Electronic Engineering at University M’hamed

Bougara of Boumerdes, Algeria in June 2021. Subsequently, he pursued his Master's degree in

Automatic Control at the same institution, completing it in 2023. Currently, he is continuing his

studies at the University of Palermo, Italy., where he is pursuing a Master's degree in

Electronics. He can be contacted at email: benkeddadyoucef@gmail.com.

Brahim Bouzida received his Bachelor's degree in Electrical and Electronics

Engineering from the Institute of Electrical and Electronic Engineering at University M’hamed

Bougara of Boumerdes, Algeria in June 2021. Subsequently, he pursued his Master's degree in

Automatic Control at the same institution, completing it in 2023. Currently, , he is continuing

his studies at the University of Genoa Italy, where he is pursuing a Master's degree in

Strategos. He can be contacted at email: adelbouzida@gmail.com.

Razika Boushaki is a Professor in Electrical Engineering at the University of

Boumerdes (Algeria) in the Institute of Electrical and Electronic Engineering since 2003. She

obtained Engineer Diploma in 1995, magister Diploma in 2003 at University of Boumerdes

and Doctorate degree in June 2013, in Electrical Engineering. She is member in the research

laboratory since 2009. She introduced several practical automation systems in industry

between 1999 and 2003. Currently, she is Prof. at Institute of Electrical and Electronic

Engineering, University M’hamed Bougara of Boumerdes, Algeria. She can be contacted at

email: r.boushaki@univ-boumerdes.dz and boushakiraz@yahoo.fr.

mailto:y.zamoum@univ-boumerdes.dz
mailto:kbaiche@univ-boumerdes.dz
mailto:benkeddadyoucef@gmail.com
mailto:adelbouzida@gmail.com
mailto:boushakiraz@yahoo.fr
https://orcid.org/0009-0003-2056-6781
https://scholar.google.com/citations?hl=en&user=SkAJTbMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56103683000
https://orcid.org/0000-0001-8894-7802
https://www.scopus.com/authid/detail.uri?authorId=24528406300
https://orcid.org/0009-0002-2343-9051
https://orcid.org/0009-0000-5179-4865
https://orcid.org/0009-0000-2265-3932
https://scholar.google.com/citations?hl=en&user=ldhfm8cAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57192575085

