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 Unmanned aerial vehicles (UAVs) require effective path planning 

algorithms to navigate through complex environments. This study 

investigates the application of Deep Q-learning and Dyna Q-learning 

methods for UAV path planning and incorporates fuzzy logic for enhanced 

control. Deep Q-learning, a reinforcement learning technique, employs a 

deep neural network to approximate Q-values, allowing the UAV to improve 

its path planning capabilities by maximizing cumulative rewards. 

Conversely, Dyna Q-learning leverages simulated scenarios to update Q-

values, refining the UAV’s decision-making process and adaptability to 

dynamic environments. Additionally, fuzzy logic control is integrated to 

manage UAV movements along the planned path. This control system uses 

linguistic variables and fuzzy rules to handle uncertainties and imprecise 

information, enabling real-time adjustments to speed, altitude, and heading 

for accurate path following and obstacle avoidance. The research evaluates 

the effectiveness of these methods individually, with a focus on model-free 

learning in a gradual training approach, and compares their performance in 

terms of path planning accuracy, adaptability, and obstacle avoidance. The 

paper contributes to a deeper understanding of UAV path planning 

techniques and their practical applications in various scenarios. 
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1. INTRODUCTION  

Deep reinforcement learning has become the state-of-the-art for many tasks in recent years [1]. Path 

planning is very important for facilitating effective and secure navigation, a basic overview of obstacle 

avoidance based on reinforcement learning was provided [2]. Path planning’s intelligent algorithms, such as 

Deep Q-learning and Dyna Q-learning, enhances the path planning capabilities of autonomous systems. By 

integrating a fuzzy logic control System can provide robust control and improve the system's ability to follow 

the generated path. 

The objective of many autonomous drone racing, is to move as quickly as possible through a 

sequence of checkpoints [3], so this study aims to address the research problem of optimizing path planning 

using Deep Q-learning, Dyna Q-learning, and using both standard and adaptive fuzzy logic control systems. 

https://creativecommons.org/licenses/by-sa/4.0/
https://www.mdpi.com/2076-0825/12/2/57#B22-actuators-12-00057
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The primary objective is to compare the performance of these two reinforcement learning algorithms in 

generating optimal paths for autonomous systems. Additionally, we seek to investigate the effectiveness of 

integrating a fuzzy logic control System and compare it to its more advanced version “adaptive fuzzy logic” 

to improve the system's ability to accurately follow the generated paths. 

The Q-learning algorithm is used to overestimate action values under specific assumptions [4], and 

suffer from some limitations when dealing with high-dimensional or continuous inputs [5]. In this research, 

we solved the problem by implementing an obstacle avoidance and path planning algorithm for unmanned 

vehicles using the Deep Q-learning and Dyna-Q reinforcement learning algorithms [6]. The investigation will 

involve simulating various scenarios with dynamic obstacles and varying environments to evaluate the 

algorithms' performance. Furthermore, the study will explore the integration of both standard and adaptive 

fuzzy logic control systems as a means of enhancing the autonomous system's path following capabilities. 

The Deep Q-learning offers to robotics a set of tools for the design [7]. To implement and evaluate 

the Deep Q-Learning and Dyna Q-learning algorithms in simulated environments, and design a fuzzy logic 

Control System to enable accurate path following the generated paths. To compare the performance of Deep 

Q-learning and Dyna Q-learning algorithms in terms of path planning efficiency to assess the effectiveness of 

the integrated fuzzy logic control system in improving path following accuracy. This study will utilize a 

simulated environment to collect data for evaluation. The dataset will include information on the 

environment characteristics, obstacles, generated paths, and the performance metrics of the Deep Q-learning, 

Dyna Q-learning, standard, and adaptive fuzzy logic control systems. Through this research, we aim to 

contribute to the advancement of autonomous systems' path planning capabilities by exploring and 

comparing the performance of Deep Q-learning and a slightly modified Dyna Q-learning algorithms. 

Furthermore, integrating fuzzy logic control systems can provide insights into enhancing path. 

 

 

2. METHOD 

Deep Q-learning algorithms and Dyna Q-learning algorithms for path planning are explained in this 

section, along with fuzzy logic and proportional integral derivative (PID) adaptive fuzzy logic for controlling 

the quadrotor. 

 

2.1.  Path planning methods 

2.1.1. Deep Q-learning algorithm 

The unmanned aerial vehicles (UAV's) 3-D trajectories have a remarkable effect on the performance 

of networks [8]. However, a number of intelligent algorithms have been put out to address the obstacle 

avoidance problem as a result of the quick development of computer technology and hardware [9]. The path 

planning, maximizes the quadcopter's operational potential while simultaneously ensuring the safety of its 

surroundings [10]. A carefully thought-out path reduces the quadcopter's energy consumption, increases its 

flight time, and improves its agility, allowing it to execute difficult maneuvers with accuracy. 

A deep neural network, known as the Q-network, is employed in Deep Q-learning to approximate 

the Q-values. The Bellman equation, which encapsulates the relationship between the present state-action 

pair and the anticipated future rewards, is used to compute the target Q-values, and the network is trained to 

minimize the difference between these values and the predicted Q-values. The Bellman equation is given by 

(1): 

 

𝑄(𝑆, 𝐴) ← 𝑅 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) (1) 

 

An essential reinforcement learning approach is called Deep Q-learning, which is very important for 

training a deep neural network, or deep Q-network, to approximate the well-known Q-function [11]. The 

approach makes use of an experience replay buffer to train the Q-network. As it interacts with its 

surroundings during training, the agent records observed state-action-reward-next state transit ions in the 

replay buffer. The approach samples from a batch of transitions from the replay buffer and utilizes them to 

update the network's weights rather than updating the Q-network after each interaction. With this strategy, 

the learning process is stabilized and the correlations between subsequent updates are decreased. 

Target network is another method used by the Deep Q-learning algorithm [12]. The weights from 

the primary network are periodically changed on this distinct replica of the Q-network. During training, the 

target network computes the target Q-values while the main network forecasts the Q-values. The technique 

overcomes the problem of the target values fluctuating continuously during learning, which can cause 

instability, by employing a distinct target network. In Deep Q-learning algorithm, the agent selects the 

highest Q-value and the random actions with a probability of epsilon exploration [13]. The agent's behavior is 

often gradually changed from exploration to exploitation by annealing the exploration rate epsilon over time. 
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The Deep Q-learning is a potent path planning system that fuses deep neural networks and 

reinforcement learning but in order to properly apply this technique in scenarios that resemble the complexity 

of the actual world, agents must overcome a challenging task [12]. Deep Q-learning achieves consistent and 

effective learning by using a target network, experience replay, and a neural network to approximate Q-

values. Its use in path planning has produced encouraging results in a number of fields. The algorithm is [14]: 

 

Initialize replay memory Ɗ to capacity N  

Initialize action-value function Ԛ with random weights  

For episode = 1, M do 

    Initialise state st 

         For t = 1, T do  

             With probability ԑ select a random action at 

             otherwise select at = maxa Ԛ* ( st, a ;ϴ) 

             execute action at and observe reward rt and state st+1 

             Store transition (st, at, rt, st+1) in Ɗ 

             Set st+1 = st   

             Sample random minibatch of transitions (st, at, rt, st+1) from Ɗ 

             Set  𝑦𝑗 = {
𝑟𝑗                                                                          for terminal 𝑠𝑡 + 1
rj +  γ maxa′ 𝑄(𝑠𝑡 + 1, a′ ; 𝛳)           for non − terminal 𝑠𝑡 + 1

 

                                                                                         

             Perform a gradient descent step on (yj – Q (st, aj ; ϴ))2  

        end for 

 end for 

 

a. Experimental setup 

1) Simulation environment description 

A 3D grid-based representation serves as the simulation environment for training the Deep Q-

learning algorithm for quadcopter path planning. Utilizing an occupancy map (omap3D) that simulates the 

environment's barriers, it is put into practice. The grid's width, length, and height are supplied, and together 

they specify the environment's size. Because the occupancy map is generated randomly, it accurately depicts 

the environment's barriers for the agent to avoid. 

The objective of the quadcopter agent is to arrive at the goal posture (goalPose), which is a 

predetermined target position. The goal stance depicts the place in the environment that is intended to be 

reached. The agent must develop the ability to choose the best routes from arbitrary starting points to the 

desired pose while avoiding collisions with the obstacles. 

2) Training case studies and performance indicators 

The agent interacts with the environment frequently throughout a number of episodes in the training 

settings. In each episode, the agent begins in a random location within the environment and moves through a 

series of steps to find its way to the desired pose. The agent's objective is to efficiently complete the goal 

pose while avoiding obstacles in order to maximize its cumulative reward. 

Each episode features the agent acting in accordance with the learnt Q-values and the current 

condition. In order to gain experience and learn from the effects of its actions, the agent initially explores the 

world by acting arbitrarily. The agent eventually moves toward using the learnt Q-values to inform decisions 

as the training goes on. Several performance measures are employed to assess the effectiveness of the Deep 

Q-learning system for quadcopter path planning: 

b. Episode reward 

The agent's overall reward in each episode reveals if it was able to effectively navigate to the goal 

posture. A greater episode reward indicates that the agent is developing efficient methods for navigating 

barriers and getting to the destination. During training and evaluation, the agent's behavior is greatly 

influenced by the reward function. Each action made by the agent is given a numerical value, reflecting its 

usefulness or desirability in attaining the intended goal. The reward function affects the agent's decision-

making in the context of quadcopter path planning by giving feedback on the effectiveness of its actions. 

The reward function in the sample code consists of a number of parts that together make up the 

overall reward: 

− Goal reached: when the agent reaches the goal pose, a positive reward of 100 is assigned. This encourages 

the agent to prioritize reaching the goal as it signifies successful completion of the task. 

− Obstacle collision: if the agent collides with an obstacle, a negative reward of -100 is given. This 

penalizes the agent for making unsafe or invalid moves, discouraging it from colliding with obstacles. 
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− Map boundary violation: if the agent moves outside the boundaries of the map, a negative reward of -10 is 

assigned. This penalizes the agent for going beyond the allowed limits of the environment and encourages 

it to stay within the defined map boundaries. 

− Time penalty: for each step taken by the agent, a small negative reward of -1 is given. This encourages 

the agent to find efficient paths and reach the goal in the minimum number of steps. 

When these incentive elements are combined, the agent is guided toward safe and effective 

navigation while avoiding obstacles and completing the goal posture. The reward function influences the 

agent's behavior and directs it toward learning the best path planning strategies by allocating positive and 

negative incentives based on desired and unwanted activities, respectively. It's vital to remember that the 

reward function's design and tweaking can have a big impact on how well the agent learns and performs. The 

balance of rewards for the various components should be carefully considered in order to promote desired 

behaviors and deter undesirable ones. Additionally, domain-specific information and experience can be used 

to improve and tailor the reward function to meet the needs and restrictions of certain applications. 

1) Number of steps 

The agent's path planning effectiveness is shown by the number of steps it takes in each episode. A 

decreasing number of steps shows that the agent is improving its navigation strategy by learning to take more 

direct routes to the goal posture. Training time: to assess the learning algorithm's computational 

effectiveness, the amount of time spent training the deep Q-network is measured. A quicker training time 

indicates that the algorithm can learn quickly and converge to the best solutions in a fair amount of time. 

These performance indicators give information about the agent's path planning efficiency and learning 

progress in the simulated environment. Figures 1 and 2 represent successively a schematic depiction of deep 

reinforcement learning and simple schematic of Q-Learning: Q-Table. 
 

 

 
 

Figure 1. Schematic depiction of deep reinforcement learning [15] 
 

 

 
 

Figure 2. Simple schematic of Q-Learning: Q-Table [16] 

 

 

2.1.2. Dyna Q-learning algorithm 

The Dyna-Q model is used to create more training data for the agent and simulate experiences. The 

agent can then use the simulated events to update its Q-table, allowing it to learn more quickly and decide 

more wisely. By providing fictitious experiences that the agent has never had, the model-based component 

aids with environment exploration as well [13], [17]. 

In Q-learning, the agent chooses its course of action based on the highest possible Q-values for a 

certain state. Through reinforcement learning, the Q-values are progressively improved. exploitation and 

exploration are combined. It uses a model of the environment to simulate future states in addition to updating 

Q-values, allowing the agent to explore and plan its course of action. The model-free method Q-learning 
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directly learns the best course of action by changing Q-values in response to observed state-action-reward 

transitions. It is independent of an environment model. It keeps an environment model and employs it to 

simulate potential future situations. This improves planning abilities by enabling the agent to adjust Q-values 

through simulated experiences. Dyna-Q uses a model of the world to create simulated experiences, 

incorporating planning into the process. This enables more effective research and decision-making by taking 

conceivable future states into account [18]. 

Q-learning simply needs to update Q-values based on observed transitions; it often has reduced 

computational complexity [13]. Dyna Q-Learning Due to model updates and planning stages, Dyna-Q 

increases computational complexity. The computing demands may rise when hypothetical future situations 

are simulated and Q-values are updated based on simulated experiences [18]. The Dyna Q-learning's model-

based planning for Quadcopter promotes quick decision-making [19]. This ability for real-time adaptation 

enables the quadcopter to instantly modify its trajectory in response to changing environmental factors, 

enhancing overall performance and responsiveness. 

Dyna Q-learning presents a promising method for improving quadcopter path planning. It is 

particularly suited for the difficulties presented by quadcopter navigation in complex and dynamic situations 

since it can efficiently learn from both real experiences and simulated environments. The Q-learning 

reinforcement learning method seeks to identify the best course of action for an agent interacting with its 

surroundings [20]. The Q-values are iteratively updated according to the agent's experiences under the Q-

learning update rule. In the Dyna-Q update, the agent uses an exploration approach to choose an action 

depending on its current Q-values. Second, using the Q-learning, the agent adjusts its Q-value for the prior 

state-action combination after seeing the outcome's state and reward. The Dyna update rule is given by (2): 

 

𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎) − 𝑄(𝑆, 𝐴)] (2) 

 

a. Experimental setup 

1) Description of simulation environment 

The simulation environment in this project aims to train a quadcopter agent to plan optimal paths in 

a 3D map with obstacles. The map is represented by a grid of dimensions mapWidth x mapLength x 

mapHeight. The agent's objective is to navigate from a start pose to a goal pose while avoiding obstacles. The 

environment provides information about the current state (pose) of the agent and allows it to take actions 

corresponding to different movement directions in 3D space. 

2) Training case studies and performance indicators 

The agent's training is conducted using Dyna Q-learning, an algorithm that combines model-free 

reinforcement learning techniques. The training involves multiple episodes, each consisting of a sequence of 

steps. The performance of the agent is evaluated based on two key indicators: 

− Total reward per episode 

The cumulative reward obtained by the agent throughout each episode reflects its ability to navigate 

efficiently towards the goal pose while avoiding obstacles. A higher total reward indicates better 

performance. 

− Total steps per episode 

The total number of steps taken by the agent in each episode indicates the efficiency of the planned 

paths. A lower number of steps suggests that the agent has successfully learned to navigate through the 

environment more directly. 

b. Assessment of Dyna Q-learning for planning quadcopter paths 

The use of Dyna Q-learning in this work offers several advantages and unique features: 

1) Reward function customization 

The reward function is tailored to encourage optimal behavior. Positive rewards are assigned for 

reaching the goal pose, while negative rewards are given for colliding with obstacles or deviating from the 

planned path. By fine-tuning the reward function, the agent learns to prioritize efficient and obstacle-free 

navigation. 

2) Extended action space 
The agent is equipped with an expanded set of 26 actions, allowing for more precise and accurate 

movement in 3D space. This additional granularity enhances the agent's ability to navigate through complex 

environments and plan optimal paths. 

3) Deterministic environment 

The environment is deterministic, meaning that the outcomes of actions are predictable. Exploiting this 

determinism, the Q-values are updated directly using the current state, next state, and reward information. 

Temporal-difference learning is not utilized, allowing the agent to converge to the optimal policy faster. By 

employing Dyna Q-learning with these modifications, the agent aims to learn an optimal policy. 
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4) Slight improvment to the leterature method 

In this work, we made some slight modifications compared to previous methods of reinforcement 

learning. to the way of learning the first is buy starting the training of the agent in locations close to the goal 

pose to help find optimal solutions faster knowing that for any reinforcement learning algorithm in order to 

work or find the optimal behavior needs to get to the goal pose to obtain maximum reward thus an optimal 

policy obtained. 

 

2.2.  Control methods 

2.2.1. Unmanned aerial vehicles fuzzy logic control 

For the purpose of controlling complex nonlinear systems, it is practical to translate theoretical 

descriptions into automatic control strategies [21]. The high characteristics of a UAV include its capacity to 

conduct quick movements, take off and land vertically, and hover in a stable air state. However, because a 

quadrotor is an unstable and underactuated nonlinear system, developing a high-performance drone controller 

is a complex task [22]. Dynamic systems are characterized by exterior disturbances, unknown parameters, 

and complex nonlinearities [23]. Then it is suggested to develop a fuzzy logic controller to ensure the 

stability of the quadrotor. 

a. Fuzzy rules 

Fuzzy logic is usually expressed by linguistic rules showing in Figure 3 by the form: 
 
 

 
 

Figure 3. Linguistic fuzzy rule 
 

 

The general form of the fuzzy rules is given as (3): 
 

If 𝑋1 is 𝑥1 and/or 𝑋2 is 𝑥2 and/or … 𝑋𝑛 is 𝑥𝑛 then Y is y. (3) 
 

The proposed method presents the advantages of the defuzzification and adaptive inference engines 

that have been fuzzified. Along with various other approaches, the fuzzy controller is evaluated subjectively 

and objectively, where the processing time is taken in consideration [24]. 

b. The quadrotor rule base 

A rule base has been established for all six controllers, where the Table 1 represent the rules of each 

controller (roll, pitch, yaw, and x, y, z positions) ensuring that the rules are derived based on empirical 

evidence and careful analysis. 
 

 

Table 1. Quadrotor rule base 
𝒅𝑬 𝒅𝒕 NB N Z P PB 

N GDM GD GD S GU 

Z GUM GD S GU GUM 

P GD S GU GUM GUM 

where: N is negative; Z is zero; P is positive; GUM is go up much; GU is go up; S is stand; GDM is go down much; GD is go down; NB 

is negative big; and PB is positive big. 

 
 

Triangular, trapezoid, and Gaussian membership functions are the most used for controlling UAVs. 

The input range for the system is set as [-4, 4], while the output variables have different ranges: [-12.22, 

12.22] for U1[-3.05, 3.05] for U2 and U3, [-0.066, 0.066] for U4, and [-1, 1] for pitch and roll. The 

membership functions for each controller are defined using the "fuzzy" instruction in MATLAB, as 

illustrated in the accompanying Figures 4 and 5, where Figure 4(a) displays the error input and Figure 4(b) 

displays the derivative of error input for membership function and Figure 5 displays the output membership 

function. 
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(a) (b) 

 

Figure 4. Membership functions for; (a) error input and (b) derivative of error input 
 

 

 
 

Figure 5. Output membership function 
 

 

c. Roll controller 

A rotating subsystem (roll, pitch, and yaw) and a translating subsystem (x, y, and z coordinates) 

could be used to control the movement of a quadrotor [25]. To handle the control input of a roll controller, an 

equation script is employed that makes use of the "evalfis" instruction. This script ensures that the controller 

operates within the defined range by implementing a saturation code. This code prevents any situation where 

the value exceeds the specified range, thereby maintaining control stability and reliability. 
 

𝑈2(𝑘) = 𝐾𝑃𝜃𝑒𝜃(𝑘) + 𝐾𝐷𝜃[𝑒𝜃(𝑘) − 𝑒𝜃(𝑘 − 1)] + 𝐾𝐼𝜃[𝑒𝜃(𝑘) − 2𝑒𝜃(𝑘 − 1) + 𝑒𝜃(𝑘 − 2)]
+𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑈3(𝑘), [𝑒(𝑘) , 𝑒(𝑘 − 1)])

 

(4) 

 

Such that: 𝑒𝜃 is the error between the referential roll angle and the desired roll angle. 
 

eθ (k) = θref(k) − θ(k)  (5) 
 

d. Pitch controller 

To manage the control input of a pitch controller, an equation script is utilized that incorporates the 

"evalfis" instruction. This script allows the pitch controller to operate within the specified range and includes 

a saturation code to prevent any conditions that could cause the value to exceed the defined range. The 

saturation code ensures that the pitch controller remains within the desired boundaries, ensuring stability and 

preventing any undesirable effects. 
 

𝑈3(𝑘) = 𝐾𝑃𝜑𝑒𝜑 (𝑘) + 𝐾𝐷𝜑[𝑒𝜑 (𝑘) − 𝑒𝑒𝜑 (𝑘 − 1)] + 𝐾𝐼𝜑[𝑒𝜑 (𝑘) − 2𝑒𝜑 (𝑘 − 1)

+𝑒𝜑 (𝑘 −  2)] +  𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑈3(𝑘), [𝑒(𝑘) , 𝑒(𝑘 −  1)])
 

 (6) 

 

where evalfis is the instruction of the FLC and 𝑒𝜑 is the error between the referential pitch angle and the 

desired pitch angle: 
 

𝑒𝜑(𝑘) = 𝜑𝑟𝑒𝑓(𝑘) − 𝜑(𝑘)  (7) 
 

e. Yaw controller 

From (8) and (9) can be used to define the control input for yaw angle: 
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U4(k) = KPe(k) + KD[e(k) − e(k − 1)]

+KI[e(k) − 2e(k −  1) + e(k − 2)] +  evalfis(U4(k), [e(k), e(k − 1)])

 

 (8) 

 

𝑒𝜓(𝑘)  =  𝜓𝑟𝑒𝑓(𝑘) − 𝜓(𝑘)  (9) 
 

Such that: 𝑒 is the error between the referential yaw angle and the desired yaw angle. 

f. Altitude controller 

The altitude control input is specified as the control input for the quadrotor's Z position can be 

defined as (10) and (11): 
 

𝑈1(𝑘) = 𝐾𝑃𝑍𝑒𝑍(𝑘) + 𝐾𝐷𝑍[𝑒𝑍(𝑘) − 𝑒𝑍(𝑘 − 1)] 
+𝐾𝐼𝑍[𝑒𝑍(𝑘) − 2𝑒𝑍(𝑘 − 1) + 𝑒𝑍(𝑘 − 2)] +  𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑈1(𝑘), [𝑒(𝑘) , 𝑒(𝑘 −  1)]) (10) 
 

𝑒𝑍 𝑍 (𝑘)  =  𝑍𝑟𝑒𝑓(𝑘)  −  𝑍(𝑘)  (11) 
 

Such that: 𝑒𝑍 is the error between the referential Z position and the desired Z position. 

g. X and Y position controller 

While the quadrotor's ability to maintain a forward and level position is commendable, it is not 

flawless. In the presence of unexpected external forces, there is a possibility of slight roll or pitch angles 

being introduced, causing a deviation from the desired position. To address this issue, a fuzzy PID controller 

can be employed for each position, allowing for the adjustment of these angles based on the quadrotor's X 

and Y positions. By implementing this controller, the quadrotor can effectively counteract any deviations and 

maintain its desired position more accurately. 
 

𝜃𝑟𝑒𝑓(𝑘) = 𝐾𝑃𝑋𝑒𝑋(𝑘) + 𝐾𝐷𝑋[𝑒𝑋(𝑘) − 𝑒𝑋(𝑘 − 1)]

+𝐾𝐼𝑋[𝑒𝑋(𝑘) − 2𝑒𝑋(𝑘 − 1) + 𝑒𝑋(𝑘 − 2)] +  𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝜃𝑟𝑒𝑓(𝑘), [𝑒(𝑘), 𝑒(𝑘 − 1)])

 

 (12) 

 

𝜑𝑟𝑒𝑓(𝑘) = 𝐾𝑃𝑌𝑒𝑌 (𝑘) + 𝐾𝐷𝑌[𝑒𝑌 (𝑘) − 𝑒𝑌 (𝑘 − 1)] + 𝐾𝐼𝑌[𝑒𝑌(𝑘) − 2𝑒𝑌(𝑘 − 1)

+𝑒𝑌(𝑘 −  2)] +  𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝜑𝑟𝑒𝑓(𝑘), [𝑒(𝑘), 𝑒(𝑘 − 1)])

 

 (13) 

 

2.2.2. Proportional integral derivative adaptive fuzzy logic control 

a. Principle 

When using the PID control approach, tracking performance is comparatively lower since the PID 

controller is unable to alleviate the effects of external interference and the uncertainty of the system model, 

so it is required to adjust the PID’s parameters in real time [26]. Adaptive control refers to a method 

employed to adjust and operate a system in real-time. In industrial applications, conventional PID controllers 

are commonly utilized. However, in robotic applications, traditional controllers often face challenges such as 

overshooting and oscillation around settling points. These issues can be addressed by incorporating fuzzy 

logic control. When developing an adaptive controller, the initial step involves understanding how fuzzy 

logic interacts with the parameters of a conventional PID controller (Figure 14), as well as with the error and 

error signal. The error and rate of change of error are fed into the fuzzy logic controller, which then produces 

adjustments in the values of Kp, Ki, and Kd (proportional, integral, and derivative gains). Using this 

technique, we insured, System's sustainability and robustness in the face of external wind disturbances when 

compared to the classical PID. The simulation results validate the optimization of the system parameters [27] 

of the PID controller in real time. Figure 6 shows a block diagram of the adaptive fuzzy PID control. In this 

paper, we have compared and evaluated deep learning methods in order to determine the suitable algorithm 

for distance measurement for autonomous drone controlled in real time [28]. 
 

 

 
 

Figure 6. Adaptive fuzzy PID control 
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3. RESULTS AND DISCUSSION 

3.1.  Path planning 

3.1.1. Deep Q-learning algorithm 

In this simulation, we set a 3D environment. For each episode, random starting points were chosen on 

the map, from which the agent initiated its navigation. The number of steps taken and the total reward 

accumulated during each episode were recorded. Additionally, the total time taken for the agent to complete the 

learning process was measured. The steps graph shown above tells us that the agent does not get to the goal 

point so often since the number of steps is always near its maximum. The reward graph shows that it gets 

negative quite often specially at the latest episodes which is completely inacceptable and quite the opposite of 

what was expected. This method trained the neural network 32,000 times and took nearly 16 hours. 

The application of Deep Q-learning for UAV path planning in the 3D grid, where it follows a 

predetermined path to collect calculation tasks from smart devices posed significant challenges, leading to 

unsatisfactory results [29]. Deep reinforcement learning trains general-purpose neural network approach to 

overcome the constraint [30] using a reward-based system, the UAV learns to select optimal actions based on 

its current state. The neural network employed in the learning process faced difficulties in deriving patterns 

or relationships between the input and output, primarily due to the fixed Q-values of the occupied spaces set 

to 0, which remained unmodifiable throughout the learning phase. 

The inability of the neural network to learn meaningful Q-values severely impacted the agent's 

decision-making capability and hindered the effectiveness of the Deep Q-learning approach. Consequently, the 

agent exhibited suboptimal path planning behavior and struggled to navigate the environment efficiently. The 

challenges encountered in this study underscore the difficulties of utilizing Deep Q-learning in complex, 3D 

grid world environments for UAV path planning. The unique characteristics of the environment, such as the 

fixed Q-values of occupied spaces, present obstacles that hinder the learning process and prevent the agent from 

acquiring an optimal policy. Further investigation and potential modifications to the Deep Q-learning approach, 

including reward shaping, exploration strategies, network architecture, or augmented inputs shown in  

Figure 7(a) represent total step (y-axe) per episode (x-axe) and Figure 7(b) represent reward (y-axe) per episode 

(x axe) (may be necessary to address these challenges and improve the results in similar scenarios). 
 

 

  
(a) (b) 

 

Figure 7. Response per episode for; (a) total steps and (b) rewards for dqn algorithm 

 

 

In conclusion Deep Q-learning doesn’t fit a nonlinear model due to nature of neural networks that is 

why we moved to Dyna Q-learning that puts data in a tabular form. Figure 2 shows the simple schematic of 

Dyna Q-Learning and Figure 3 shows the simple schematic of Q-Learning, and explain how they differ 

where a Deep Q-learning that uses neural networks and underneath it a dyna that uses a table. 

 

3.1.2. Dyna Q-learning algorithm 

Each episode's total steps taken and accrued rewards were kept track off. Additionally, the amount of 

time needed for the agent to finish learning was calculated. The Bellman equation, which is significantly more 

straightforward, was used as the update rule for the q instead of the temporal differencing (TD) error. Figure 8(a) 

shows response for reward per episode and Figure 8(b) shows total steps per episode for Dyna_Q and Figure 9(a) 

shows response for reward per episode and Figure 9(b) shows total steps per episode in the improved Dyna_Q. 

We first start by sampling random points in the entire map with equally distributed probabilities, it 

took the agent 202.3 seconds to complete the learning we started training the agent in the points closer to the 

goal point and then we keep getting farther until we cover the entire map. This method took the agent 

144.0879 seconds to complete learning. The method of training the agent in a smaller environment with in 
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the neighborhood of the goal point took the agent 144.0879 seconds to learn, which is quite a significant 

improvement over the standard method. It is 29% faster to be precise. In the Figures 4 and 5, we see that the 

agent takes an obstacle clean path and manages to get to the goal point successfully and does not take a very 

long path (Figure 10) which is exactly the goal of this work. The final model tested to generate paths from 2 

different start points, where Figure 10(a) represent the occupancy map for the first Start point and  

Figure 10(b) represent the occupancy map for the second start point. 
 

 

  
(a) (b) 

 

Figure 8. Display response for; (a) reward and (b) total steps per episode for Dyna_Q 
 

 

  
(a) (b) 

 

Figure 9. Display response for; (a) reward and (b) total steps per episode in the improved Dyna_Q 
 

 

  
(a) (b) 

 

Figure 10. Occupancy map for; (a) first start point and (b) second start point to generated path 

 

 

3.2.  Control methods 

3.2.1. Unmanned aerial vehicles fuzzy logic control 

The drone's objective is to arrive at the terminal destination safely [31], so in this design, we used a 

pre-defined UAV model which has its control laws already calculated. The fuzzy logic controller than was 
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added after the PID controller, so it compensates any error or miss-calculation from the PID. This control 

method is a combination of traditional PID controller with fuzzy logic [26]. A generated path from our path 

planning model was used as the input for the fuzzy logic control system. After running the simulation, 

obtained the results shown in Figures 11 and 12, where Figure 10 shows the control inputs for path 1. 

 

 

  

  
  

Figure 11. Control inputs for path 1 
 

 

A resilient controller is the fuzzy logic controller. We are extremely convinced that this controller is 

more than capable of handling the task because it demonstrated its performance throughout our experiment 

and provided some incredibly adequate performance figures. It also successfully followed the generated 

paths, which gives us even more confidence. Figure 12(a) (in Appendix) is an illustration of the global 

trajectory in (x, y, and z axes) and Figure 12(b) (in Appendix) shows the fuzzy PID responses of the 

quadrotor in 3D for path 1. After running the simulation for the second generated path we obtained the 

graphs shown in Figure 13 (in Appendix) that represent control inputs for path 2 and Figure 14(a) (in 

Appendix) is an illustration of the global trajectory in (x, y, and z axes) and Figure 14(b) (in Appendix) 

shows fuzzy PID responses of the quadrotor in 3D for path 2. 

The Table 2 shows that there is no steady-state, and the settling time sits just under 6 seconds for the 

first path and a little more than 4 seconds in the second path. Pitch and Yaw angles exhibit no steady-state 

error. Note that the settling time for X and Y positions is 0. This is due to the nature of the path and has 

nothing to do with the performance of the system. 
 

 

Table 2. The results for the fuzzy controllers of the UAV  
Settling time first, (second) path Steady state error 

X position 0 Sec, (0 Sec) 0 

Y position 0 Sec, (0 Sec) 0 

Z position 5.8 Sec, (4.22 Sec) 0 

 

 

3.2.2. Proportional integral derivative adaptive fuzzy logic control 

For the simulation, the parameters of each PID control are adapted by a fuzzy controller, and the 

results are shown by the Figures 15 to 21. The table shows that there is no steady-state, and the settling time 

for the z position sits just under 5.6 seconds for the first generated path and there is hardly any settling time 
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for the X and Y positions. Which means that the adaptive fuzzy proved to be a better alternative than the 

standard fuzzy logic control system. 
 

 

  

  
  

Figure 15. Adaptive fuzzy logic control inputs 
 
 

 
 

 
  

Figure 16. PID parameters of x position 
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Figure 17. PID parameters of y position 
 
 

  

 
  

Figure 18. PID parameters of pitch angle 
 

 

Figure 15 illustrate the control inputs (time in x-axe and amplitude in y-axe) of the quadrotor for 

adaptive fuzzy logic controller and Figures 16 to 20 illustrate successively the PID parameters for (x, y and z 

position and pitch, roll and yaw, where the (time in x-axe and amplitude in y-axe). Figure 21(a) is an 

illustration of the global trajectory of the quadrotor in (x, y, and z axes), and Figure 21(b) shows the adaptive 

fuzzy response successively of (pitch, roll and yaw angle and x, y, and z positions) of the quadrotor in 3-D. 
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Figure 19. PID parameters of roll angle 

 

 

  

 
  

Figure 20. PID parameters of yaw angle 
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(a) 

 

  

  

  
(b) 

  

Figure 21. Global trajectory; (a) adaptive fuzzy response and (b) for the UAV in 3-D 
 

 

Table 3 shows that there is no steady-state, and the settling time for the z position sits just under 5.6 

seconds for the first generated path and there is hardly any settling time for the X and Y positions. Which 

means that the adaptive fuzzy proved to be a better alternative than the standard fuzzy logic control system. 
 
 

Table 3. The discussion of the adaptive fuzzy controllers for the UAV  
Settling time  Steady state error 

X position 0 Sec 0 

Y position 0 Sec 0 

Z position 5.55 sec 0 
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4. CONCLUSION 

The objective of this research was to evaluate the suitability of Deep Q-learning and Dyna  

Q-learning algorithms for UAV path planning, along with the integration of a fuzzy logic control system for 

precise path following. The findings of this study indicate that Deep Q-learning is not well-suited for UAV 

path planning due to the absence of clear patterns or relations in the data. However, Dyna Q-learning, with 

customized modifications, showed promise in learning an optimal policy quicker than the standard Dyna 

algorithm. Additionally, the integrated fuzzy logic control system proved to be highly effective in ensuring 

precise path following by the UAV, and its more advanced version “Adaptive Fuzzy Logic” does always 

have the edge over the standard one when it comes to overall performance and versatility. The results suggest 

that when dealing with complex and unpredictable environments, such as UAV path planning, Deep Q-

learning may not be the most suitable algorithm. The lack of discernible patterns in the data poses challenges 

for the neural network to learn accurate Q-values. However, Dyna Q-learning, with bespoke modifications, 

overcame these challenges and demonstrated improved performance in learning optimal policies. 

Based on the findings, it is recommended to further explore and refine the customized Dyna  

Q-learning algorithm for UAV path planning. Additionally, the integration of adaptive fuzzy logic control 

systems should be considered for other autonomous systems requiring precise path following. Further 

research could focus on optimizing the customization of the Dyna algorithm and investigating alternative 

reinforcement learning algorithms that may better suit the UAV path planning problem. By identifying the 

limitations of Deep Q-learning for UAV path planning, showcasing the effectiveness of customized Dyna  

Q-learning, and highlighting the applicability of fuzzy and adaptive fuzzy logic control systems, this study 

contributes to the advancement of autonomous systems in complex environments. The insights gained from 

this research can guide further developments in path planning algorithms and enhance the capabilities of 

UAVs and other autonomous systems. 

 

 

APPENDIX 

 

 

 
(a) 

 

  
(b) 

 

Figure 12. Global trajectory; (a) fuzzy PID responses and (b) of the quadrotor in 3D for path 1 
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(b) 

  

Figure 12. Global trajectory; (b) of the quadrotor in 3D for path 1 (continued) 

 

 

  

  
  

Figure 13. Control inputs for path 2 
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(a) 

 

  

  

  
(b) 

  

Figure 14. Global trajectory; (a) fuzzy PID responses and (b) of the quadrotor in 3D for path 2 
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